
Quest Journals

Journal of Software Engineering and Simulation

Volume 11 ~ Issue 6 (June 2025) pp: 113-133

ISSN(Online) :2321-3795 ISSN (Print):2321-3809

www.questjournals.org

DOI: 10.35629/3795-1106113133 www.questjournals.org 113 | Page

Research Paper

 Designing Scalable and Maintainable Cloud-Native

Applications Using the 12-Factor App Methodology

Arun Neelan
Independent Researcher

PA, USA

arunneelan@yahoo.co.in

Abstract— This review paper examines the core principles of the 12-Factor App methodology, with a focus on

their application in Java-based, cloud-native development. These principles are analyzed in the context of

containerized infrastructures and modern deployment pipelines. They are selected for their practical relevance

to container orchestration and continuous delivery workflows, while broader architectural guidelines are

discussed at a conceptual level. Aimed at software architects, developers, and DevOps practitioners, the paper

explores implementation practices using technologies like Spring Boot, Kubernetes, and CI/CD tools,

demonstrating how the 12-Factor approach applies to both microservices and monolithic architectures. Common

challenges and anti-patterns are addressed to help practitioners avoid frequent implementation pitfalls. By

bridging theoretical principles with real-world practices, this review supports the development of scalable,

maintainable, and resilient applications in modern cloud environments.

Keywords— 12-Factor App, Software Architecture, Cloud-native Architectural Principles, Codebase,

Dependencies, Config, Backing Services, Build-Release-Run, Processes, Port Binding, Concurrency,

Disposability, Dev/prod parity, Logs, Admin Process

I. INTRODUCTION
In the era of cloud computing and distributed systems, designing applications that are resilient, scalable,

and maintainable has become a fundamental challenge in modern software engineering. The 12-Factor App

methodology, initially formulated by developers at Heroku, provides a set of architectural and operational

guidelines aimed at addressing these challenges within cloud-native environments. Although frequently associated

with microservices, the core principles of the 12-Factor approach are architecture-agnostic and can be effectively

applied to monolithic systems when supported by appropriate tooling and deployment practices.

This review explores the continued relevance and adaptability of the 12-Factor methodology across varied

application architectures and deployment models. By examining concrete implementation examples—particularly

in Java ecosystems and containerized environments—it illustrates how adherence to these principles fosters

consistency, portability, and operational efficiency in modern software systems.

II. ARCHITECTURAL PRINCIPLES OF CLOUD-NATIVE APPLICATIONS: THE 12-

FACTOR MODEL
The 12-Factor App methodology outlines a set of best practices for building modern web applications

that are scalable, maintainable, and portable across environments. The following sections explore each of the

twelve factors — Codebase, Dependencies, Config, Backing Services, Build-Release-Run, Processes, Port

Binding, Concurrency, Disposability, Dev/Prod Parity, Logs, and Admin Processes — offering insights into their

practical significance, real-world implementations, common misconceptions, potential limitations, and associated

anti-patterns.

A. Codebase

1) Definition and Concept: A codebase represents the full set of source code, configuration files, and supporting

assets needed to develop and operate a software system. Typically, it is maintained using a version control system

such as Git, which helps track changes over time. According to the 12-Factor App methodology, a codebase should

exist as a single repository under version control that supports multiple deploys across environments like

http://www.questjournals.org/

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 114 | Page

development, staging, and production [1]. This design principle fosters consistency and ensures that all

deployments stem from a common origin, which strengthens traceability, reliability, and governance.

2) Importance Of Unified Codebase: Having a centralized and well-organized codebase is vital for collaborative

development, debugging, and automated workflows such as continuous integration and continuous deployment

(CI/CD). It guarantees consistency and transparency across the software lifecycle, enabling teams to contribute

without conflicts and minimizing the chances of working on outdated or diverged code. In the absence of a unified

codebase, software projects often become disorganized, leading to errors, weak change tracking, and difficulty

understanding the application's evolution. Version control mechanisms also simplify tasks like reverting to stable

versions, conducting audits, and preserving a complete history of changes. Therefore, a single, well-maintained

codebase forms the backbone of sustainable, scalable, and efficient software engineering.

3) Managing Multiple Environments Within a Single Codebase: The 12-Factor App framework encourages

managing deployments to various environments—such as development, staging, and production—using one

unified codebase rather than separate repositories for each [1]. This is often implemented through strategic

branching within a version control system, where each branch represents a different phase of the application

lifecycle. By using this approach, teams can avoid problems such as configuration drift, duplicated effort, and

inconsistent versioning.

Branch Name Purpose

feature/*
Temporary branches for implementing individual
features or enhancements.

develop Main branch for active development and initial testing.

release/*
Created to prepare for production releases; often tested in

a staging environment.

hotfix/*
Reserved for urgent patches applied directly to

production.

main/master
Holds production-ready code and is used for live
deployments.

TABLE 1. CODEBASE – BRANCHING STRATEGY AND ITS PURPOSE

Modern CI/CD pipelines are often configured to deploy code automatically from each branch to its corresponding

environment, ensuring a streamlined and consistent release process. For instance, updates in the 'develop' branch

can be deployed to a development environment, while 'release' branches can be tested in staging. Once validated,

merging into 'main' can trigger production deployment [2]. This approach aligns with the “one codebase, many

deploys” principle and reinforces the reproducibility and scalability of the deployment pipeline.

4) One Codebase Per Application: If multiple codebases exist, it typically reflects a distributed system architecture

rather than a monolithic application. In such a system, each component may act as an independent service and

should follow the 12-Factor guidelines individually. Sharing code across different applications using a single

repository contradicts the 12-Factor principle. Instead, common code should be encapsulated in reusable libraries

and integrated into various applications using a package or dependency management system (e.g., npm, pip,

Maven) [1].

Fig. 1. Codebase – One Codebase, Multiple Deployments

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 115 | Page

5) Common Misconceptions and Anti-Patterns: Although the 12-Factor methodology clearly outlines codebase

expectations, a number of flawed practices still surface in real-world projects. These can introduce serious issues

in code integrity, environment consistency, and project scalability. The table below lists common misconceptions

along with their consequences:

Misconception Explanation Impact

Multiple Repositories for
Different Environments.

Using separate repositories

for development, staging, and

production.

Leads to inconsistent codebases,

redundant workflows, and harder

integration.

Single Repository for

Multiple Applications.

Combining unrelated apps
into one repository without

clear modularity.

Hampers maintainability and
makes deployments more

complex.

Misunderstanding

Codebase with Shared

Libraries.

Treating shared libraries as

part of the application’s main

codebase.

Violates separation of concerns;
libraries should be packaged and

imported.

TABLE 2. CODEBASE – MISCONCEPTIONS AND THEIR IMPACT

Understanding and avoiding these anti-patterns is key to maintaining a clean, scalable codebase structure aligned

with the 12-Factor App methodology [1][2].

B. Dependencies

1) Definition and Concept: Dependencies refer to third-party packages, modules, or external libraries that an

application relies on to perform specific functions. Common examples include web frameworks, logging libraries,

database drivers, or JSON parsers. Rather than implementing every feature from scratch, developers leverage these

tools to streamline development and maintain standardized practices.

The Twelve-Factor App principle on dependencies emphasizes that they should be both explicitly declared and

isolated from the host system [3]. This ensures that the application does not rely on any software pre-installed on

the underlying system, thereby enhancing its portability and consistency across environments.

2) The Impact of Proper Dependency Management: Improper handling of dependencies can lead to unstable builds

and unpredictable application behavior, particularly when versions differ across development, staging, and

production environments. For instance, if a required library is assumed to exist on the host machine but is missing

or has been updated to an incompatible version, the application may fail to execute correctly.

