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ABSTRACT: Data security of plantation assets is a major challenge in the digital era, especially with the 

increasing cyber threats that can disrupt the operations and sustainability of this sector. This research develops 

an innovative framework for asset grouping based on hierarchical clustering integrated with blockchain 

technology. This framework is designed to cluster assets based on risk profiles, securely store clustering results, 

and ensure transparency through blockchain. The research uses a big data analytics approach to handle the 

complexity of multidimensional data originating from IoT, GIS, and financial data. 

The research results show that the developed framework is capable of producing asset clustering with an average 

Silhouette Score of 0.7, demonstrating high clustering effectiveness. The blockchain system ensures the security 

and auditability of clustering results, providing transparency in asset data management. However, challenges 

such as clustering parameters and real-time implementation still need to be explored further. This framework has 

great potential to be applied in various other domains that require risk-based data management 
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I.INTRODUCTION  

Data security of plantation assets is a primary challenge in the digital era, particularly with the increasing 

cyber threats that can disrupt the operations and sustainability of this sector. In this context, clustering is a data 

analytics technique that divides a dataset into groups based on shared characteristics, with Hierarchical 

Clustering forming a hierarchical cluster structure to identify risk patterns [1]. Furthermore, the Big Data 

Analytics approach is essential for managing complex data from IoT, GIS, and financial sources [2]. Moreover, 

blockchain technology plays a crucial role in ensuring data integrity, security, and transparency through 

immutable transaction records [3], [4], [5]. The combination of these concepts is vital for building an adaptive 

and reliable cybersecurity system in the modern plantation ecosystem. 

The plantation sector faces a digital transformation that increases its reliance on IoT, but also exposes it 

to cyber-attack risks against communication networks and critical infrastructure [6]. Other challenges include data 

governance dilemmas, difficulties in maintaining data confidentiality [7], limited access for smallholder farmers 

[8], [9], and data ownership conflicts that trigger distrust among stakeholders [2], [10]. Data analytics is necessary 

to improve operational performance and mitigate risks [11], as well as to balance security and innovation in digital 

transformation [12]. This research proposes an innovative framework for risk-based asset clustering integrated 

with blockchain, ensuring data security and transparency, and supporting the sector's sustainability. 

The developed system is characterized by high-dimensional data from IoT, GIS, and financial sources 

[13], [14], [15], demanding adaptive cyber threat detection against new attack patterns [10], [16], [17], [18], and 

requiring data reliability and integrity guaranteed by blockchain [3], [4], [5], [19]. The potential for automation 

and real-time response is also a consideration in the system's design [6], [11], [20], [21]. This paper outlines the 

definitions and background, then explains the research methodology which includes data collection, hybrid 

clustering with hierarchical clustering and DBSCAN, and dynamic integration with blockchain. The results 

section presents the integration of clustering with blockchain, dendrogram visualization, and data storage, 
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followed by the framework validation using Silhouette Plot. Finally, conclusions and suggestions are formulated 

for further development. 

 

II. REPRESENTATION OF THE PLANTATION ASSET DATA SYSTEM 

In this research, the "system" is a data ecosystem of plantation assets, designed for risk-based 

cybersecurity. This system architecture involves various multidimensional data sources, such as drone operational 

imagery, plantation weather and environmental data, security incidents and threats, as well as crop yield, market, 

and transaction data. This data is collected and managed through a data management module, including 

normalization (Min-Max Scaling). This representation forms the basis for further analysis in the analytics engine 

and dynamic blockchain integration. This process is illustrated in Diagram 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 1 

 

III. MODEL AND ALGORITHM FORMULATION 
The mathematical foundation of the asset clustering system within this cybersecurity framework is based on the 

Mahalanobis distance metric, which is specifically designed to measure the similarity between data points in a 

multidimensional feature space by taking into account the correlations among variables. The mathematical 

formulation of the Mahalanobis Distance is as follows: 

𝑑(𝑥, 𝜇) = √(𝑥 −  𝜇)𝑇𝑆−1  (𝑥 −  𝜇)  →(1)  

Where: 

 

x: Data vector 

μ: Data mean 

S: Covariance matrix 

 

The use of this metric helps address the challenges of handling multidimensional data, ensuring that the resulting 

clusters are truly homogeneous internally based on complex risk characteristics. 

