
Quest Journals 

Journal of Software Engineering and Simulation  

Volume 11 ~ Issue 6 (June 2025) pp: 09-19  

ISSN(Online) :2321-3795 ISSN (Print):2321-3809  

www.questjournals.org  

 

 

DOI: 10.35629/3795-11060919                                   www.questjournals.org                                            9 | Page 

Research Paper 

 
Event-triggered prescribed-time bipartite consensus 

control of nonlinear multi-agent systems 

Jialong Tian1, Tao Li1, Haiyang Hu1, Zijie Jiang1, Yuanmei Wang2, Yuqi 

Gao1 
1(School of Electrical Engineering and Automation, Hubei Normal University, Huangshi, 435000, China)  

2(School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China)  

Corresponding Author: Tao Li  

 

ABSTRACT: This paper investigates the event-triggered prescribed-time bipartite consensus of nonlinear 

multi-agent systems. In order to significantly reduce the communication burden and energy consumption, a 

novel event-triggered mechanism and triggering condition are proposed. Then, a distributed prescribed-time 

control protocol is proposed for the discussed nonlinear multi-agent systems to achieve bipartite consensus 

within the prescribed time based on the event-triggered mechanism. Using the Lyapunov stability theory, the 

stability of the nonlinear multi-agent systems is proved and the corresponding sufficient conditions are 

obtained. Moreover, it is shown that the Zeno behavior can be excluded. Simulation results are presented to 

show the effectiveness of the theoretical results. 
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I. INTRODUCTION  
In recent years, the consensus problem in Multi-Agent Systems (MASs) has attracted the attention of 

scholars because of its extensive applications in artificial intelligence, mobile communication and so on [1-4]. 

Research on the consensus of MASs principally focuses on the cooperative relationship. However, in practical 

environments, there are not only cooperative relationships but also competitive relationships among agents 

[5-7]. Subsequently, bipartite consensus has been discussed by many scholars. Altafini first proposed the 

concept of bipartite consensus and a signed network, along with the necessary and sufficient conditions to 

ensure the bipartite consensus of signed networks [8]. An output-feedback-based leader-follower bipartite 

consensus protocol is designed for a class of high-order Lipschitz nonlinear MASs with unmeasurable states [9]. 

A finite-time protocol and a fixed-time protocol are developed to solve the bipartite consensus tracking problem 

[10]. Studies focus on second-order matrix-weighted bipartite consensus on undirected balanced signed 

networks [11]. A new prescribed-time distributed control protocol for consensus and containment of networked 

multi-agent systems is proposed, and the article discusses the undirected connection topology and the directed 

topology [12]. However, the above study of prescribed-time consensus is limited to agents being cooperative, 

but competitive relationships can also exist among agents. Compared to consensus, bipartite consensus is more 

widely applicable and more valuable to study. 

Traditional research on consensus control of MASs concentrates on achieving asymptotic convergence 

to the desired state. The convergence time is an important metric for evaluating control performance. To further 

improve the convergence time, finite-time control has been developed [13-16]. Notably, the finite-time control 

relies on the initial values of MASs, which limits its practical application in realistic scenarios such as unknown 

or unavailable initial values of MASs. To solve the problem, fixed-time control is proposed. Fixed-time control 

guarantees that the settling time function is uniformly bounded regarding the initial values, but depends on the 

control parameters [17-20]. To solve shortcomings of fixed-time control, prescribed-time control is proposed 

[21-25]. It is more meaningful to study prescribed-time control of MASs. Prescribed-time control guarantees 

that the system can achieve convergence at an arbitrarily specified time set by the user. A new prescribed-time 

control algorithm is presented in the paper. 

http://www.questjournals.org/
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The communication in the above MASs study is continuous. Traditional continuous consensus control 

requires adequate communication resources to transmit information among neighboring agents. For the sake of 

reducing unnecessary control updates and saving resources more effectively, event-triggered mechanism has 

been broadly introduced into the consensus of MASs, and as attracted the interest of many researchers [26-29]. 

A consensus protocol with a distributed event-triggered mechanism is developed and the controlled objects are 

first order [30]. The event-triggered problem in second-order systems is addressed [31]. Additionally, various 

types of event-triggered mechanisms have been investigated [29,32,33]. Therefore, the study of the combination 

of prescribed-time control with event triggered mechanisms is more valuable. Compared to these event-

triggered mechanism approaches, the proposed study of the combination of event-triggered mechanisms and 

prescribed-time control is more challenging and has distinct advantages in this paper. 