Upgrades to library versions may introduce breaking changes, while outdated versions may lack necessary

functionality, both of which can disrupt expected behavior. By ensuring that all dependencies are explicitly defined

and version-controlled, teams can maintain consistency, reproducibility, and ease of debugging throughout the

software lifecycle. This practice of isolating dependencies from the runtime environment is essential for building

resilient, portable applications and aligns directly with Twelve-Factor principles [3].

3) Managing Dependencies in Java using Maven and pom.xml: In the Java ecosystem, Apache Maven is a widely

adopted tool that supports both build automation and precise dependency management. It uses a pom.xml file

(Project Object Model) to declare required libraries, specifying details such as group ID, artifact ID, and version.

Here is an example of including dependency in pom.xml:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 <version>3.1.0</version>

</dependency>

Maven explicitly retrieves declared dependencies from remote repositories (such as Maven Central) and adds them

to the project’s classpath. It allows developers to define dependency scopes (e.g., compile, test, runtime), which

control when and where each dependency is available during the build and execution phases.

However, using dynamic versioning (e.g., version wildcards like 1.2.+ or keywords like LATEST) can undermine

build reproducibility. Since Maven resolves these to the latest available version at build time, different

environments, such as local development, CI pipelines, or production—may pull in different versions. This

inconsistency can lead to hard-to-diagnose bugs or failures, violating the principle of consistency across

environments that the Twelve-Factor methodology promotes.

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 116 | Page

Therefore, pinning exact versions aligns with the Twelve-Factor App’s principle of explicitly declaring all

dependencies to achieve consistent, environment-independent builds. Adhering to semantic versioning conventions

(e.g., 3.1.0) further enhances clarity and helps developers manage compatibility expectations [3]. For more detailed

information on pom.xml configuration and its usage, see [4].

4) Common Misconceptions and Anti-Patterns: Even with clear guidelines, several misconceptions about

dependency handling are still prevalent in practice, often leading to maintainability and deployment issues. Table

3 summarizes typical pitfalls and their consequences:

Misconception Explanation Impact

System-installed libraries

don’t need declaration.

Assuming libraries available globally

on the host do not need to be listed.

Causes environment-specific
failures if those libraries are

missing in deployment targets.

Using LATEST version

ensures currency.

Belief that Maven’s LATEST
keyword automatically updates

dependencies safely.

Leads to unpredictable builds with
potentially breaking changes

between environments.

Dependencies don’t

require explicit scopes.

Omitting scopes for test or

development-only dependencies.

Results in unnecessary code being
included in production builds,

increasing size and risk.

Transitive dependencies

always resolve correctly.

Assuming Maven automatically picks

the right versions when conflicts arise.

May cause subtle bugs due to

unintended versions being
included in the application.

TABLE 3. DEPENDENCIES – MISCONCEPTIONS AND THEIR IMPACT

Recognizing and avoiding these anti-patterns is essential to maintain scalable, predictable, and environment-

agnostic applications in line with Twelve-Factor App best practices [3].

C. Config

1) Definition and Concept: Configuration refers to environment-specific settings that determine the

application's behavior without altering its codebase. These include items such as database connection strings, API

tokens, service URLs, and feature flags. The 12-Factor principle advocates for storing such configuration

externally—most commonly through environment variables or dedicated configuration management systems—

rather than embedding them within the code [5].

By externalizing configuration, a single codebase can be deployed seamlessly across multiple environments

(development, staging, production), with environment-specific differences handled solely through configuration

changes. This approach promotes clean separation between application logic and operational concerns, enhancing

maintainability and reducing the risk of environment-induced bugs.

2) Benefits of Externalized Configuration: Externalizing configuration—separating operational settings

from the application code—offers multiple advantages that align with modern software architecture and

deployment practices [5][6]:

Fig. 2. Dependencies – Maven Build Flow

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 117 | Page

a) Portability and Consistency: By decoupling configuration from the codebase, applications become

environment-agnostic. This means the same code can be deployed across development, staging, and production

environments, with behavior adjusted solely through configuration changes. Such portability supports Continuous

Integration and Continuous Deployment (CI/CD) pipelines, enabling consistent and repeatable deployments across

varied infrastructure [5].

b) Security: Externalized configuration ensures that sensitive information—such as API tokens, database

credentials, or encryption keys—is not embedded within the code or stored in version control. Instead, credentials

can be securely managed using environment variables or secrets management systems (e.g., Kubernetes Secrets),

reducing the risk of accidental leaks or security breaches [6].

c) Flexibility and Maintainability: Configurations can be modified independently of the application code,

enabling operational flexibility without triggering code changes or redeployments. This is especially important in

cloud-native and containerized environments, where configuration must be injected dynamically at runtime. It

simplifies maintenance and supports fast iteration without altering core logic.

d) Clean Version Control History: Storing configuration outside of the code helps maintain a clean and

focused version control history, free from noise introduced by environment-specific edits. This improves team

collaboration, reduces merge conflicts, and enhances traceability of actual code changes.

Hardcoding configuration values leads to tight coupling between code and environment, increasing deployment

risks and hindering scalability. In contrast, adhering to the 12-Factor App principle of externalized configuration

fosters secure, maintainable, and resilient systems—qualities essential for modern DevOps workflows and cloud-

native application development [5].

3) Implementing Externalized Configurations in Java Applications: In Java-based applications, particularly

those using Spring Boot, configuration is typically externalized through files such as application.properties or

application.yml. These files contain environment-specific values—such as database credentials, API keys, and

service URLs—which allow the same codebase to be deployed across development, staging, and production

environments without modification [6].

Spring Boot also supports the use of profiles (e.g., application-dev.properties, application-prod.properties) that

enable configuration to be tailored for different environments. These profiles can be activated using environment

variables, command-line arguments, or build tool configurations, ensuring a clean separation between application

logic and environment-specific settings [6].

For centralized and scalable configuration management in distributed systems, developers often use Spring Cloud

Config, which enables configuration to be fetched from a remote source such as a Git repository. This setup allows

updates to configuration values without the need to rebuild or restart services.

In containerized or cloud-native environments like Kubernetes, configuration is typically injected at runtime

through environment variables, ConfigMaps, or Secrets. Java applications can access these settings using standard

Java APIs like System.getenv() or through Spring's configuration binding features [7].

By following the 12-Factor App principle of externalized configuration, Java applications achieve enhanced

portability, security, and flexibility. This design aligns well with DevOps practices and modern cloud deployment

strategies [5].

Fig. 3. Config – App running in diff envs with its respective config

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 118 | Page

4) Common Misconceptions and Anti-Patterns: Misunderstandings in managing configuration effectively

can result in environment inconsistencies, security risks, and deployment difficulties. The following table outlines

frequent misconceptions and their consequences, based primarily on the principles of the 12-Factor App [5].

Misconception Explanation Impact

Configuration can be
hardcoded or stored in

source control.

Embedding configuration directly in code

or including secrets in version control

limits flexibility and risks exposure of
sensitive data.

Causes configuration drift,

deployment errors, and potential

security breaches.

Environment variables are

inherently insecure.

When access controls and logging are

managed properly, environment variables
offer a secure means of configuration.

Improper handling may lead to

secret leakage through logs or
misconfigured infrastructure.

Configuration only includes

secrets.

Configuration encompasses all

environment-specific parameters, such as

URLs, ports, and feature toggles, beyond
just sensitive information.

Results in partial externalization,

reducing adaptability and

complicating deployments.

One configuration fits all

environments.

Different environments typically require
tailored configurations to address distinct

functional and security needs.

Using a single configuration
increases manual edits, human

errors, and undermines

automation.