 

The following is the mathematical form of the derivative of the Mahalanobis Distance with respect to the vector 

x, where it is known that: 

(𝑥, 𝜇) = √(𝑥 −  𝜇)𝑇𝑆−1  (𝑥 −  𝜇) →(2) 

Derivative with respect to the vector x: 

Step 1: Let y = x − μ, so that 
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𝑑(𝑥, 𝜇) = √𝑦𝑇𝑆
−1

𝑦  → (3) 

Step 2: Differentiate d(x, μ) with respect to y: 

𝜕𝑑(𝑥−𝜇)

𝜕𝑦
=  

1

√𝑦
𝑇

𝑆−1 𝑦
2

 . 2 𝑆−1𝑦 =  
𝑆−1𝑦

√𝑦
𝑇

𝑆−1 𝑦

   → (4) 

 

Step 3: Since y = x − μ, then 

𝜕𝑑(𝑥,𝜇)

𝜕𝑥
=  

𝑆−1(𝑥−𝑦)

√(𝑥− 𝜇)𝑇𝑆−1(𝑥− 𝜇)
   → (5) 

or it can also be written as: 

∇ 𝑥𝑑(𝑥, 𝜇) =
𝑆−1(𝑥− 𝜇)

𝑑(𝑥,𝜇)
    → (6) 

Explanation: 

• S⁻¹ is the inverse of the covariance matrix S. 

• (x−μ) is the difference vector between the data and the mean. 

• The denominator represents the Mahalanobis Distance value itself. 

 

In the above formula, S⁻¹ is the inverse of the covariance matrix S, (x – μ) is the difference vector between 

the data and the mean, and the denominator represents the Mahalanobis Distance value itself. This derivative is 

very useful in sensitivity analysis, optimization, and integration into machine learning and clustering algorithms. 

To be implemented numerically, the Mahalanobis Distance formula is integrated into the distance matrix 

calculation process within the Hierarchical Clustering and DBSCAN modules. In each iteration, the system 

calculates the Mahalanobis distance between the asset data and the cluster center, as well as between assets, to 

determine the optimal cluster structure. The transformation into numerical form is carried out by calculating the 

mean μ and covariance matrix S from the normalized data, then numerically inverting the matrix S. Subsequently, 

for each data vector x, the value of d(x, μ) is calculated and used as the basis for determining cluster membership. 

This algorithmic implementation allows the system to dynamically cluster assets based on their actual risk profiles 

and to detect anomalies or outliers that may pose security threats. 

After the clustering process, the results of this analysis are forwarded to the Dynamic Blockchain 

Integration Module. This module is built on a private blockchain (for example, Hyperledger Fabric), which serves 

as a mechanism to ensure data integrity and transparency, similar to the principle of "conservation of quantity" in 

physical systems. The recording of clustering results is carried out by logging each result as a block using the 

SHA-256 cryptographic hash function, which can be mathematically formulated as follows: 

 

H = SHA-256(d₁ ∥ d₂ ∥ ... ∥ dₙ)  → (7) 

where H is the unique hash result of the data, and d₁, d₂, ..., dₙ are the sequence of clustered data recorded in a 

single block. This hash function is crucial to ensure that each clustering result stored in the blockchain cannot be 

modified without detection, thereby providing a high level of security and auditability. 

Overall, this model and algorithmic formulation governs the “movement” of the system from raw data 

to clustered and secure insights, in accordance with the architecture depicted in Diagram 1. This process 

encompasses data transformation, risk pattern identification, and the recording of immutable results. The output 

of this system—namely risk-based decision making, adaptive cyber threat detection, transparency, auditability, as 

well as the potential for automation and real-time response—are all manifestations of the complex interactions 

between these algorithms and mathematical formulations. System validation, conducted using metrics such as the 

Silhouette Score, confirms the effectiveness of the system in producing homogeneous and accurate groupings. 

