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ABSTRACT : When solving complex stochastic engineering problems, it can prove preferable to create 

numerous quantifiably good alternatives that provide multiple, disparate perspectives. These alternatives need 

to satisfy the required system performance criteria and yet be maximally different from each other in the 

decision space. The approach for creating maximally different sets of solutions is referred to as modelling-to-

generate-alternatives (MGA). Simulation-optimization approaches are frequently employed to solve 

computationally difficult problems containing significant stochastic uncertainties. This paper outlines an MGA 

algorithm that can generate sets of maximally different alternatives for any simulation-optimization method that 

employs a population-based procedure. This algorithmic approach is both computationally efficient and 

simultaneously produces the prescribed number of maximally different solution alternatives in a single 

computational run of the procedure. 
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I. INTRODUCTION 
Stochastic engineering decision-making situations typically involve complex design components that 

can be difficult to incorporate into mathematical programming formulations and are often overwhelmed with 

numerous unquantifiable specifications [1], [2], [3], [4], [5]. While “optimal” solutions can be calculated for the 

modelled formulations, they generally do not provide the best solution to the “real” problem as there are usually 

unmodeled components not apparent when the mathematical models are constructed [1], [2], [6]. Generally, it is 

more desirable to create a small number of distinct alternatives that permit complementary viewpoints for the 

problem [3], [7]. These options should be near-optimal with respect to the specified objective(s), but should be 

maximally different from each other within the decision region. The approach for creating maximally different 

sets of solutions is referred to as modelling-to-generate-alternatives (MGA) [6], [7], [8]. 

MGA techniques necessitate a systematic examination of the solution space in order to produce a set of 

alternatives that are considered good when measured within the modelled objective space but as different as 

possible from each other in the decision space. The resultant set of solutions should provide alternative 

perspectives that perform similarly with respect to the modelled objectives, yet very differently with respect to 

potentially unmodelled features [5]. Decision-makers must conduct a subsequent comparison of the alternatives 

to determine which alternative(s) most nearly satisfies their specific requirements. Consequently, unlike the 

more straightforward approach of explicit solution determination inherent in most “hard” optimization methods, 

MGA approaches are necessarily classified into the decision support realm. 

Early MGA algorithms employed direct, incremental approaches for constructing their alternatives by 

iteratively re-running their procedures whenever new solutions needed to be generated [6], [7], [8], [9], [10]. 

These iterative approaches replicated the seminal MGA technique of Brill et al. [8] where, once the initial 

mathematical formulation has been optimized, all supplementary alternatives are produced one-at-a-time. 

Therefore, these approaches all employed n+1 iterations of their respective algorithms – firstly to optimize the 

original problem, then to construct each of the n subsequent alternatives [7], [11], [12], [13]. 

In this paper, it is demonstrated how a set of maximally different solution alternatives can be generated 

by extending several earlier MGA techniques to stochastic optimization ([12], [13], [14], [15], [16], [17], [18]). 

In this study, a new stochastic algorithm provides an MGA process that can be accomplished by any population-

based mechanism. This new algorithm advances earlier concurrent procedures ([13], [15], [16], [17], [18]) by 
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permitting the simultaneous generation of n distinct alternatives in a single computational run. Specifically, to 

generate n maximally different alternatives, the algorithm runs exactly the same number of times that a function 

optimization procedure needs to run (i.e. once) irrespective of the value of n [19], [20], [21], [22], [23]. 

Furthermore, a novel data structure is employed that permits simultaneous alternatives to be constructed in a 

computationally effective way. This data structure facilitates the above-mentioned solution generalization to all 

population-based methods. Consequently, this stochastic MGA algorithmic approach proves to be extremely 

computationally efficient. 