TABLE 4. CONFIG – MISCONCEPTIONS AND THEIR IMPACT

D. Backing Services

1) Definition and Concept: Backing services refer to external resources that an application interacts with

over a network to perform essential functions. These services can include databases (e.g., PostgreSQL, MySQL),

messaging systems (e.g., RabbitMQ, Kafka), caching systems (e.g., Redis, Memcached), file storage (e.g., Amazon

S3), email services (e.g., SMTP servers), and third-party APIs. In the context of the 12-Factor methodology, these

services are considered attached resources and should be treated as loosely coupled dependencies rather than

integrated components of the application itself [8].

Connection details for backing services—such as URLs, ports, and credentials—are injected into the application

via configuration settings (typically through environment variables), rather than being hardcoded [8]. This

separation ensures that the application code remains agnostic to its runtime environment, promoting modularity,

testability, and operational flexibility.

2) Benefits of Managing Backing Services: Managing backing services through external configuration offers

several advantages across the software development lifecycle. It enables the same codebase to be deployed

seamlessly across different environments—development, staging, and production—by simply changing

configuration values, not the code. For example, switching from a local PostgreSQL instance in development to a

managed database service in production becomes a non-intrusive operation.

This design supports key practices like containerization, infrastructure as code, and continuous

integration/continuous deployment (CI/CD). It also improves testing, as backing services can be mocked or stubbed

in local environments without impacting production settings. Decoupling services from application logic helps

build systems that are more resilient, maintainable, and scalable in cloud-native and microservices architectures

[9].

3) Runtime Configuration and Decoupling of Backing Services: A core advantage of treating backing

services as attached resources is the ability to bind and configure them dynamically per environment without

modifying application logic. This is achieved by injecting service-specific connection details—such as URLs,

credentials, and ports—through environment variables, allowing the application to remain decoupled from its

service implementations.

For example, configuration values may be provided as environment variables:

export DATABASE_URL=postgres://user:password@db.example.com:5432/app_db

export REDIS_URL=redis://cache.example.com:6379

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 119 | Page

This model ensures that the same application code can run in any environment by modifying only the

configuration, not the logic. The following table demonstrates how service endpoints may vary by environment

while maintaining consistent application behavior:

Environment DB Host Cache URL Email Provider

Development
postgres://user@dev-

db:5432/app

redis://dev.redis.cl

oud

smtp://dev.email.c

om

Staging
postgres://user@stagin
g-db:5432/app

redis://staging.redi
s.cloud

smtp://staging.em
ail.com

Production

postgres://user@prod-

db:5432/app

redis://prod.redis.
cloud

smtp://prod.email.
com

TABLE 5. BACKING SERVICES – ENV SPECIFIC CONFIGURATION

This level of abstraction promotes environment parity, reduces the risk of configuration drift, and

facilitates safe, isolated testing of real application behavior. Additionally, the decoupling of application logic from

specific service instances simplifies operational flexibility. Backing services can be upgraded, replaced, or

relocated—such as migrating from Redis to Memcached or switching email providers—without requiring changes

to the application’s internal logic.

In production settings, it is important to manage sensitive configuration -- such as database credentials,

API keys, and encryption secrets -- securely. Rather than embedding such information in code or static

configuration files, a centralized secrets management system (e.g., HashiCorp Vault) can be used to handle

credential storage and delivery. These systems provide fine-grained access control, audit logging, and automated

secret rotation [10]. The application retrieves secrets dynamically at runtime, often through secure, authenticated

API calls, allowing for secure and compliant operations while preserving the principle of separating configuration

from code.

This approach enhances security, supports operational consistency, and upholds the core 12-Factor design

principles of portability, modularity, and scalability.

4) Common Misconceptions and Anti-Patterns: Despite the clear guidance provided by the Twelve-Factor

methodology, teams often adopt practices that undermine the Backing Services principle. The following table

outlines common misconceptions and their operational consequences:

Fig. 4. BackingServices – Treat As Attached Resources

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 120 | Page

Misconception Explanation Impact

Hardcoding

connection strings.

Embedding service URLs

or credentials directly
into code.

Breaks portability;

complicates testing and
deployment.

Bundling services

into the app

container

Running the database or

queue inside the same

container as the app.

Reduces scalability;

violates separation of

concerns.

Treating local

services differently.

Writing custom logic to
handle local vs. cloud

service behavior.

Introduces inconsistency
and environment-

specific bugs.

Reusing one

instance across
environments.

Sharing a single database
or cache between

development and

production.

Causes data leaks,
configuration conflicts,

and unstable test

conditions.

TABLE 6. BACKING SERVICES – MISCONCEPTIONS AND THEIR IMPACT

By strictly treating backing services as external, dynamically bound resources, developers can ensure clean

separation of concerns, stronger fault isolation, and improved operational scalability.

E. Build, Release, Run

1) Definition and Concept: The Build, Release, Run principle advocates for a clean separation between

three critical stages in the application deployment lifecycle:

Build is the phase where source code is compiled or otherwise transformed into a deployable artifact. This can

involve dependency resolution, static asset compilation, or container image creation.

Release is the process of combining a specific build with configuration data tailored for a given environment,

such as staging or production. This includes environment variables, credentials, and settings required for the

application to function correctly.

Run is the execution of the application in its intended environment, using a designated release.

Each phase serves a distinct purpose and should remain isolated and immutable once created. This separation

allows for repeatable, traceable deployments where the same build artifact can be deployed to multiple

environments with confidence that only the configuration changes [11].

2) Significance of Lifecycle Separation: Separating the build, release and run stages of application delivery

enhances deployment reliability by ensuring that a single build artifact can be promoted across environments

(such as development, staging, and production) without modification or recompilation. This minimizes

inconsistencies that can arise from environment-specific builds and supports consistent behavior across the

pipeline [11].

Maintaining distinct phases also simplifies operational processes such as rollback. If a fault is introduced during

a deployment, reverting to a previous release becomes straightforward, as both the build artifact and configuration

history are preserved. This contributes to improved system stability and aids in compliance and auditing efforts.

For instance, an application container can be built once and then deployed to different environments by injecting

context-specific configuration—like API endpoints, feature toggles, or security credentials—during the release

stage. Because the runtime remains unchanged, developers can more effectively diagnose and resolve issues based

on consistent application behavior across environments.

3) Ensuring Reproducibility and Operational Consistency: The reproducibility of software deployments is

essential for reliable system operations and is directly supported by separating build, release, and run stages. By

treating builds as deterministic processes—producing the same output for a given set of inputs—teams can create

immutable artifacts that serve as the foundation for consistent releases across environments.

In a typical deployment pipeline:

a) Build Stage: Source code is compiled or packaged into a versioned artifact (e.g., app-build-1.4.2.tar.gz)

that remains unchanged across environments.

b) Release Stage: This artifact is combined with environment-specific configuration (e.g., prod.env) to form

a distinct release unit.

c) Run Stage: The finalized release is executed in a designated environment, often labeled by timestamp or

release version for traceability.

This model ensures that application behavior remains consistent regardless of deployment context, reducing

variability and facilitating error diagnosis. Moreover, because builds are immutable and releases are version-

controlled, teams can audit, roll back, and replicate deployments with confidence. These practices are

foundational to modern DevOps workflows and align with infrastructure-as-code (IaC) principles and continuous

delivery strategies, particularly within containerized environments such as Kubernetes and Nomad [12].

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 121 | Page

4) Common Misconceptions and Anti-Patterns: Despite the clarity of the Build, Release, Run principle,

development and operations teams often introduce subtle violations that compromise deployment reliability. These

missteps typically arise from misunderstanding the boundaries between the three phases or from attempting to

optimize short-term workflows at the cost of long-term stability.

