
Quest Journals

Journal of Software Engineering and Simulation

Volume 6 ~ Issue 3 (March 2020) pp: 49-52

ISSN(Online) :2321-3795 ISSN (Print):2321-3809

www.questjournals.org

DOI: 10.35629/3795-06034952 www.questjournals.org 49 | Page

Research Paper

 Transitioning from Monolithic to Microservice

Architectures

Mariappan Ayyarrappan
Principle Software Engineer, Fremont, CA, USA

Abstract

Migrating from a monolithic software system to a microservice architecture has become a popular strategy for

addressing issues like scalability, maintainability, and continuous delivery. While microservices promise faster

innovation cycles and independent deployability, the transition process can be complex, involving major cultural

and technical shifts. This paper outlines core considerations in decomposing monolithic applications, highlights

patterns and anti-patterns, and discusses best practices for monitoring, observability, and data management. We

use diagrams to illustrate typical reference architectures and migration workflows. By adopting a systematic

approach, organizations can mitigate risks and maximize the benefits of microservices.

Keywords

Microservices, Monolithic Architecture, Scalability, Continuous Delivery, Decomposition, Software Refactoring

I. Introduction
A monolithic architecture bundles all aspects of an application—user interface, backend logic, and data

management—into a single deployable unit. This approach often starts simply but can become unwieldy over

time, as minor changes can affect large parts of the codebase [1]. In contrast, microservices split functionality

into small, autonomous services, each responsible for a specific domain or capability [2]. Teams can then develop,

deploy, and scale these services independently [3].

The decision to transition from a monolithic application to microservices typically arises when teams

encounter lengthy deployment cycles, limited scalability, or complex code merges that slow progress [4].

Although microservices present tangible benefits—such as isolated failure domains, faster deployment of new

features, and improved team autonomy—they also introduce complexities related to inter-service communication,

distributed data management, and operational overhead [5]. This paper discusses the main drivers behind

microservices, outlines best practices for decomposition, and presents strategies to ensure robust monitoring,

security, and continuous delivery throughout the transition process.

II. Background and Related Work
A. Monolithic vs. Microservices

Monolithic systems have been the default for decades, benefiting from simpler deployment and a single code

repository [2]. Yet as codebases expand, monoliths can devolve into “big balls of mud,” where tangling

dependencies make changes risky and testing difficult [6]. On the other hand, microservices emphasize loose

coupling, domain-driven design, and fine-grained services that communicate via lightweight protocols (e.g.,

HTTP/REST) [7]. Notably, Netflix and Amazon successfully embraced microservices for scaling streaming and

e-commerce systems, respectively [8].

B. Domain-Driven Design (DDD)

DDD principles can guide service boundaries by aligning them with domain contexts, ensuring that each service

focuses on a cohesive set of functionalities [9]. Properly identified domain boundaries reduce coupling and clarify

data ownership, thereby smoothing the transition from monoliths [2].

C. Continuous Delivery and DevOps

Adopting microservices aligns with DevOps practices and continuous integration/continuous delivery (CI/CD)

pipelines, because smaller services are quicker to test, build, and deploy [3], [10]. Organizations that fail to

establish robust CI/CD pipelines may struggle with the operational complexity that microservices bring.

http://www.questjournals.org/

Transitioning from Monolithic to Microservice Architectures

DOI: 10.35629/3795-06034952 www.questjournals.org 50 | Page

III. Drivers and Challenges in Transition
1. Scalability: Monolithic apps often scale by replicating the entire system, even if only one function is

under heavy load [5]. Microservices let teams scale individual services on demand.

2. Deployment Independence: Frequent updates to a single monolith can cause downtime or release

bottlenecks. Microservices isolate changes to specific services [2].

3. Team Autonomy: Each service can be owned by a dedicated team, reducing cross-team coordination

overhead.

4. Operational Complexity: Service discovery, network latency, and handling partial failures are new

challenges introduced by microservices [8].

5. Data Management: Shifting from a single database to multiple data stores requires new approaches to

transactions, data consistency, and schema evolution [7].

IV. Planning the Migration
A. Identify Service Boundaries

Breaking down a monolith into microservices starts with analyzing domain boundaries and component

dependencies [2]. One approach is to look for “natural seams,” areas of the codebase with limited coupling to the

rest of the system (e.g., an order processing module distinct from user authentication).

B. Strangler Pattern

A common pattern for safe migration is the Strangler Fig pattern:

1. Incremental Replacement: Route specific requests from the monolith to a new microservice.

2. Maintain Coexistence: Over time, the new service handles an increasing share of functionality.

3. Decommission: Eventually, the monolith’s replaced components are removed [1].

V. High-level Architecture
Below is a conceptual reference architecture showing a microservices-based system. Each microservice is

autonomous, storing data in its own database and communicating through an API gateway.

Figure 1. A simplified microservices architecture with distinct services, each storing its own data, fronted by an

API gateway.

1. API Gateway: Central point controlling external requests, routing them to the correct service and

applying cross-cutting concerns like authentication and rate limiting [3].