Inspired by the above discussions, and considering that nonlinear systems can more accurately describe 

the actual systems, the paper comprehensively studies the event-triggered prescribed-time bipartite consensus 

control of nonlinear multi-agent systems. The remainder of this paper is organized as follows: Section 2 

introduces some preliminary definitions, basic properties, and formulates the main problem. Section 3 designs 

event-triggered mechanism, presents the prescribed-time control protocol, proves the stability of the system, and 

researches the exclusion of Zeno behavior in detail. Section 4 provides numerical simulations. Conclusions are 

presented in Section 5. 

 

II. PRELIMINARIES AND PROBLEM FORMULATION 
2.1 NOTATION 

Let 
n

 and 
n n

 denote the n-dimensional Euclidean space and the set of all n n  real matrices, 

respectively. The symbol   denotes the Kronecker product. The identity matrix is denoted as m m

mI  , and 

m1  is an m-element column vector with each element equal to 1. 0 denotes the vectors or matrices of proper 

dimensions with all elements being0.   stands for either the Euclidean vector norm or the spectral norm of a 

matrix. For a symmetric matrix H , ( )max H  and ( )min H  denote the largest and the smallest values among all 

its eigenvalues, respectively. 

2.2 COMMUNICATION TOPOLOGY 

The network topology of the system can be represented by a signed undirected graph ( )ij
n n

A a


= , 

where  1,2,..., N=V  is the node set, E  represents the edge set, the pair ( ),i j E  means that node j can 

receive information from node i, A pair ( ),i j E  indicates that node j can receive information from node i. The 

adjacency matrix ( )ij
n n

A a


=  is defined such that 0ija   if ( ),i j E , otherwise, 0ija = . i and j are 

cooperative if 0ija   and competitive if 0ija  . The Laplacian matrix ( )ij
n n

L l


=  is denoted as L D A= − , 

where  1 2diag , ,..., nD d d d= , 
1

| |
n

i ij

j

d a
=

= , that is 

1

, ,

, .i

ij

jij

n

j

a i j
l

ia j

=


=

= 
− 


 

2.3 MODEL DESCRIPTION 

Consider a nonlinear second-order MASs consisting of N  agents. The communication topology of 

these agents is represented by an undirected signed graph ( )AG . The model of the i-th agent is as follows 

 
( ) ( )

( ) ( ) ( ) ( )( )

,

, , 1,2,..., ,  

i i

i i i i

x t v t

v t u t f t x t v t i N



 = + =


=
 (1) 

where ( ) n n

ix t  , ( ) n n

iv t  , and ( ) n n

iu t   represent the position, velocity, and control input, 

respectively. ( ) ( )( ), , m

i if t x t v t   is a smooth and continuous unknown function, representing the external 

disturbance of each agent. 

2.4 LEMMAS AND DEFINITIONS 

Assumption 1. There exists constant 1 0c   and 2 0c  , such that for all ,x y . 

 ( ) ( ) 1 2 ., , , ,f x v t f y z t c x y c v z−  − + −  (2) 
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Lemma 1. [34] Given a structurally balanced connected graph ( )AG , we have the following consequent results. 

(1) One can always find a matrix ( )1 2: diag , ,..., nH   =  with  1, 1 ,  i i  − V , ensuring that 

HAH  has all non-negative entries. 

(2) With the aid of H , the positive semidefinite matrix :L HLH=  is obtained, which has a single zero 

eigenvalue with the corresponding eigenvector 1. 

(3) For the vector x  which satisfies 1 0T x = , it holds that 

( )2
0

min ,
T

Tx

x Lx
L

x x



=  

where ( )2 L  is the smallest positive eigenvalue of L . 

(4) L and L  are isospectral. 

Lemma 2. [35] The following inequality exists 

2 2
,

1

4
X V l X V

l
 +  

where X, V are any given vectors with proper dimensions and l is a positive constant. 

Lemma 3 . [36] Under Assumption 1, L  is a nonsingular M-matrix. Further, a vector ( )1,...,
T

nw w w=  

( ), 1,...,iw i n = can be found such that 1nLw = . Denote ( )1diag 1 ,...,1 nW w w=  and 
TWL L W = + , then 

W  and   are positive definite. 