The following table highlights common anti-patterns associated with this principle, along with their potential

consequences:

Misconception Explanation Impact

Rebuilding per

environment.

Creating separate builds for

development, staging, and
production.

Introduces inconsistencies

and environment-specific
bugs.

Baking configuration
into the build.

Including environment-

specific settings during the

build stage.

Reduces reusability and

flexibility; violates

separation of concerns.

Editing builds or

releases post-creation.

Modifying artifacts after their

creation.

Breaks traceability and

prevents reproducibility.

Manual changes in
production.

Altering configuration

directly in production

systems.

Complicates auditing and

increases risk of human
error.

TABLE 7. BUILD, RELEASE, RUN – MISCONCEPTIONS AND THEIR IMPACT

Avoiding these patterns is critical to maintaining a clean and auditable deployment pipeline. Adhering strictly to

the immutability of builds and the separation of configuration from code helps ensure that applications can be

promoted across environments with confidence and minimal intervention.

5) Alignment with Modern Engineering Practices: This three-phase approach aligns closely with current

DevOps and cloud-native methodologies:

a) Immutable Infrastructure: Builds and releases are fixed once created, supporting repeatable deployment

processes.

b) Environment-agnostic Builds: The same build artifact can be reused across all environments, improving

confidence in software behavior.

c) Declarative Config Management: Runtime configuration is injected during release, allowing dynamic,

versioned, and secure environment-specific customization.

d) CI/CD Pipelines: Enables automated, consistent deployment flows that promote software from

development to production without manual interference.

By maintaining strict boundaries between build, release, and run, teams achieve a more modular, resilient, and

predictable application lifecycle.

Fig. 5. Build, Release, Run Workflow

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 122 | Page

F. Processes

1) Definition and Concept: The "Processes" principle emphasizes executing application logic within

stateless, independent processes derived from a shared codebase [13]. These processes are typically deployed in

isolated environments—such as containers or virtual machines—and orchestrated using tools like Docker or

Kubernetes. Each process is designed to handle a specific responsibility, such as processing web requests or

managing background jobs, without preserving data between executions. Persistent state is delegated to external

systems like databases or caching layers. This stateless design enables systems to achieve high availability and

elasticity, as processes can be safely restarted, replicated, or horizontally scaled without jeopardizing data

consistency.

2) Importance of Stateless Execution: Designing processes to be stateless is a foundational requirement for

achieving scalable and fault-tolerant applications. Because each process operates independently of stored session

data, it becomes trivial to scale horizontally or replace failed components without complex recovery procedures

[13]. Stateless design supports dynamic workload distribution and integrates effectively with modern cloud

platforms that support auto-scaling and rapid provisioning. By offloading state management to external systems,

applications can maintain consistent behavior under varying loads and recover swiftly from disruptions, resulting

in improved reliability and easier lifecycle management.

3) Classification of Process Roles: In the 12-Factor App methodology, application logic is divided into

separate, stateless processes that each perform a well-defined role. This modular approach enables independent

scaling, easier management, and clear responsibility boundaries. Below table summarizes the primary types of

processes commonly employed in 12-Factor applications.

Process Type Description

Web Processes

Web processes are responsible for handling incoming HTTP

requests and managing synchronous, user-facing workflows.

Beyond direct request processing, they often orchestrate
asynchronous operations by dispatching background jobs or

publishing events to external messaging systems for further
processing.

Background

Workers

Background workers execute non-blocking, asynchronous tasks

that operate independently of user interactions. Typical
responsibilities include data enrichment, file processing, and

email dispatch. These workers may also act as consumers of

external message queues or event streams, processing incoming
data in a decoupled and scalable manner.

Fig. 6. Processes – Stateless & Scalable Execution Units

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 123 | Page

Scheduled Jobs

Scheduled jobs perform periodic or time-triggered operations at
defined intervals, including tasks such as data archiving, cache

invalidation, and report generation, typically orchestrated using

cron or workflow automation tools.

TABLE 8. PROCESS TYPES AND DESCRIPTION

This clear separation of concerns ensures that processes remain stateless and disposable, enhancing scalability

and fault tolerance. By isolating responsibilities, the approach optimizes resource utilization and facilitates

continuous delivery through simplified deployment and scaling.

4) State Management and Backing Services: Per the 12-Factor methodology, application processes should

avoid reliance on local disk storage, in-memory sessions, or shared memory for managing state [13]. Instead, all

stateful data—including user sessions, caches, and uploaded files—should be stored in external backing services

such as Redis, PostgreSQL, or cloud object stores like S3. This approach guarantees that any process instance can

handle incoming requests without relying on local state, thereby maintaining true statelessness. For example,

uploaded files should be saved to durable, centralized storage rather than transient local filesystems to ensure data

availability across different process instances.

5) Common Misconceptions and Anti-Patterns: Although the Twelve-Factor App methodology offers clear

guidance, real-world implementations often encounter several misunderstandings and suboptimal practices. These

mistakes can negatively affect the application's scalability, reliability, and maintainability. Below table

summarizes frequently observed misconceptions along with their potential consequences:

Misconception Explanation Impact

Storing Data on Local
Disk.

Persisting user data or

temporary files on the local

filesystem.

Risk of data loss during

deployments or container

restarts.

Using In-Memory

Communication.

Sharing data via process-
local caches or shared

memory.

Restricts horizontal scaling
and may cause

synchronization issues.

Relying on Load Balancer

Stickiness.

Assigning users to specific

processes through session
affinity.

Limits fault tolerance and

prevents balanced load
distribution.

TABLE 8. PROCESS – MISCONCEPTIONS AND THEIR IMPACT

By avoiding these anti-patterns, developers can maintain a clean separation between runtime logic and persistent

state, in line with cloud-native best practices and the principles of the 12-Factor methodology.

G. Port Binding

1) Definition and Concept: Port binding is a key principle in the 12-Factor App methodology that requires

an application to independently handle how it exposes its network services. Rather than depending on an external

web server or platform to provide network connectivity, a 12-factor-compliant app includes its own web server

process and listens directly on a specific port. This enables the application to serve incoming requests using

standard protocols like HTTP or HTTPS, without requiring additional middleware or infrastructure. Typical

implementations use embedded servers -- such as Tomcat within Spring Boot applications or Gunicorn for

Python-based frameworks -- to realize this behavior [14][15].

2) Importance of Port Binding: Port binding is critical for ensuring that an application remains portable and

self-sufficient across different runtime environments. By managing its own server and traffic on a dedicated port,

the app can operate consistently in local development, staging clusters, and production cloud platforms. This

decouples the service from host-specific dependencies like Apache HTTPD or Nginx, reducing complexity and

simplifying the deployment pipeline. Additionally, it eases integration with infrastructure components like load

balancers, service meshes, and orchestration platforms, facilitating efficient service discovery and routing

[14][16].

3) Service Exposure via Ports: When an application binds to a port, it effectively "exports" its service over

the network, allowing other systems or clients to connect. This approach aligns naturally with containerized and

microservice architectures, where services run in isolated environments and communicate via clearly defined

endpoints. The port number is often set dynamically using environment variables (for example, PORT), enabling

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 124 | Page

flexible configuration across different environments. This also supports the design of stateless distributed

applications, where instances can be started, stopped, or scaled independently without manual changes [14].

4) Port Binding in Containarized Environments: Containerization platforms like Docker reinforce the port

binding concept. Applications packaged within containers declare their listening ports using directives such as

EXPOSE in the Dockerfile. At runtime, orchestrators such as Kubernetes or Amazon ECS map these container

ports to host machine or external ports, allowing inter-service communication. Since the application contains all

dependencies, including its embedded web server, it runs as a fully self-contained unit capable of independent

execution [16].