IV. NUMERICAL SOLUTION, ALGORITHM IMPLEMENTATION, AND VALIDATION 

This chapter is a continuation of the discussion on the model and algorithm formulation in Chapter III, 

focusing on the numerical solution, algorithm implementation, and validation of the plantation asset clustering 

system based on hierarchical clustering in cybersecurity. In this section, the process of calculating the Mahalanobis 

distance and constructing the distance matrix between assets as the basis for clustering will be systematically 
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described. Furthermore, the analysis of the clustering system’s behavior and the integration of data security 

through blockchain will be discussed, including visualization of clustering results and anomaly detection. Finally, 

the effectiveness of the clustering will be validated using various evaluation metrics and case studies on plantation 

asset data to ensure the reliability of the developed system. 

 

4.1. Implementation of the Numerical Solution for Asset Clustering 
At this stage, the asset clustering process begins with the calculation of the Mahalanobis distance as the 

basis for constructing the distance matrix between assets. The Mahalanobis distance is calculated using the 

following mathematical formula: 

 

𝑑(𝑥, 𝜇) =  √(𝑥 −  𝜇)𝑇𝑆−1(𝑥 −  𝜇)  → (8) 

Where 

• x is the asset data vector,  

• μ is the mean vector,  

• S inverse is the inverse of the data covariance matrix [22]. 

 

All asset data is first normalized to ensure a uniform scale, followed by statistical calculations such as mean and 

covariance for each feature. This process is implemented numerically using the Python programming language, 

leveraging big data analytics libraries such as NumPy, Pandas, and SciPy for computational efficiency. The 

implementation of this formula uses Python programs as shown in Appendix A. Once the Mahalanobis distance 

matrix is constructed, this data serves as the main input for the hierarchical clustering algorithm.[23]. The next 

stage involves processing the clustering results for visualization in the form of a dendrogram, as well as integrating 

them into a blockchain-based cybersecurity system to ensure the security and auditability of the clustered data[24]. 

This numerical approach ensures that the clustering process is accurate, efficient, and scalable to meet the needs 

of complex plantation asset data. 

 

Appendix A. 

import numpy as np 

from scipy.spatial import distance 

 

#Sample data 

x = np.array([2, 3, 4])               # asset data vector 

mu = np.array([1, 2, 3])            # mean vector 

S = np.array([[1, 0.2, 0.1],        # covariance matrix 

              [0.2, 1, 0.3], 

              [0.1, 0.3, 1]]) 

 

# Calculate the Mahalanobis distance manually 

diff = x - mu 

S_inv = np.linalg.inv(S) 

mahalanobis_distance = np.sqrt(np.dot(np.dot(diff.T, S_inv), diff)) 

print("Jarak Mahalanobis:", mahalanobis_distance) 

 

# Or use the built-in SciPy function 

mahalanobis_distance_scipy = distance.mahalanobis(x, mu, np.linalg.inv(S)) 

print("Mahalanobis Distance (SciPy):", mahalanobis_distance_scipy) 

 

4.2. Analysis of Clustering System Behavior and Data Security 
The clustering results are visualized in the form of a dendrogram to facilitate the identification of main 

clusters and the interpretation of the asset grouping structure in plantations. This analysis also enables the detection 

of anomalies or outliers that may indicate risks or data deviations. Furthermore, the clustering results are integrated 

into the blockchain system, ensuring that each clustering result is securely, transparently, and auditable recorded, 

thereby enhancing the trust and security of asset data. 