 

II. MODELLING TO GENERATE ALTERNATIVES 
Mathematical optimization has focused almost entirely on constructing single optimal solutions to 

single-objective problems or determining sets of noninferior solutions for multi-objective formulations [2], [5], 

[8]. While such approaches may create solutions to the mathematical models, whether these outputs are the best 

solutions to the “real” problems remains can be debatable [1], [2], [6], [8]. Within most “real world” decision-

making environments, there are countless system requirements and objectives that will never be explicitly 

apparent or included in the model formulation stage [1], [5]. Furthermore, most subjective aspects remain 

unavoidably unmodelled and unquantified in the constructed decision models. This regularly occurs where final 

decisions are constructed based not only on modelled objectives, but also on more subjective stakeholder goals 

and socio-political-economic preferences [7]. Several incongruent modelling dualities are discussed in [6], [8], 

[9], and [10]. 

When unmodelled issues and unquantified objectives exist, non-conventional methods are needed to 

not only search the decision region for noninferior sets of solutions, but to also explore the decision region for 

alternatives that are obviously sub-optimal for the problem modelled. Namely, any search for alternatives to 

problems known or suspected to contain unmodelled components must concentrate not only on a non-inferior 

set of solutions, but also necessarily on an explicit exploration of the problem’s inferior solution space. 

To demonstrate the consequences of an unmodelled objective in a decision search, assume that the 

quantifiably optimal solution for a single-objective, maximization problem is X* with a corresponding objective 

value Z1*. Now suppose that a second, unmodelled, maximization objective Z2 exists that subjectively 

incorporates some unquantifiable “politically acceptable” component. Now assume that some solution, X
a
, 

belonging to the 2-objective noninferior set, exists that represents a potentially best compromise solution for the 

decision-maker if both objectives had somehow been simultaneously evaluated. While X
a
 could reasonably be 

considered as the best compromise solution for the real problem, in the quantified mathematical model it would 

appear inferior to solution X*, since it must be the case that Z1
a
 Z1*. Therefore, when unmodelled 

components are incorporated into a decision-making process, mathematically inferior options to the modelled 

problem could actually be optimal for the real underlying problem. Consequently, when unmodelled issues and 

unquantified objectives potentially exist, alternative solution procedures are needed to not only explore the 

decision region for noninferior sets of solutions, but also to concurrently search the decision region for inferior 

solutions to the problem modelled. Population-based algorithms permit concurrent searches throughout a 

decision space and prove to be particularly proficient solution methods. 

The primary task of MGA is to create a workable set of options that are quantifiably good when 

measured by all objectives, yet as different as possible from each other within the solution domain. This 

resulting set of options should produce truly different perspectives that perform similarly with respect to the 

known modelled objective(s) yet very differently with respect to any unmodelled aspects. By creating these 

good-but-different solutions, the decision-makers can then examine potentially desirable qualities within the 

options that may be able to address potentially unmodelled objectives to varying degrees of stakeholder 

tolerability. 

To motivate the MGA process, it is necessary to more formally characterize the mathematical 

definition of its goals [6], [7]. Assume that the optimal solution to an original mathematical model is X* with 

corresponding objective value Z* = F(X*). The resultant difference model can then be solved to produce an 

alternative solution, X, that is maximally different from X*: 

Maximize  (X, X*) = Min
i

 | Xi - Xi* | (1) 

Subject to:  X   D (2) 

  | F(X) - Z* |   T  (3) 

 

 where   represents an appropriate difference function (shown in (1) as an absolute difference) and T 

is a tolerance target relative to the original optimal objective value Z*. T is a user-specified limit that determines 

what proportion of the inferior region needs to be explored for acceptable alternatives. This difference function 

concept can be extended into a difference measure between any set of alternatives by replacing X* in the 

objective of the maximal difference model and calculating the overall minimum absolute difference (or some 
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other function) of the pairwise comparisons between corresponding variables in each pair of alternatives – 

subject to the condition that each alternative is feasible and falls within the specified tolerance constraint. 

The population-based MGA procedure to be introduced is designed to generate a pre-determined small number 

of close-to-optimal, but maximally different alternatives, by adjusting the value of T and solving the 

corresponding maximal difference problem instance by exploiting the population structure of the metaheuristic. 

The survival of solutions depends upon how well the solutions perform with respect to the problem’s originally 

modelled objective(s) and simultaneously by how far away they are from all of the other alternatives generated 

in the decision space. 

