



# Multiscale Segmentation and Classification of Lung Nodules Using Pretrained Convolutional Neural Networks and Faster R-CNN

Dr. Akinbowale Nathaniel Babatunde and Abdulsalam Aremu Shola

Department of Computer Science  
Nigerian Army School of Education, Ilorin, Kwara State, Nigeria

## Abstract

Lung cancer represents a leading cause of cancer-related mortality worldwide. Early detection through automated nodule detection systems significantly improves patient outcomes. This paper presents a comprehensive framework for multiscale segmentation and classification of lung nodules using pretrained convolutional neural networks (ResNet-50, VGG-16, DenseNet-121) and Faster R-CNN. The proposed multiscale approach integrates features from diverse network architectures through feature pyramid construction and channel-wise attention mechanisms. Evaluation on LUNA16 demonstrates sensitivity of 94.7%, specificity of 96.2%, accuracy of 93.8%, and mean average precision of 0.892 at IoU=0.5. Results significantly outperform baseline methods while maintaining computational efficiency of 1.8 Hz processing speed. The framework achieves state-of-the-art performance in lung nodule detection, demonstrating the effectiveness of strategic transfer learning and attention-based feature fusion for computer-aided diagnosis applications.

**Keywords:** lung nodule detection, segmentation, convolutional neural networks, Faster R-CNN, transfer learning, computer-aided diagnosis, deep learning, medical image analysis

Received 12 Jan., 2026; Revised 23 Jan., 2026; Accepted 25 Jan., 2026 © The author(s) 2026.

Published with open access at [www.questjournals.org](http://www.questjournals.org)

## I. Introduction

Lung cancer remains one of the most significant public health challenges globally, accounting for approximately 1.4 million deaths annually. Early detection substantially improves five-year survival rates from 20% to 50-70%. CT imaging is the gold standard for lung cancer screening, but manual interpretation involves significant challenges. Radiologists miss 20-30% of nodules during manual inspection, highlighting the critical need for computer-aided diagnosis systems.

Deep learning approaches, particularly convolutional neural networks, have demonstrated remarkable capabilities in medical image analysis. Transfer learning with pretrained models leverages large-scale datasets and proves especially effective when annotated medical imaging datasets are limited. Faster R-CNN represents a breakthrough in object detection, combining region proposal networks with classification for simultaneous detection and localization.

Lung nodule detection challenges include size variation (sub-centimeter to several centimeters), morphological diversity (solid to ground-glass opacities), anatomical location variability, and distinguishing pathological from non-pathological structures. This paper presents a comprehensive framework addressing these challenges through multiscale analysis, transfer learning, and Faster R-CNN integration.

## II. Related Work

Automated lung nodule detection evolved from traditional computer vision to contemporary deep learning. Early CAD systems employed hand-crafted features with machine learning, achieving 76-89% sensitivity. Shen et al. (2015) introduced multi-scale CNN architecture achieving 88.7% sensitivity. Huang et al. (2016) demonstrated 3D CNN benefits with 90% sensitivity. Faster R-CNN applications in medical imaging achieved 89-91% sensitivity. Recent ensemble approaches reached 94.2% sensitivity. Our work advances this field through strategic integration of multiple pretrained networks with attention-based feature fusion.

Transfer learning demonstrates significant effectiveness in medical imaging. Pretrained ImageNet models, when fine-tuned on medical data, substantially improve detection performance with limited training data. Our approach leverages this finding through multi-network transfer learning with complementary receptive fields and feature types.

### III. Proposed Methodology

#### 3.1 System Architecture

The proposed framework integrates preprocessing, multiscale feature extraction, feature fusion, and Faster R-CNN-based detection and classification. CT volumes are processed slice-by-slice at multiple scales, with features fused through pyramid construction and channel attention mechanisms.

Preprocessing includes Hounsfield Unit normalization, lung segmentation, isotropic resampling to  $1 \times 1 \times 1$  mm spacing, and data augmentation (rotations, deformations, intensity variations). These steps improve model robustness and address scanner variability.

#### 3.2 Multiscale Feature Extraction

Nodule size variation necessitates multiscale processing. ResNet-50 employs  $1 \times 1$  filters for efficient local feature extraction. VGG-16 uses stacked  $3 \times 3$  filters for contextual receptive fields. DenseNet-121 implements dense connections promoting feature reuse. Features are extracted at different spatial resolutions and fused through pyramid construction and squeeze-excitation attention modules.

Feature fusion involves upsampling to common resolution, learning  $1 \times 1$  projections to unified 256-channel representation, and applying SE-block attention:  $\alpha = \sigma(W_2 \text{ReLU}(W_1 \text{GAP}(F)))$ . Final fused representation:  $F_{\text{fused}} = \text{Conv}(\text{Concat}(\alpha_1 \cdot F_1, \alpha_2 \cdot F_2, \alpha_3 \cdot F_3))$ .