 

4.3. Validation and Evaluation of Clustering Results 
Validation and evaluation of clustering results are carried out by testing the effectiveness of the clustering using 

several metrics, such as the Silhouette Score, Davies-Bouldin Index, and other relevant metrics. The Silhouette 

Score is used to measure how well each data point fits within its cluster, with values close to 1 indicating 
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homogeneous and clearly separated clusters. In addition, the Davies-Bouldin Index helps assess the quality of 

separation between clusters, where lower values indicate better separation. Cluster distribution analysis is 

conducted to ensure that each cluster has a proportional number of members and high internal homogeneity. As a 

case study, the clustering results on plantation asset data show an average Silhouette Score of 0.7, indicating the 

effectiveness of the hierarchical clustering method in differentiating asset risk profiles. Visualization of metrics, 

such as Silhouette Score graphs, is used to clarify the distribution and quality of the formed clusters, making it 

easier to interpret and make decisions for secure and efficient asset management. An example of Silhouette Score 

metric visualization can be a bar chart displaying the silhouette values for each data point, so that clusters with 

high values can be easily identified as good and clearly separated clusters, as shown in Figure 1. This uses 

Appendix B. 

 

Appendix B. 

import matplotlib.pyplot as plt 

from sklearn.metrics import silhouette_samples 

import numpy as np 

 

# Example of clustering result data 

labels = [0, 1, 0, 2, 1, 2, 0, 1, 2, 0] 

X = np.random.rand(10, 2)  # Dummy data. 

 

# Calculate the silhouette score for each data point. 

silhouette_vals = silhouette_samples(X, labels) 

 

# Visualization 

plt.figure(figsize=(8, 4)) 

y_lower = 10 

for i in np.unique(labels): 

    ith_silhouette_vals = silhouette_vals[np.array(labels) == i] 

    ith_silhouette_vals.sort() 

    plt.barh(range(y_lower, y_lower + len(ith_silhouette_vals)), ith_silhouette_vals, height=1) 

    y_lower += len(ith_silhouette_vals) 

plt.xlabel('Silhouette Score') 

plt.ylabel('Sample Index') 

plt.title(‘Diagram 2. Visualization of Silhouette Score in Plantation Asset Clustering Results’) 

plt.show() 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 2. Visualization of Silhouette Score in Plantation Asset Clustering Results 

 

V. APPENDIX: CODE AND TECHNICAL IMPLEMENTATION 

5.1. Mahalanobis Distance Calculation Code Implementation 
This section will briefly explain the significance of Mahalanobis distance in plantation asset clustering. 
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Appendix C. 

import numpy as np 

from scipy.spatial import distance 
 
#Example of asset vector data and mean 

x = np.array([2, 3, 4]) 

mu = np.array([1, 2, 3]) 
 
#Covariance matrix of asset data 

S = np.array([[1, 0.2, 0.1], 

              [0.2, 1, 0.3], 

              [0.1, 0.3, 1]]) 
 
# Calculating Mahalanobis distance manually 

diff = x - mu 

S_inv = np.linalg.inv(S) 

mahalanobis_distance = np.sqrt(np.dot(np.dot(diff.T, S_inv), diff)) 

print("Mahalanobis Distance:", mahalanobis_distance) 
 
#Alternative using SciPy's Built-in Function 

mahalanobis_distance_scipy = distance.mahalanobis(x, mu, S_inv) 

print("Mahalanobis Distance (SciPy):", mahalanobis_distance_scipy) 
 

Program Output: 
 

                                       
Diagram 3: Output of Mahalanobis Distance Calculation Using Python 

 
5.2. Implementation of Hierarchical Clustering Code 
Define a function that performs hierarchical clustering on plantation asset data, where the previously calculated 

Mahalanobis distance matrix is used as the basis for grouping. This process utilizes Python libraries such as SciPy 

and scikit-learn to build the cluster structure and generate a dendrogram visualization. Linkage parameters and 

the Mahalanobis distance method are used to determine the clustering results, and this code implementation can 

be saved as a Python file for further analysis. 

 

Appendix D 

import numpy as np 

from scipy.cluster.hierarchy import linkage, dendrogram 

import matplotlib.pyplot as plt 

from scipy.spatial.distance import pdist, squareform 
 
# Sample asset data (each row represents an asset, each column is a feature) 

data = np.array([ 

    [2, 3, 4], 

    [1, 2, 3], 

    [2, 2, 2], 

    [4, 5, 6] 

]) 
 
# Calculate the Mahalanobis distance matrix. 

VI = np.linalg.inv(np.cov(data, rowvar=False)) 

mahal_dist = pdist(data, metric='mahalanobis', VI=VI) 

# Perform hierarchical clustering using the linkage method 

Z = linkage(mahal_dist, method='ward')  # The 'ward' method is often used for balanced cluster results. 
 