 

III. SIMULATION-OPTIMIZATION FOR STOCHASTIC OPTIMIZATION 
 Finding optimal solutions to large stochastic problems proves complicated when numerous system 

uncertainties must be directly incorporated into the solution procedures ([24], [25], [26], [27]). Simulation-

Optimization (SO) is a broadly defined family of stochastic solution approaches that combines simulation with 

an underlying optimization component for optimization ([24]). In SO, all unknown objective functions, 

constraints, and parameters are replaced by simulation models in which the decision variables provide the 

settings under which simulation is performed. 

 The general steps of SO can be summarized in the following fashion ([25], [28]). Suppose the 

mathematical model of the optimization problem contains n decision variables, iX , represented in the vector X 

= [ 1X , 2X ,…, nX ]. If the objective function is expressed by F and the feasible region is designated by D, then 

the mathematical programming problem is to optimize F(X) subject to X   D. When stochastic conditions 

exist, values for the objective and constraints can be determined by simulation. Any solution comparison 

between two different solutions X1 and X2 requires the evaluation of some statistic of F modelled with X1 

compared to the same statistic modelled with X2 ([24], [29]). These statistics are calculated by simulation, in 

which each X provides the decision variable settings employed in the simulation. While simulation provides a 

means for comparing results, it does not provide the mechanism for determining optimal solutions to problems. 

Hence, simulation cannot be used independently for stochastic optimization. 

Since all measures of system performance in SO are stochastic, every potential solution, X, must be 

calculated through simulation. Because simulation is computationally intensive, an optimization algorithm is 

employed to guide the search for solutions through the problem’s feasible domain in as few simulation runs as 

possible ([26], [29]). As stochastic system problems frequently contain numerous potential solutions, the quality 

of the final solution could be highly variable unless an extensive search has been performed throughout the 

entire feasible region. A stochastic SO approach contains two alternating computational phases; (i) an 

“evolutionary” module directed by some optimization (frequently a metaheuristic) method and (ii) a simulation 

module ([30]). Because of the stochastic components, all performance measures are necessarily statistics 

calculated from the responses generated in the simulation module. The quality of each solution is found by 

having its performance criterion, F, evaluated in the simulation module. After simulating each candidate 

solution, their respective objective values are returned to the evolutionary module to be utilized in the creation 

of ensuing candidate solutions. Thus, the evolutionary module aims to advance the system toward improved 

solutions in subsequent generations and ensures that the solution search does not become trapped in some local 

optima. After generating new candidate solutions in the evolutionary module, the new solution set is returned to 

the simulation module for comparative evaluation. This alternating, two-phase search process terminates when 

an appropriately stable system state (i.e. an optimal solution) has been attained. The optimal solution produced 

by the procedure is the single best solution found throughout the course of the entire search process ([30]). 

Population-based algorithms are conducive to SO searches because the complete set of candidate 

solutions maintained in their populations permit searches to be undertaken throughout multiple sections of the 

feasible region, concurrently. For population-based optimization methods, the evolutionary phase evaluates the 

entire current population of solutions during each generation of the search and evolves from a current population 

to a subsequent one. A primary characteristic of population-based procedures is that better solutions in a current 

population possess a greater likelihood for survival and progression into the subsequent population. 

It has been shown that SO can be used as a very computationally intensive, stochastic MGA technique 

([29], [31]). However, because of the very long computational runs, several approaches to accelerate the search 

times and solution quality of SO have been examined subsequently [28]. The next section provides an MGA 

algorithm that incorporates stochastic uncertainty using SO to much more efficiently generate sets of maximally 

different solution alternatives. 