2. Individual Databases: Minimizing cross-service coupling by giving each service ownership of its data.

3. Service Autonomy: Teams can independently develop, deploy, and scale their services.

Transitioning from Monolithic to Microservice Architectures

DOI: 10.35629/3795-06034952 www.questjournals.org 51 | Page

VI. Flowchart: Migration Workflow
The following flowchart illustrates a sequential approach to refactoring a monolithic system into microservices:

Figure 2. A structured workflow for incremental decomposition.

1. Assess Monolith: Identify modules with clear domain boundaries and the greatest potential for improved

scalability or frequent changes.

2. Create New Service: Develop or refactor domain logic into a separate codebase, with independent data

storage.

3. Strangler Routes: Route relevant traffic from the monolith to the new service, allowing both systems to

coexist.

4. Test & Validate: Confirm that the new service meets functional and performance requirements before

cutting over more traffic.

5. Decommission: Eventually remove replaced modules from the monolith.

6. Repeat: Continue iterating until the monolith is largely decomposed into microservices.

VII. Observability and Monitoring
A. Logging and Tracing

Monitoring distributed systems requires specialized tools for correlation across service boundaries [4].

Centralized logging captures logs from all services into a single search/analytics platform, while distributed

tracing (e.g., using Zipkin or Jaeger) provides end-to-end visibility of requests spanning multiple services [5].

B. Metrics and Alerts

 Service-level Indicators (SLIs): Track performance (latency, error rate) and availability for each

microservice [6].

 Dashboards: Tools like Grafana or Kibana visualize real-time metrics, facilitating quick identification

of performance bottlenecks [1].

 Automated Alerts: Triggered by threshold breaches or anomalies, enabling rapid incident response [8].

VIII. Best Practices for a Successful Transition
1. Adopt DevOps Culture: Microservices demand close collaboration between development and

operations teams, emphasizing automation and continuous delivery [3].

2. Manage Configuration: Centralizing configuration (e.g., using Consul or etcd) can streamline

environment-specific variables for each microservice [10].

3. Avoid Over-splitting: Not every function needs its own microservice. Over-fragmentation can create

overhead in communication and maintenance [4].

Transitioning from Monolithic to Microservice Architectures

DOI: 10.35629/3795-06034952 www.questjournals.org 52 | Page

4. Plan for Failure: Implement circuit breakers and fallback mechanisms to handle partial system

outages gracefully [7].

5. Security and Access Control: Use secure tokens (e.g., JWT) or OAuth 2.0 to manage service-to-service

and external client authentication [3].

IX. Diagram: Service Lifecycle State

Below is a state diagram for a single microservice from creation to deployment and eventual deprecation.

Figure 3. State diagram showing the lifecycle of an individual microservice.

1. Development: Code is written and version-controlled.

2. CI/CD Pipeline: Automated builds, tests, and continuous integration tasks.

3. Testing: Integration and load tests confirm readiness for production.

4. Production: Service is live, handling user requests.

5. Maintenance: Patches, updates, or scaling adjustments occur.

6. Deprecation: Eventually, the service is replaced or retired as system requirements evolve.

X. Conclusion
Transitioning from a monolithic architecture to microservices can be transformative, offering improved

scalability, team autonomy, and deployment velocity. However, organizations must carefully tackle challenges

like distributed data management, observability, and operational overhead. Effective domain decomposition and

incremental migration strategies—such as the Strangler Fig pattern—enable teams to manage risks and validate

new services in production. By combining robust DevOps practices, domain-driven design, and continuous

monitoring, enterprises can successfully evolve their applications into an architecture that better supports

innovation and agility.

Future Outlook (As of 2020):

 Serverless Integration: Some microservices may become function-based for sporadic workloads,

lowering operational costs [5].

 Service Meshes: Technologies like Istio or Linkerd add powerful routing, telemetry, and security

capabilities to microservice architectures [7].

 AI-Driven Observability: Machine learning could preemptively detect anomalies in distributed traces,

improving reliability further [2].

A structured migration plan—aligned with domain boundaries, supported by CI/CD, and validated via

observability—paves the way for successful transformation from monolithic to microservice architectures.

References
[1]. M. Fowler, “Strangler Fig Application,” martinfowler.com, 2015. [Online]. Available:

https://martinfowler.com/bliki/StranglerFigApplication.html

[2]. J. Lewis and M. Fowler, “Microservices,” martinfowler.com, 2014. [Online]. Available:

https://martinfowler.com/articles/microservices.html

[3]. S. Newman, Building Microservices: Designing Fine-Grained Systems, O’Reilly Media, 2015.

[4]. B. Bründl and M. D. Seltzer, “Challenges in Migrating from Monolith to Microservices,” IEEE Software, vol. 34, no. 5, pp. 43–49,

2017.
[5]. Netflix Technology Blog, “The Evolution of Microservices at Netflix,” 2019. [Online]. Available:

https://netflixtechblog.com/

[6]. E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software, Addison-Wesley, 2003.
[7]. Jonas Bonér, Reactive Microservices Architecture: Design Principles for Distributed Systems, O’Reilly Media, 2016.

[8]. A. Cockcroft, “Migrating from Monolithic to Cloud-Native Architectures,” Proceedings of Velocity Conference, 2018.

[9]. V. Vernon, Implementing Domain-Driven Design, Addison-Wesley, 2013.
[10]. M. Richards, Microservices vs. Service-Oriented Architecture, O’Reilly Media, 2019.

https://netflixtechblog.com/