5) Common Challenges and Anti-Patterns: Although the port binding principle is straightforward, many

Java applications inadvertently violate it due to certain misconfigurations. Common mistakes include hardcoding

the port number directly in the source or configuration files, depending on external web servers rather than

embedded ones, and neglecting to use environment variables for port assignment. These issues reduce the

flexibility of deployments, limit dynamic scaling capabilities, and increase coupling to specific infrastructure

setups. For full compliance with the 12-Factor methodology, Java apps must be able to bind dynamically to a port

determined at runtime, which is critical in cloud environments like Heroku or AWS Fargate where port numbers

are assigned dynamically.

Misconception Explanation Impact

Hardcoded Port

Values

The port number is fixed in
application code or static

configuration files.

Restricts the ability to deploy

the application across varied
environments and complicates

automated deployment

pipelines.

Dependency on

External Server

The application relies on an

external servlet container or web

server such as standalone
Tomcat, Apache, or Nginx for

HTTP handling.

Violates self-containment,
making the app less portable

and increasing operational

complexity.

Ignoring

Environment

Variables

The application does not read or

honor dynamically assigned port

values passed via environment

variables.

Reduces compatibility with

cloud-native platforms and

hinders runtime flexibility and

scalability.

TABLE 9. PORT BINDING – MISCONCEPTIONS AND THEIR IMPACT

6) Real-World Example - Spring Boot Deployment on AWS ECS Fargate: A practical application of port

binding can be observed when deploying a Spring Boot service on Amazon ECS Fargate—a managed container

orchestration service. Spring Boot integrates an embedded web server (such as Tomcat or Jetty), enabling it to

serve HTTP requests internally. When packaged into a Docker image, the app exposes a port (commonly 8080)

through the Dockerfile's EXPOSE instruction. The application is then configured to bind to this port, either via

fixed settings or more ideally by reading the port number from an environment variable like PORT, which ensures

deployment flexibility [15][16].

In ECS Fargate, a task definition specifies container parameters including the image, CPU/memory resources,

and port mappings. Unlike traditional server setups, Fargate does not insert or manage any external web server

Fig. 7. Port Binding – Services Running Inside Containers

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 125 | Page

layer; it simply launches the container as specified. If desired, an Application Load Balancer (ALB) can be

configured to route external requests to the container’s bound port. This approach preserves the application’s

responsibility to expose and manage its own network interface, satisfying the 12-Factor App’s requirements for

self-contained services [17].

By binding to its own port and managing traffic internally, a Spring Boot application deployed on ECS Fargate

exemplifies the 12-Factor App principle of port binding. This design supports building stateless, scalable, and

portable cloud-native applications aligned with modern microservices architectures.

H. Concurrency

1) Definition and Concept: Concurrency refers to organizing an application into independent, stateless

processes that can operate simultaneously. Instead of bundling all functionality into a single, tightly coupled

process, the application is segmented into separate units --such as request handlers, background job processors,

or scheduled tasks -- each responsible for a specific type of workload [18]. These processes can be executed in

parallel and scaled horizontally, which means additional instances of a given process type can be deployed to

handle increased demand.

It’s important to note that while this principle supports scalable design, it does not mandate a microservices

architecture. A single application (with one codebase) can still benefit from concurrency by defining and

managing different process types without splitting the system into multiple services.

2) Significance of Process-Oriented Concurrency: Designing software to run discrete, independently

scalable processes enhances flexibility, fault isolation, and resource efficiency. In a real-world scenario—such as

a payment network app or a banking app or an online shopping platform—certain components like the web server

might face heavy loads during flash sales, requiring more instances. In contrast, background processes (e.g.,

sending receipts or syncing inventory or payment settlements) might operate on a different scale.

This separation enables organizations to fine-tune resource allocation based on actual usage patterns. Moreover,

if one process crashes (e.g., a background worker), it doesn’t affect the operation of others (like the API server),

improving the system’s resilience.

3) Real-World Implementation Using Java and Spring Boot: Concurrency in Java applications can be

effectively managed through the use of Spring Boot profiles. These profiles enable a single application binary

(such as a JAR file) to exhibit different behaviors based on runtime configuration parameters [19].

For instance, consider an e-commerce system developed with Spring Boot. This system may be packaged as one

deployable artifact but designed to function in multiple roles:

• Web: Handles HTTP traffic and manages user interfaces.

• Worker: Processes asynchronous operations such as payments or notifications.

• Scheduler: Performs scheduled tasks like generating daily sales reports.

The appropriate application role is determined by activating a specific Spring profile, which selectively enables

relevant components of the system:

java -jar banking-app.jar --spring.profiles.active=web

java -jar banking-app.jar --spring.profiles.active=worker

java -jar banking-app.jar --spring.profiles.active=scheduler

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 126 | Page

Spring’s @Profile annotation ensures that only the relevant components for that role are loaded:

This modular design enables targeted execution of only the necessary components for a given process type.

4) Independent Scaling using Containers: Modern deployment environments—such as Docker and

Kubernetes—support deploying each process type in a separate container, allowing for isolated and independent

scaling. The following is a simplified Docker Compose configuration that demonstrates this setup:

This configuration allows:

• Web processes to scale up under high traffic,

• Workers to increase if background job queues grow, and

• Scheduler to run as a single instance to prevent duplicate task execution.

@Profile("web")

@RestController

public class WebController {
 @GetMapping("/greet")

 public String greet() {

 return "Hello from the Web service!";
 }

}

@Profile("worker")

@Component

public class BackgroundProcessor {
 @PostConstruct

 public void runWorker() {
 System.out.println("Processing jobs in the background...");

 }

}

@Profile("scheduler")
@Component

public class ReportScheduler {

 @Scheduled(fixedRate = 60000)
 public void generateReport() {

 System.out.println("Generating scheduled report...");
 }

}

Listing 1. Concurrency – Sample Implementation

Fig. 2. Concurrency – Sample Configuration/Declaration

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 127 | Page

Thus, the configuration can be adjusted as needed to allow each process type to run its own desired number of

instances independently, without relying on or affecting other process types.

5) Misunderstandings and Anti-Patterns: Despite its straightforward principles, concurrency is often

misunderstood or implemented incorrectly. Below are common misconceptions, their explanations, and the

resulting impacts:

Misconception Explanation Impact

Relying on threads
instead of

processes.

Developers attempt to use
multithreading inside a

monolithic app.

Limits scalability and
makes debugging more

difficult.

Mixing

responsibilities in
one process.

Combining web request

handling and background jobs
within the same runtime.

Causes performance

bottlenecks and reduces
separation of concerns.

Using in-memory

state storage.

Storing session data or queues

in local memory within a

process.

Prevents effective
scaling and risks data

loss if the process

crashes.

TABLE 10. CONCURRENCY – MISCONCEPTIONS AND THEIR IMPACT

To follow best practices, all state should be stored in durable systems like databases or distributed caches (e.g.,

Redis). Each process should be disposable and stateless, ensuring that it can be terminated or restarted at any time

without side effects.

I. Disposability

1) Definition and Concept: Disposability refers to an application’s ability to start quickly, shut down

gracefully, and recover safely from interruptions or failures. The 12-Factor App methodology advocates designing

stateless, replaceable processes that can be stopped and restarted at any time without manual intervention or

disruption [20]. This principle is critical in modern cloud-native environments --such as Kubernetes -- where

applications are frequently scaled, rescheduled, or redeployed. To support disposability, jobs should be built to

be reentrant by making their operations idempotent and managing data changes atomically using transactions.

2) Importance of Startup and Graceful shutdown: Fast startup reduces downtime during scaling or

deployment, while graceful shutdown ensures ongoing work is completed and resources are released cleanly. For

example, a Java Spring Boot service can implement a cleanup method to close database connections upon

shutdown [21][22]:

Cloud platforms like Kubernetes send termination signals (SIGTERM) to containers, enabling graceful shutdown

before forced termination.