 

IV. POPULATION-BASED SIMULTANEOUS MGA COMPUTATIONAL ALGORITHM 
 In this section, a novel data structure is introduced that permits alternatives to be simultaneously 

constructed in a computationally efficient way that also enables an algorithmic generalization to solution by any 
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population-based procedure. Suppose that it is desired to be able to produce P alternatives that each possess n 

decision variables and that the population algorithm is to possess K solutions in total. That is, each solution is to 

contain one possible set of P maximally different alternatives. In this representation, let Yk, k = 1,…, K, 

represent the k
th

 solution which is made up of one complete set of P different alternatives. Namely, if Xkp is the 

p
th

 alternative, p = 1,…, P, of solution k, k = 1,…, K, then Yk can be represented as 

 Yk = [Xk1, Xk2,…, XkP] .  (4) 

If Xkjq, q = 1,…, n, is the q
th

 variable in the j
th

 alternative of solution k, then 

 Xkj = (Xkj1, Xkj2,…, Xkjn) .  (5) 

Consequently, an entire population, Y, consisting of K different sets of P alternatives can be written in 

vectorized form as, 

 Y’ = [Y1, Y2,…, YK] .  (6) 

The following population-based MGA method produces a pre-determined number of close-to-optimal, 

but maximally different alternatives, by modifying the value of the bound T in the maximal difference model 

and using any population-based metaheuristic to solve the corresponding, maximal difference problem. Each 

solution within the population contains one potential set of p different alternatives. By exploiting the co-

evolutionary solution structure within the metaheuristic, the algorithm collectively evolves each solution toward 

sets of different local optima within the solution space. In this process, each desired solution alternative 

undergoes the common search procedure of the metaheuristic. However, the survival of solutions depends both 

upon how well the solutions perform with respect to the modelled objective(s) and by how far away they are 

from all of the other alternatives generated in the decision space. 

A straightforward process for generating alternatives would be to iteratively solve the maximum 

difference model by incrementally updating the target T whenever a new alternative needs to be produced and 

then re-running the algorithm. This iterative approach would parallel the original Hop, Skip, and Jump (HSJ) 

MGA algorithm of Brill et al. [8] in which, once an initial problem formulation has been optimized, 

supplementary alternatives are systematically created one-by-one through an incremental adjustment of the 

target constraint to force the sequential generation of the suboptimal solutions. While this approach is 

straightforward, it requires a repeated execution of the optimization algorithm [7], [12], [13]. 

To improve upon the stepwise alternative approach of the HSJ algorithm, a concurrent MGA technique 

was subsequently designed based upon the concept of co-evolution ([13], [15], [17]). In a co-evolutionary 

approach, pre-specified stratified subpopulation ranges within an algorithm’s overall population were 

established that collectively evolved the search toward the creation of the specified number of maximally 

different alternatives. Each desired solution alternative is represented by each respective subpopulation and each 

subpopulation undergoes the common processing operations of the procedure. The survival of solutions in each 

subpopulation depends simultaneously upon how well the solutions perform with respect to the modelled 

objective(s) and by how far away they are from all of the other alternatives. Consequently, the evolution of 

solutions in each subpopulation toward local optima is directly influenced by those solutions contained in all of 

the other subpopulations, which forces the concurrent co-evolution of each subpopulation towards good but 

maximally distant regions within the decision space according to the maximal difference model [7]. Co-

evolution is also much more efficient than a sequential HSJ-style approach in that it exploits the inherent 

population-based searches to concurrently generate the entire set of maximally different solutions using only a 

single population [12], [17]. 

While a concurrent approach can exploit population-based solution approaches, the co-evolution 

process can only occur within each of the stratified subpopulations. Consequently, the maximal differences 

between solutions in different subpopulations can only be based upon aggregate subpopulation measures. 

Conversely, in the following simultaneous MGA algorithm, each solution in the population contains exactly one 

entire set of alternatives and the maximal difference is calculated only for that particular solution (i.e. the 

specific alternative set contained within that solution in the population). Hence, by the evolutionary nature of the 

population-based search procedure, in the subsequent approach, the maximal difference is simultaneously 

calculated for the specific set of alternatives considered within each specific solution – and the need for 

concurrent subpopulation aggregation measures is circumvented. 

Using the terminology introduced above, the steps in the stochastic MGA procedure are as follows 

([14], [19], [20], [21], [22], [23], [32]). It should be apparent that the stratification approach outlined in this 

algorithm can be easily modified to accommodate any population-based solution procedure. 