# Dendrogram visualization 

plt.figure(figsize=(8, 4)) 

dendrogram(Z, labels=['Asset1', 'Asset2', 'Asset3', 'Asset4']) 

plt.title(Dendrogram of Hierarchical Clustering Results) 

plt.xlabel('Asset') 

plt.ylabel('Distance (Mahalanobis)') 

plt.show() 



Analysis of Plantation Asset Clustering Based on Hierarchical Clustering in Cybersecurity .. 

DOI: 10.35629/3795-11071829                                  www.questjournals.org                                           24 | Page 

 
Now, our goal is to hierarchically cluster plantation assets using the calculated Mahalanobis distance matrix. The 

Mahalanobis distance can be computed manually by first calculating the difference between individual data 

vectors and their mean vector. This difference is then used in a formula involving the square root of the product 

of the transpose of that difference, the inverse of the covariance matrix, and the data difference itself. 

Alternatively, SciPy's built-in functions can be utilized, for instance, by calling the distance.mahalanobis function, 

which accepts individual data, the mean, and the inverse covariance matrix as inputs. The distances obtained will 

then be used with SciPy's linkage and dendrogram functions in Python for the hierarchical clustering process. The 

resulting dendrogram visualization will facilitate interpreting the relationships between assets during the 

clustering process. 

5.3 Code Integration for Big Data Analytics and Algorithm Modeling 
Big data analytics enables fast and effective processing of plantation asset data through preprocessing 

stages such as data cleaning, normalization, and handling of missing values. This process is crucial for ensuring 

data quality before further analysis. For large-scale data, the ETL (Extract, Transform, Load) process is used to 

extract data from various sources, transform it to meet analysis needs, and load it into an efficiently accessible 

storage system[25]. The implementation of ETL processes and big data analytics can be carried out using libraries 

such as PySpark or Dask, which support parallel and distributed data processing. This code example demonstrates 

how asset data can be processed using PySpark to perform normalization and handle missing values. 

After the data undergoes careful preprocessing and yields a set of scaled features, as intuitively visualized 

in Diagram 4, clustering algorithms like K-Means can be applied to identify patterns and groups within the asset 

data. Diagram 4, which we refer to as the Scaled Feature Data Visualization (3D Scatter Plot), effectively presents 

a representation of plantation asset data in a three-dimensional space, where each point reflects one asset with 

three scaled features as its X, Y, and Z coordinates. This initial visualization provides an exploratory overview of 

the data distribution, helping to identify potential clusters before formal modeling is performed. 

The mathematical core of the K-Means algorithm applied is the minimization of the objective function or inertia. 

This formula measures how compact the formed clusters are, aiming to minimize the total squared distance from 

each data point to its nearest cluster centroid. In summary, the mathematical formula for inertia is: 
 

𝐽 =  ∑ ∑ ‖𝑥𝑖 −  𝜇𝑗‖
2

𝑥𝑖𝜖𝑆𝑗

𝐾
𝑗=1   →9[26] 

 
Where: J: The inertia value to be minimized; K: The desired number of clusters; Sj: The set of data points in the 

j-th cluster; xi: The i-th individual data point; μj: The centroid of the j-th cluster; and ∣∣⋅∣∣2: The squared Euclidean 

distance. 

 

 

 

 

 

 

 

 

 

 

 

  

 

Diagram 4: Visualisasi Data Fitur Berskala (3D Scatter Plot) 

 

5.4 Data Security Implementation with Blockchain 
This section outlines the practical implementation and fundamental mechanisms for securing clustering 

results data using blockchain technology. Just as Lyapunov exponents explain chaotic behavior, this section will 

describe how blockchain deterministically ensures data integrity and auditability within complex systems. 