To implement prescribed-time control, the following time-varying scaling function ( )t  defined in 

[37] will be applied 

 ( )
 )

 )

0 0

0

0

, ,

1 , ,

h

T
t t t T

t t T t

t t T



 
  + 

= + − 


 + 

 (3) 

where 0h   and 0T   is a user-specified constant. Then, we construct ( )t  

 ( )

( )

( )
 )

 )

0 0

0

, , ,

, , .

t
t t t T

t
t

h
t t T

T







 +


= 


 + 

 (4) 

It is evident that ( )( )0m t m −   is monotonically decreasing during the interval [0, )T  with 

( )0 1m − =  and 
( )

( )
0

lim 0m

t t T
t−

−

→ +
= . 

Lemma 4. [38] Consider a system described by 

 ( ) ( )( ), ,q t f q t t=  (5) 

where ( ) mq t   is the state and ( ),f    is a vector field bounded in time. Let ( )( ),V t q t  with ( ),0 0V t =  be 

the Lyapunov function of (5). For simplicity, we use V to denote ( )( ),V t q t . Which 1 0m  , 

2 0m  , ( ) 1 31 1h m m h−    and ( )t  being defined in (4), then for 0 0[ , )t t t T + , it yields 

 ( ) ( )  )3

1 2 0 0    , ,
m

V m t V m t t t t T  −
 − +  +  (6) 

and 

 ( )  )1 0    , .V m t V t t T −  +      (7) 

Then, it holds that 

 ( )( ) ( )
( )

( )  )
3

1

2

1 0 0 0 0

1 3

exp     , ,
1

m
h

m T
V m t t V t t t t t T

h m m


− 
 − − +  + 

+ −  

  (8) 

and 

  )00,   , .V t t T  +    (9) 

Definition 1. For the MASs (1), it is said to achieve prescribed-time bipartite consensus if for any user-

prescribed time T , there exists 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

lim 0,

lim 0,

0, ,

0, ,

i i j
t t T

i i j
t t T

i i j

i i j

x t x t

v t v t

x t x t t t T

v t v t t t T









→ +

→ +

− =

− =

 − =   +


− =   +










 

then the prescribed-time bipartite consensus is said to be achieved for the second-order nonlinear MASs (1) at 

the prescribed-time under the event-triggered mechanism. 

 

III. MAIN RESULTS  
This section is divided into two parts. The first part proves that MASs can achieve prescribed-time 

bipartite consensus by using an event-triggered mechanism, and the second part proves that Zeno behavior can 

be excluded. 

3.1 EVENT-TRIGGERED PRESCRIBED-TIME PROTOCOL 

The event-triggered prescribed-time protocol for the i-th agent is defined as follows 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) )

1

1

2 1

1

sgn

           sgn     , ,

N
i i

i ij i k ij j k

j

N
i i i i

ij i k ij j k k k

j

u t t k t a x t a x t

k a v t a v t t t t

 
=

+

=


= − −




+ −  







 (10) 

where 1k , 2k  are positive constant control gains. 

By denoting the measurement error of agent i as ( ) ( ) ( )i

i i k ie t t t = − , where 

( ) ( ) ( )1 2i xi vit k t k t  = + . In order to eliminate the cross terms in the derivative of the subsequent Lyapunov 

function, an important state transformation is introduced as ( ) ( ) ( )ˆ
xi it t x t = , ( ) ( )ˆ

vi it v t = . It also yields that  

 
( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 1 2

.

i i

i xi k vi k xi vi

i

i k i

e t k t k t k t k t

t t

   

 

= + − −

= −
 (11) 

The triggering instant sequence 
i

kt  for agent i is defined iteratively by 

 ( ) 1  in ,: f 0i i

k k it t t h t+ =    (12) 

where event triggering function 

 ( ) ( ) ( ) ( )2 ,c

i i ih t e t a t b t  −= − −  (13) 

where 
( )

( )
min

max

0 1
 

a








= 


, 0b  , 0c  , and   is a positive selected parameter. In fact, the event-triggered 

mechanism (12) reveals that the condition ( ) 0ih t   always holds as long as 1[ , )k

i i

kt t t + . 