Preliminary Step. In this initialization step, solve the original optimization problem to determine the 

optimal solution, X*. As with prior solution approaches ([13], [15], [16], [17], [18]) and without loss of 

generality, it is entirely possible to forego this step and construct the algorithm to find X* as part of its solution 

processing. However, such a requirement increases the number of computational iterations of the overall 

procedure and the initial stages of the processing focus upon finding X* while the other elements of each 

population solution remain essentially “computational overhead”. Based upon the objective value F(X*), 
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establish P target values. P represents the desired number of maximally different alternatives to be generated 

within prescribed target deviations from the X*. Note: The value for P has to have been set a priori by the 

decision-maker. 

Step 1. Create the initial population of size K in which each solution is divided into P equally-sized 

partitions. The size of each partition corresponds to the number of variables for the original optimization 

problem. Xkp represents the p
th

 alternative, p = 1,…,P, in solution Yk, k = 1,…,K. 

Step 2. In each of the K solutions, evaluate each Xkp, p = 1,…,P, using the simulation module with 

respect to the modelled objective. Alternatives meeting their target constraint and all other problem constraints 

are designated as feasible, while all other alternatives are designated as infeasible. A solution can only be 

designated as feasible if all of the alternatives contained within it are feasible. 

Step 3. Apply an appropriate elitism operator to each solution to rank order the best individuals in the 

population. The best solution is the feasible solution containing the most distant set of alternatives in the 

decision space (the distance measure is defined in Step 5). Note: Because the best solution to date is always 

retained in the population throughout each iteration, at least one solution will always be feasible. A feasible 

solution for the first step can always consists of P repetitions of X*. 

Step 4. Stop the algorithm if the termination criteria (such as maximum number of iterations or some measure of 

solution convergence) are met. Otherwise, proceed to Step 5. 

Step 5. For each solution Yk, k = 1,…, K, calculate Dk, a distance measure between all of the alternatives 

contained within the solution. 

As an illustrative example for determining a distance measure, calculate 

 Dk =  ( Xka, Xkb) = 
, ,

Min
a b q

 | Xkaq – Xkbq | ,  a = 1,…,P, b = 1,…,P, q = 1,…,n,  (7) 

 This represents minimum absolute distance between all of the alternatives contained within solution k. 

Alternatively, the distance measure could be calculated by some other appropriately defined function. 

 Step 6. Rank the solutions according to the distance measure Dk objective – appropriately adjusted to 

incorporate any constraint violation penalties for infeasible solutions. The goal of maximal difference is to force 

alternatives to be as far apart as possible in the decision space from the alternatives of each of the partitions 

within each solution. This step orders the specific solutions by those solutions which contain the set of 

alternatives which are most distant from each other. 

Step 7. Apply appropriate metaheuristic “change operations” to each of the solutions within the population and 

return to Step 2. 

 

V. CONCLUSIONS 
“Real world” decision-making situations inherently involve complicated performance components that 

are further confounded by incongruent requirements and unquantifiable performance objectives. These decision 

environments frequently contain incompatible design specifications that are problematic – if not impossible – to 

incorporate when ancillary decision support models are constructed. Invariably, there are unmodelled elements, 

not apparent during model formulation, that can significantly affect the adequacy of its solutions. These 

confounding features require the decision-makers to integrate numerous uncertainties into their solution process 

before an ultimate solution can be determined. Faced with such inconsistencies, it is unlikely that any single 

solution can simultaneously satisfy all ambiguous system requirements without significant compromises. 

Therefore, any decision support approach must somehow address these complicating facets in some way, while 

simultaneously being flexible enough to condense the potential effects within the intrinsic planning 

incongruities.   

This paper has provided an updated stochastic MGA algorithm that directs stochastic SO search 

processes. This new computationally efficient approach establishes how population-based algorithms can 

simultaneously construct entire sets of close-to-optimal, maximally different alternatives by exploiting the 

evolutionary characteristics of any population-based solution method. This MGA approach simultaneously 

creates several solutions containing the requisite problem features, with each alternative generated providing a 

very different perspective to the problem considered. The practicality of this stochastic MGA approach can be 

readily extended into numerous disparate applications and can be clearly modified to suit many “real world” 

planning situations. Such extensions will be explored in future research.   
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