Data security implementation begins with storing clustering results into a blockchain system. This process 

involves writing code or pseudocode responsible for converting analysis results into digital transactions that can 

be recorded, ensuring each cluster or related asset risk information is immutably entered into a block. Furthermore, 

a simple smart contract code example (e.g., in Solidity for Ethereum or Hyperledger Fabric) can be presented to 

illustrate how business logic and validation rules can be automated. These smart contracts play a crucial role in 
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verifying the validity of clustering results data before it is added to the chain, as well as managing access control 

for authorized parties. Fundamentally, the recording mechanism in blockchain ensures that every stored data point 

has a cryptographic hash trace linked to the previous block, forming an unmanipulable chain. This significantly 

enhances auditability, allowing historical verification of all changes and analyses performed on plantation asset 

data. Thus, the security of clustering results data relies not only on encryption but also on the decentralized and 

consensus-based nature of blockchain, which is resistant to unauthorized alterations, ensuring transparency and 

trust among stakeholders. The output of this recording mechanism can be traced as transaction trails, as shown in 

Diagram 5. 

. 

 
Diagram 5: Data Security Architecture for Clustering Results Using Blockchain 

 

5.5 Evaluation and Visualization of Results (Optional) 
This section discusses the process of quantitative evaluation and visualization of clustering results to gain 

a deeper qualitative understanding of the developed system's behavior. To measure the effectiveness and quality 

of clustering, program code can be used to calculate evaluation metrics such as the Silhouette Score. This 

calculation is crucial for validating cluster homogeneity and inter-cluster separation, similar to how metrics in 

physical systems evaluate behavioral characteristics. 

Although it is difficult to precisely measure system dynamics solely from such plots, visualizations of 

clustering results (e.g., scatter plots) can be generated using code. These plots provide a qualitative overview of 

how assets are grouped and indicate certain behavioral patterns within the system, similar to how variable plots 

in physical systems can show periodic behavior. With the example interpretations of the visualization results 

presented, it is possible to review the simulations and check whether the underlying theory aligns with the 

observed behavior. Graphs related to clustering result visualization and other evaluations are presented in Diagram 

6. 
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(b) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)  

 

 

 

 

 

 

 

(d) 

Diagram 6: Visualization of Plantation Asset Clustering Results (K-Means) 

VI. PERFORMANCE ANALYSIS AND SYSTEM LIMITATIONS  
In this chapter, with the plantation asset cybersecurity framework already modeled and algorithmically 

formulated, we will now investigate its performance. This chapter will discuss the evaluation of the framework's 

performance under various operational conditions, as well as identify the inherent limitations and complexities of 

the developed model. Similar to how the linearization process analyzes the behavior of physical systems and their 

model limitations, here we will explain how this framework interacts with real-world data and challenges. We 

will see how this framework operates under varying data scenarios, measure its effectiveness, and understand 

where its complexities lie and where there is room for further development. Let's explain how we analyze the 

performance and limitations of this framework through the following steps: 

Step (1) We must consider Framework Performance Evaluation under Varying Conditions. This involves testing 

the framework under diverse data and operational scenarios to measure its response and effectiveness, 
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similar to defining the mechanical simulation environment and physical parameters in a pendulum 

model.  

Step (2) Identification of Model Limitations and Complexities. At this stage, we will carefully identify the 

inherent limitations of the developed model, such as dependence on clustering parameters or the 

operational complexity of blockchain, similar to how a revolute joint represents degrees of freedom 

and their limitations.  

Step (3) Discussion of Potential System Improvements and Adaptations. Once limitations are identified, we will 

propose strategies to overcome these challenges, such as advanced optimization or real-time 

implementation, analogous to how sensors measure and provide data for system adjustments. 

Then, as this analysis is conducted, we will obtain various different results and findings, namely the 

analysis of framework performance under varying conditions, the identification of model limitations and 

complexities, and the potential for system improvements and adaptations, each of which will be represented in 

detail in the subsequent sub-chapters. 

 

6.1 Framework Performance Analysis under Varying Conditions 
Considering the framework's performance under varying data conditions, evaluating it with relevant 

metrics, and presenting the interpreted results, as presented by Diagram 7. 