3) Idempotency, Transactions, and Reentrancy: Disposability requires that jobs be safely restartable. This

involves making operations idempotent and using transactions for local data integrity.

The @Transactional annotation ensures atomic updates within the service’s own database [23]. However, the

external call to paymentService.charge() lies outside this transaction, creating a risk of inconsistency if the

payment fails after the order is marked as processed. This cross-service coordination issue can be addressed using

transactional patterns such as the Outbox or SAGA patterns.

@PreDestroy

public void onShutdown() {

 System.out.println("Cleaning up resources before shutdown...");
 dataSource.close();

}

Listing 2. Disposability – Sample Cleanup Implementation

@Transactional

public void processOrder(String orderId) {

 if (orderRepository.isProcessed(orderId)) {
 return; // Prevent duplicate processing.

 }

 orderRepository.markAsProcessed(orderId);
 paymentService.charge(orderId);

}

Listing 3. Transactional – Sample Implementation

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 128 | Page

• Outbox Pattern: Events triggered within a local transaction are recorded in an outbox table. A separate

process reads these events asynchronously and dispatches them to other services, ensuring eventual consistency.

A separate event dispatcher reads the outbox events and calls external services like payment. For more detailed

information, please refer to sources such as [24].

• SAGA Pattern: This pattern divides a distributed transaction into a series of local transactions in

multiple services. Each step either commits or triggers a compensating action to undo previous steps if failure

occurs, maintaining overall consistency.

Step Service Action Compensation

1 Order Service Reserve inventory. Release Invetory.

2 Payment Service Charge payment. Refund payment.

3 Shipping Service Schedule shipment. Cancel shipment.

TABLE 11. SAGA ORCHESTRATION FLOW EXAMPLE

Each service emits events or messages for the next step, and failures trigger compensations to rollback completed

steps. For more detailed information, please refer to sources such as [25].

4) Misunderstandings and Common Pitfalls: Despite its straightforward principles, disposability is often

misunderstood or misapplied. Below given are some of the common misconceptions, their explanations, and the

resulting impacts:

Misconception Explanation Impact

Slow startup times
Accepting lengthy initialization
during app startup

Delays scaling and
prolongs downtime.

Ignoring shutdown
signals

Failing to handle termination
signals like SIGTERM.

Causes resource leaks,

incomplete processing,

and data loss.

Non-idempotent job

logic

Designing jobs that fail or

duplicate effects on retries.

Leads to data

inconsistencies and
operational errors.

Local state storage
Keeping critical state in memory

or local disk within a process.

Causes state loss after
restarts or container

rescheduling.

TABLE 12. DISPOSABILITY – MISCONCEPTIONS AND THEIR IMPACT

Avoiding these pitfalls ensures applications remain resilient and easy to manage in dynamic environments.

J. Dev/Prod Parity

1) Definition and Concept: Dev/Prod Parity refers to the degree to which development, staging, and

production environments are aligned in terms of tools, infrastructure, and behavior. The Twelve-Factor App

methodology highlights the importance of keeping these environments as similar as possible to avoid

environment-specific bugs and unexpected issues during deployment [26]. This alignment is foundational to

predictable application behavior and smooth deployment. Its primary goal is to ensure that software behaves

consistently across all environments, from a developer’s local machine to the production system.

@Transactional

public void processOrderWithOutbox(String orderId) {

 if (orderRepository.isProcessed(orderId)) {
 return;

 }

 orderRepository.markAsProcessed(orderId);
 outboxRepository.save(new OutboxEvent("OrderProcessed",

orderId));

}

Listing 4. Transactional – Sample Outbox Pattern Implementation

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 129 | Page

2) Importance of Environment Consistency: Dev/Prod Parity plays a critical role in maintaining software

stability and reliability. Discrepancies—such as variations in library versions, operating system settings, or

runtime parameters—can cause unpredictable application behavior and obscure defects that may only surface

after deployment. This challenge is particularly evident in complex ecosystems like Java, where differences in

the Java Virtual Machine (JVM), dependency management tools (e.g., Maven or Gradle), and system-level

configurations can affect both performance and correctness. Maintaining consistent environments mitigates these

risks by enabling more accurate testing and simplifying troubleshooting. Additionally, in cloud-native

architectures, maintaining high environment parity supports consistent automation, monitoring, and scaling

capabilities, thereby improving operational efficiency and software quality.

3) Implementation in Java and Containerized Workflows: In Java-oriented cloud-native development,

environment parity is commonly implemented through the use of containerization. Tools such as Docker facilitate

the creation of standardized images that encapsulate not only the compiled Java application but also its runtime,

libraries, and system dependencies. These images are built once and reused across all environments, promoting

consistency and minimizing configuration drift [26]. Environmental differences—such as database credentials or

API endpoints—are externalized using environment variables or external configuration services, ensuring that the

core application remains unchanged across deployment contexts. For instance, a Java application developed with

Spring Boot can be containerized and deployed uniformly to both a developer’s local Kubernetes setup and a

production-grade orchestration platform. This approach ensures uniform application behavior, regardless of the

deployment stage, simplifies the deployment process, and aligns with best practices in continuous integration and

continuous delivery (CI/CD) pipelines. By preserving environmental consistency, Dev/Prod Parity supports not

only smoother deployments but also reinforces other principles such as strict dependency isolation and process

scalability.

4) Common Challenges and Mitigation Strategies: While maintaining consistent environments is a core

principle of Dev/Prod Parity, achieving this in practice can be difficult due to factors like reliance on proprietary

services, security restrictions, or inconsistent setups across development teams. A common issue arises when

lightweight, in-memory databases such as H2 or SQLite are used during development, whereas production relies

on more robust systems like PostgreSQL or Oracle. This mismatch can lead to subtle bugs and performance

discrepancies that only become apparent after deployment [27].

Another challenge involves connecting development environments directly to real downstream services—such as

APIs, databases, or third-party platforms. Although this approach preserves environment parity, it can slow down

the development feedback cycle and cause delays if these services are unavailable or unstable. To overcome this,

teams often use mock or stub implementations of external services during development. This technique improves

speed and reliability but comes with the trade-off that the development environment may increasingly diverge

from production conditions. Consequently, a balanced approach is recommended: mocks and stubs are used

during early development to facilitate rapid iteration, while comprehensive integration and end-to-end testing

occur later in staging or continuous integration pipelines to detect any discrepancies before release.

Tools like Testcontainers and WireMock help replicate production-like environments locally without sacrificing

efficiency. Additionally, automated CI/CD pipelines play a crucial role in maintaining parity by enforcing

consistent processes for building, testing, and deploying applications across all stages of the software lifecycle,

reducing the risk of unexpected behavior in production.

5) Misconceptions and Anti-Patterns: Differences between development and production environments can

lead to hidden bugs, deployment failures, and more complicated troubleshooting. Recognizing common

misconceptions and anti-patterns helps teams avoid these pitfalls and maintain better parity. The table below

outlines some frequent misunderstandings, their underlying causes, and the consequences they can have on

application stability and deployment success:

Misconception Explanation Impact

Using Different
Versions of

Dependencies.

Employing different versions

of Java SDKs, libraries, or

middleware across
environments.

Causes unpredictable behavior, crashes, or
reduced performance due to

incompatibilities.

Manual Configuration
of Environments.

Making environment-specific

adjustments by hand rather than

automating them.

Raises the chance of human mistakes,

resulting in configuration drift and

inconsistent setups.

Testing Only Late in the
Pipeline.