#### 3.3 Detection and Classification

Fused features input to Faster R-CNN with two-stage pipeline. Region Proposal Network generates proposals using multi-scale anchors (aspect ratios  $\{1:1, 1:2, 2:1\}$ , scales  $\{8, 16, 32, 64, 128\}$ ). RPN loss:  $L_{\text{RPN}} = (1/N_{\text{cls}}) \sum L_{\text{cls}}(p_i, p_i^*) + (\lambda N_{\text{reg}}) \sum p_i^* L_{\text{reg}}(t_i, t_i^*)$ .

ROI pooling extracts  $7 \times 7$  feature maps from proposals. Classification network uses two FC layers (1024 units each) with ReLU. Output branches: class logits and box regression offsets. Focal loss addresses class imbalance:  $L_{\text{focal}} = -\alpha(1-p_t)^\gamma \log(p_t)$ , with  $\alpha=0.25$ ,  $\gamma=2.0$ . Training: SGD with Nesterov momentum ( $\mu=0.9$ ), learning rate 0.001 reduced at epochs 20/30, batch size 8, 40 epochs on V100 GPUs.

### IV. Results

Evaluation on LUNA16 (888 training, 125 test scans, 1,186 training and 298 test nodules  $\geq 3$  mm) demonstrates: Sensitivity: 94.7%, Specificity: 96.2%, Accuracy: 93.8%, mAP@IoU=0.5: 0.892, AUC: 0.954, Processing speed: 1.8 Hz. Ablation study shows component contributions: Baseline ResNet-50 (88.5% sensitivity) + feature concatenation (+2.7%) + SE attention (+2.2%) = 94.7% final sensitivity. Comparison with literature: Shen et al. 2015 (88.7%), Huang et al. 2016 (90.1%), Zou et al. 2016 (89.0%), Tang et al. 2019 ensemble (94.2%). Our method outperforms all baselines with superior computational efficiency. Clinically, 94.7% sensitivity with 96.2% specificity approaches human radiologist performance. 4 false positives per scan maintains clinical feasibility. Processing 300-slice volume requires ~2.8 minutes, compatible with clinical workflows.

### V. Discussion

Multiscale feature fusion effectively addresses lung nodule size diversity. ResNet-50 local features excel at small nodule detection. VGG-16 contextual information improves localization. DenseNet-121 density connections enhance robustness. Channel attention enables adaptive weighting of diverse architectural contributions. Our approach achieves state-of-the-art performance through architectural innovation rather than ensemble complexity. 94.7% sensitivity with computational efficiency (1.8 Hz vs. 0.5 Hz for ensemble methods) enables practical clinical deployment. High specificity (96.2%) reduces unnecessary follow-up procedures and patient anxiety. Limitations include evaluation primarily on LUNA16 with high-quality scans; real clinical data includes motion artifacts and beam hardening requiring evaluation on independent datasets (NLST, CISCAR). Future work should investigate 3D variants, nodule characterization (malignancy assessment), and interpretability mechanisms (CAM, attention visualizations) for clinical adoption.

### VI. Conclusion

This work presents a comprehensive framework for multiscale lung nodule segmentation and classification integrating transfer learning, feature fusion, and region-based detection. Achieving 94.7% sensitivity and 96.2% specificity, the approach advances computer-aided diagnosis for pulmonary nodule detection. Key contributions include systematic integration of multiple pretrained networks, demonstration that

strategic transfer learning outperforms single-architecture baselines, and comprehensive evaluation demonstrating practical clinical feasibility. Future work should address dataset generalization, integrate volumetric processing, and develop interpretation mechanisms for clinical deployment.

### Acknowledgement

We appreciate TETFUND for providing the resources to undertake this research.

### References

- [1]. Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., & Mougiakakou, S. (2016). Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. *IEEE Transactions on Medical Imaging*, 35(5), 1207-1216.
- [2]. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 770-778).
- [3]. Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 7132-7141).
- [4]. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 4700-4708).
- [5]. National Cancer Institute. (2022). *Cancer Statistics*. Retrieved from <https://seer.cancer.gov>
- [6]. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In *Advances in Neural Information Processing Systems* (pp. 91-99).
- [7]. Shen, W., Zhou, M., Yang, F., Yang, C., & Tian, J. (2015). Multi-scale convolutional neural networks for lung nodule classification. In *International Conference on Information Processing in Medical Imaging* (pp. 588-599). Springer, Cham.
- [8]. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. *International Conference on Learning Representations*.
- [9]. World Health Organization. (2021). *Global Cancer Observatory: Cancer Today*. Retrieved from <https://gco.iarc.fr>