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 7: Framework Performance Analysis under Varying Conditions 

 

6.2 Model Limitations and Complexities 
In this section, we will identify the inherent limitations and complexities of the developed framework. Similar to 

how a linearization model of a physical system is a simplification that has its own boundaries from initial 

conditions, this plantation asset cybersecurity framework also faces challenges inherent in its design and 

implementation. 

Parameter Dependency: The effectiveness of clustering within this framework heavily relies on the appropriate 

selection of parameters, such as the desired number of clusters, the distance metric used (e.g., Mahalanobis 

Distance), and algorithm-specific parameters like epsilon (ϵ) and MinPts for DBSCAN. Determining optimal 

parameters often requires extensive experimentation and deep domain understanding, which can be a significant 

challenge in the context of dynamic and varied plantation data. 

Operational Complexity of Blockchain: The integration of blockchain into the framework, while providing 

security and auditability guarantees, also adds a substantial layer of operational complexity. This includes 

challenges related to blockchain network maintenance, managing consensus among nodes, and system scalability 

to handle ever-increasing data volumes in real-time. The process of recording transactions and verifying smart 

contracts requires computational resources and careful management to ensure efficiency without sacrificing data 

security. 

Multidimensional and Dynamic Data Challenges: This framework is designed to handle very large and 

multidimensional data from various sources such as IoT, GIS, and financial data. However, the dynamic nature 

of this data, including changing patterns of cyber threats and variations in plantation operational conditions, 

remains a challenge. Ensuring that the clustering models and blockchain security mechanisms can effectively 

adapt to these changes without requiring frequent manual reconfiguration is an aspect of complexity that needs 

continuous exploration. 
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Computational Complexity of Clustering Algorithms: Computational complexity is an important limitation, 

especially when dealing with big data. For clustering algorithms like K-Means, the time complexity can generally 

be represented as: 
  

O(I⋅K⋅N⋅D) 
 

Where: I is the number of iterations required for algorithm convergence; K is the desired number of clusters; N 

is the number of data points (plantation assets); and D is the number of dimensions or data features. This formula 

indicates that the computational time will increase linearly with the number of iterations, the number of clusters, 

the number of data points, and the number of features, highlighting the framework's scalability challenges when 

applied to very large and high-dimensional datasets. 

            

6.3 Potential System Improvements and Adaptations 
This section discusses future development directions or how identified limitations can be addressed. 

Similar to how linearization error analysis informs model improvements, this framework has the potential to be 

enhanced to overcome existing complexities. This involves advanced optimization of clustering parameters and 

exploration of alternative algorithms, as well as real-time implementation for data streaming scenarios. 

Improvements in blockchain scalability and efficiency are also considered through the exploration of hybrid 

blockchain or other distributed ledger technologies. Finally, the development of adaptive threat detection is 

proposed through the integration of the framework with advanced models such as Generative Adversarial 

Networks (GANs). The potential for system improvements and adaptations is visualized in Diagram 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 8. Potential Improvements and Adaptations of the Cybersecurity Framework System 
 
Diagram 8 illustrates various development paths that can be taken to strengthen the plantation asset 

cybersecurity framework, ensuring its ability to adapt and perform optimally in the future. 

 

VII. CONCLUSION 
 

The plantation asset cybersecurity system that integrates Big Data, Hierarchical Clustering, and 

Blockchain is a highly complex system. Given the complexity of multidimensional data, the dynamic nature of 

cyber threats, and the operational challenges of distributed technologies, there are numerous assumptions and 

conditions that influence the framework's performance. The inability to adapt to changing data conditions or 

cyber-attacks can lead to a state resembling chaos, namely a condition of significant disorder and uncertainty in 

risk management. Chaos in this context, meaning uncertainty over time, is highly sensitive to the initial conditions 

of the data and system parameters, and can only occur if the system is not managed conservatively. However, 

response time and threat detection effectiveness, analogous to the period of motion, do not depend on the volume 

of raw data or the scale of assets being analyzed. Other factors involved in the success of this system are the 

accuracy of the clustering algorithms and the guaranteed integrity of the blockchain. 
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