Restricting integration and load

testing to staging or production

environments.

Leads to delayed discovery of critical

defects, increasing risk of failed

deployments and rollbacks.

TABLE 13. DEV/PROD PARITY – MISCONCEPTIONS AND THEIR IMPACT

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 130 | Page

Adherence to the Dev/Prod Parity principle is essential for developing dependable, maintainable, and scalable

cloud-native systems, especially within continuous delivery pipelines. By maintaining close alignment across

environments, teams build greater confidence in deployments and improve the overall robustness of production

systems. [26].

K. Logs

1) Definition and Concept: Logs are continuous, time-ordered streams of event data that capture an

application's operational state, behavior, and diagnostic information. In the 12-Factor App methodology, logs are

not treated as persistent files or stored artifacts, but rather as ephemeral event streams. Applications are expected

to emit log data to standard output (stdout), leaving the tasks of collection, aggregation, and long-term storage to

the execution environment or external logging infrastructure [28]. This design promotes a clean separation of

concerns, enabling greater portability, scalability, and consistency across diverse deployment environments.

2) Importance of Stateless, Stream-Based Logging: In dynamic cloud-native systems, especially those

using container orchestration platforms, application instances are frequently restarted, scaled, or replaced. Storing

logs locally in such environments can lead to data loss and reduced visibility. As recommended in the Twelve-

Factor methodology, treating logs as real-time streams sent to stdout enables external systems to reliably capture,

manage, and store them [28]. This approach enhances observability, enables centralized log analysis, and supports

monitoring within continuous delivery pipelines.

3) Implementation in Java and Containerized Environments: In Java-based cloud-native applications,

logging is commonly managed using frameworks such as Logback and Log4j, which can be configured to write

log output to standard output (stdout) instead of local file systems. This aligns with the 12-Factor App principle

of treating logs as event streams, ensuring consistent logging behavior across development, staging, and

production environments [28].

In containerized deployments, such as those using Docker, logging configurations are typically embedded within

container images, promoting portability and reducing dependency on the host file system. For example, Spring

Boot applications deployed via Docker can emit logs to stdout, which container orchestration platforms like

Kubernetes can automatically capture. These logs are often routed to centralized logging systems such as the

Elasticsearch-Fluentd-Kibana (EFK) stack, which supports indexing, searching, and visualizing log data.

In public cloud environments like Amazon Web Services (AWS), similar pipelines are implemented using agents

such as Fluent Bit or Fluentd to forward container logs to Amazon CloudWatch Logs. From there, the logs can

be ingested by Amazon OpenSearch Service (formerly Elasticsearch), where OpenSearch Dashboards provide

visualization and diagnostic tools. Other approaches are also discussed in [29]. This model enables scalable log

aggregation and analysis, supports operational observability, and integrates effectively with continuous delivery

pipelines in modern distributed architectures.

4) Common Misconceptions and Anti-Patterns: Effective log management is essential for ensuring

reliability, observability, and debuggability in cloud-native applications. Despite the clear guidance offered by

the Twelve-Factor App methodology, several misconceptions and anti-patterns persist in practice. These missteps

Fig. 8. A Log Stream Approach in AWS

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 131 | Page

can undermine the benefits of centralized, structured, and ephemeral log handling. The table below outlines

common pitfalls, their explanations, and their operational impact, reinforcing the importance of adhering to log

management best practices for scalable and maintainable systems.

Misconception Explanation Impact

Writing Logs to
Local Files.

Persisting logs on disk

within containers or

VMs.

Risk of data loss on container

restart; impedes scalability and

monitoring.

Hard-Coded Log

Destinations.

Embedding environment-
specific log paths or

services in code.

Reduces portability; increases
deployment complexity and

fragility.

Decentralized Log
Aggregation.

Relying on manual log

collection or per-node

storage.

High operational overhead;

hinders centralized analysis and

alerting.

Logging Sensitive
Data.

Including passwords,
tokens, or PII in logs.

Raises compliance risks; violates
security best practices.

Over-Logging or
Under-Logging.

Emitting excessive or
insufficient log data.

Performance degradation or lack
of insight during incidents.

TABLE 14. LOGS – MISCONCEPTIONS AND THEIR IMPACT

L. Admin Process

1) Definition and Concept: Admin processes refer to tasks that are executed occasionally and independently

from the application’s main execution cycle, yet share the same runtime and environment. Common examples

include applying database migrations, purging caches, rotating logs, or executing scripts to correct data

inconsistencies. The methodology advocates that these processes be short-lived and executed using the same

codebase and configuration as the core application [30], ensuring behavioral consistency, simplified debugging,

and operational reliability across environments.

2) Role of Admin Processes in Application Lifecycle: Although administrative tasks are not part of regular

user-facing operations, they play a crucial role in maintaining data integrity, managing infrastructure resources,

and supporting development workflows. For example, Java-based applications using frameworks like Spring Boot

often integrate database migration tools such as Flyway [31] or Liquibase [32], which can be executed via

command-line runners or as containerized jobs. Running these processes within the same container image and

environment as the primary application prevents discrepancies caused by local execution or configuration

mismatches. This alignment enhances operational consistency and simplifies debugging, monitoring, and system

maintenance.

3) Execution in Containerized and Cloud-Native Environments: In today’s cloud-native environments,

administrative tasks are often run as short-lived containers or jobs orchestrated by platforms like Kubernetes. For

example, in a microservices architecture built with Java, a database migration might be implemented as a

Kubernetes Job that reuses the same Docker image as the service it supports. This approach ensures consistency

across environments and aligns with the principle of maintaining parity between development and production

configurations. Furthermore, modern orchestration tools provide features such as secure secret management,

resource allocation, and automated lifecycle handling for transient tasks, all of which contribute to more reliable

and secure operations.

4) Best Practices for Safe Execution and Observability: Admin processes should be implemented with

idempotency in mind—that is, they should be safe to run multiple times without causing unintended side effects.

In Java applications, this is often achieved through versioned migration scripts or by incorporating checks to avoid

redundant operations, such as verifying record existence before updates. Comprehensive logging is equally

important; outputs should be directed to standard output streams or centralized logging systems to support

traceability and auditing. When these tasks are automated via CI/CD pipelines, they should also integrate with

monitoring and alerting tools to provide visibility into their execution status and outcomes.

5) Common Misconceptions and Anti-Patterns: Admin processes are often overlooked during system

design, leading to implementation patterns that compromise maintainability, consistency, and operational safety.

The following table outlines several frequent misconceptions and the risks they introduce:

Misconception Explanation Impact

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 132 | Page

Executing tasks from

local machines.

Running migration or

maintenance scripts directly

from developer
environments.

Leads to configuration drift,

inconsistent outcomes, and

increased susceptibility to
human error.

Maintaining a separate
codebase.

Keeping admin scripts

outside the primary

application repository.

Breaks code-version alignment,

making it harder to reproduce

or audit system state.

Embedding admin

logic in user-facing
endpoints.

Implementing
administrative actions

within standard HTTP

routes.

Violates isolation of concerns

and introduces potential
security vulnerabilities.

Lack of

Containerization for
Admin Tasks.

Running admin processes
outside the containerized

environment used by the

main app.

Reduces environment parity

and increases the risk of
environment-specific failures.

TABLE 15. ADMIN PROCESS – MISCONCEPTIONS AND THEIR IMPACT

Properly integrating administrative processes into the application lifecycle—using the same runtime environment,

tooling, and version control—enhances operational reliability and aligns with the foundational principles of the

12-Factor App. As modern enterprise systems increasingly adopt Java, containerized infrastructure, and cloud-

native paradigms, adherence to these practices becomes critical for achieving resilience, maintainability, and

scalable system design [30].

III. CONCLUSION
The 12-Factor App methodology remains a foundational approach for developing scalable, maintainable,

and resilient applications, especially within cloud-native ecosystems. While often linked with microservices, its

principles are equally applicable to monolithic systems when complemented by suitable tools and deployment

practices. This review has explored selected implementations—such as Java-based systems and containerized

platforms—to illustrate how factors like concurrency, disposability, development/production parity, logging, and

administrative process handling enhance operational consistency and developer productivity.

Embracing these principles fosters clear separation of concerns, facilitates dynamic scalability, and

streamlines both deployment and recovery processes. As software systems continue to evolve toward distributed

and platform-agnostic models, the 12-Factor approach offers a durable, technology-neutral guide for application

design. Future research may extend these concepts into areas like serverless and edge computing, further

reinforcing their role in shaping modern software engineering practices.

REFERENCES
[1] A. Wiggins, “I. Codebase,” The Twelve-Factor App, Available: https://12factor.net/codebase

[2] Atlassian, “Git Workflow | Atlassian Git Tutorial,” Atlassian. Available: https://www.atlassian.com/git/tutorials/comparing-
workflows

[3] A. Wiggins, “II. Dependencies,” The Twelve-Factor App, Available: https://12factor.net/dependencies

[4] “POM Reference – Maven,” The Apache Software Foundation. [Online]. Available: https://maven.apache.org/pom.html.
[5] A. Wiggins, “III. Config,” The Twelve-Factor App, Available: https://12factor.net/config

[6] The Spring Team, “Spring Boot Reference Documentation,” Spring.io, [Online]. Available: https://docs.spring.io/spring-boot/.

[7] The Kubernetes Authors, “ConfigMaps,” Kubernetes, [Online]. Available:
https://kubernetes.io/docs/concepts/configuration/configmap/.

[8] A. Wiggins, “IV. Backing Services,” The Twelve-Factor App, Available: https://12factor.net/backing-services

[9] Heroku, "Config Vars," Heroku Dev Center. [Online]. Available: https://devcenter.heroku.com/articles/config-vars.
[10] HashiCorp, “Vault by HashiCorp,” HashiCorp Developer, [Online]. Available: https://developer.hashicorp.com/vault.

[11] A. Wiggins, “V. Build, release, run,” The Twelve-Factor App, Available: https://12factor.net/build-release-run

[12] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, "Borg, Omega, and Kubernetes," Communications of the ACM, vol.

59, no. 5, pp. 50–57, May 2016. Available: https://doi.org/10.1145/2890784

[13] A. Wiggins, “VI. Processes,” The Twelve-Factor App, Available: https://12factor.net/processes
[14] A. Wiggins, “XII. Port binding,” The Twelve-Factor App, Available: https://12factor.net/port-binding

[15] Spring Boot Documentation, "Embedded Servlet Containers," [Online]. Available: https://docs.spring.io/spring-

boot/docs/current/reference/htmlsingle/#howto.webserver.embedded
[16] S. Mangalore and C. Lee, "Developing Twelve-Factor Apps using Amazon ECS and AWS Fargate," AWS Containers Blog, Apr. 30,

2021. [Online]. Available: https://aws.amazon.com/blogs/containers/developing-twelve-factor-apps-using-amazon-ecs-and-aws-

fargate/.
[17] Amazon Web Services, "AWS Fargate for Amazon ECS," Amazon Elastic Container Service Developer Guide, Amazon Web

Services, Inc., https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html.

[18] A. Wiggins, “VII. Concurrency,” The Twelve-Factor App, Available: https://12factor.net/concurrency
[19] "Spring Boot Reference Documentation – Profiles." Spring.io, https://docs.spring.io/spring-boot/reference/features/profiles.html.

[20] A. Wiggins, “VIII. Disposability,” The Twelve-Factor App, Available: https://12factor.net/disposability

[21] “Customizing the nature of a bean :: Spring Framework.” Available: https://docs.spring.io/spring-
framework/reference/core/beans/factory-nature.html#beans-factory-lifecycle-disposablebean

https://12factor.net/codebase
https://12factor.net/dependencies
https://maven.apache.org/pom.html
https://12factor.net/config
https://docs.spring.io/spring-boot/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://12factor.net/backing-services
https://devcenter.heroku.com/articles/config-vars
https://developer.hashicorp.com/vault
https://12factor.net/build-release-run
https://12factor.net/processes
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#howto.webserver.embedded
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#howto.webserver.embedded
https://aws.amazon.com/blogs/containers/developing-twelve-factor-apps-using-amazon-ecs-and-aws-fargate/
https://aws.amazon.com/blogs/containers/developing-twelve-factor-apps-using-amazon-ecs-and-aws-fargate/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://docs.spring.io/spring-boot/reference/features/profiles.html
https://12factor.net/disposability

Designing Scalable and Maintainable Cloud-Native Applications Using the 12-Factor..

DOI: 10.35629/3795-1106113133 www.questjournals.org 133 | Page

[22] “Using @PostConstruct and @PreDestroy :: Spring Framework.” Available: https://docs.spring.io/spring-

framework/reference/core/beans/annotation-config/postconstruct-and-predestroy-annotations.html
[23] Declarative transaction management with annotations," Spring Framework Documentation. [Online]. Available:

https://docs.spring.io/spring-framework/reference/data-access/transaction/declarative/annotations.html.

[24] A. Dlv, “Outbox pattern in Spring Boot 3 and Apache Kafka,” DEV Community, May 02, 2024.
Available: https://dev.to/axeldlv/springkafka-outbox-pattern-in-spring-boot-3-and-apache-kafka-2o3o

[25] RobBagby, “Saga Design Pattern - Azure Architecture Center,” Microsoft Learn. Available: https://learn.microsoft.com/en-

us/azure/architecture/patterns/saga
[26] A. Wiggins, “X. Dev/prod parity,” The Twelve-Factor App, Available: https://12factor.net/dev-prod-parity

[27] M. Fowler, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, 1st ed. Boston, MA:

Addison-Wesley, 2010.
[28] A. Wiggins, “XI. Logs,” The Twelve-Factor App, Available: https://12factor.net/logs

[29] H. O. Prasath and B. Singh, "Unify log aggregation and analytics across compute platforms," AWS Big Data Blog, Dec. 14, 2021.

[Online]. Available: https://aws.amazon.com/blogs/big-data/unify-log-aggregation-and-analytics-across-compute-platforms/.
[30] A. Wiggins, “XI. Admin Processes,” The Twelve-Factor App, Available: https://12factor.net/admin-processes

[31] Redgate, "Getting started with Flyway," Redgate Documentation, [Online]. Available: https://documentation.red-

gate.com/fd/getting-started-with-flyway-184127223.html.
[32] Liquibase, "Liquibase: Database Change Management & CI/CD Automation | Database DevOps," Liquibase, [Online]. Available:

https://www.liquibase.com/.

https://docs.spring.io/spring-framework/reference/core/beans/annotation-config/postconstruct-and-predestroy-annotations.html
https://docs.spring.io/spring-framework/reference/core/beans/annotation-config/postconstruct-and-predestroy-annotations.html
https://docs.spring.io/spring-framework/reference/data-access/transaction/declarative/annotations.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/saga
https://learn.microsoft.com/en-us/azure/architecture/patterns/saga
https://12factor.net/dev-prod-parity
https://12factor.net/logs
https://aws.amazon.com/blogs/big-data/unify-log-aggregation-and-analytics-across-compute-platforms/
https://12factor.net/admin-processes
https://documentation.red-gate.com/fd/getting-started-with-flyway-184127223.html
https://documentation.red-gate.com/fd/getting-started-with-flyway-184127223.html
https://www.liquibase.com/