3.2 CONSENSUS ANALYSIS 

To carry out the following analysis, some useful intermediate variables are employed. For iV , 

define ( ) ( )i i ix t x t= , ( ) ( )i i iv t v t= , we get 

 
( ) ( )

( ) ( ) ( )( ) ( )

,

, , .

i i

i i i i i

x t v t

v t f t x t v t u t

 =


= +

 (14) 

Subsequently, we define the average values of ( )x t  and ( )v t  as ( ) ( ) ( )1x i

i

t n x t =   and 

( ) ( ) ( )1v i

i

t n v t =  . In addition, we define the ( ) ( ) ( )ˆ
i xx t x t t= −  and ( ) ( ) ( )î i vv t v t t= − .  

Taking the derivatives of ( )xi t  and ( )vi t  along (14) yields 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 2

1 1

,

ˆ ˆ, , , , .

xi xi vi

N N
i i

vi i i x v ij xi k ij vi k

i i

t t t t t

t f t x t v t f t t t k t l t k t l t

    

      
= =

 = +



= − − −


 
 (15) 
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Let ( )1 2, ,...,
T

T T T

x x x xn   = , ( )1 2, ,...,
T

T T T

v v v vn   = , ( ) ( ) ( ) ( )( )1 2
ˆ ˆ ˆ ˆ, ,...,

T
T T T

ne t e t e t e t= , and 

( ) ( ) ( ) ( )( )1 1 2 2, , , , , , , ,..., , ,
T

T T T

x v x v x v xn vnF t F t F t F t       = , where the elements are defined as 

( ) ( ) ( )( ) ( ) ( )( )ˆ ˆ, , , , , ,xi vi i i x vF t f t x t v t f t t t   = − . By utilizing Kronecker product techniques, (15) can be 

reformulated into a more compact representation 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )1 2

,

ˆ, , .

x x v

v x v N x v

t t t t t

t F t t t t L I k t k t e t

    

     

 = +


= −  + +

 (16) 

The sufficient condition for achieving prescribed-time bipartite consensus in MASs described by (1) is 

provided in the following theorem. 

Theorem 1. Suppose that Assumptions 1-2 hold. Given a prescribed time T , the second-order nonlinear MASs 

described by (1) achieve bipartite consensus within T  under the protocol (10), provided that there exist 

parameters 0h  , 0  , 0  , and 0l   satisfying the following conditions 

 ( ) ( )2

1 2 min min2 0,k k w     − +   (17) 

 

( )

( )

1 min min 2

4 min min 5

0,

0,
4

l T
w

h h

T
w

lh h





 

+ + 

+ +  +









 (18) 

where 

( )

2 21 2 1

1 1

2 3

3

2 2

22

4

3

5 2

2 2 4

,

,
2 4

.
4

,

,x

x v

v

k k k
l k

h l

T
c

h

T lc h lc

h

kk
l

l

c
l

    
 



 

  






 

+ +
= − + +

= +

+
=

+
= − +

+








+

=

 

Proof. Let ,
T

T T

x v   =   . The Lyapunov function is taken as  

 ( ) ( ) , 
1

2

T

NV t I =   (19) 

where 
1 2

2

k k
W

W W

 


 

+ 
 =
 
  


 , and W is a positive definite matrix defined in Lemma 3. 

First of all, we need to ensure the validity of ( )V t . According to Schur’s Complement Lemma, 0  

if the followings hold: (1) 0W  , (2) ( )1 2 0
1

2
k k W W W    + −  , (1) of them is obviously true. Moreover, 

if the inequality in condition (17) is satisfied, then (2) holds. Thus, ( )V t  is valid under the constraint (18). 

Next, we prove that the bipartite consensus for MASs (1) can be achieved in the prescribed time T . 

Consider the time interval 0 0[ , )t t T+ . In this case ( ) ( )t t h = . Calculating the derivative of V  given in (19) 

along (16), one has 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )( )( ) ( )( )

( )( ) ( ) ( )( )

1 2

1 2

1 2

2

2

, , .

T T

x N x v N v

T T

x N v v N x

T T

x v N N x v

T T

x v N x v

k k
V t t I t W I

h

k k
t I t W I

h

t W I L I k k e t

W I F t t t

 
     

  
     

    

   

+
=  + 

+
+  + 

− +   +



+ 



+

+

 (20) 
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Based on Assumption 1, Lemma 2 and the fact 
( )
1 T

t h
 , one has 

 

( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

( ) ( )

1

2 2

1

3

3 2
.

, ,

1
ˆ ˆ, , , ,

1

4

T T

x v N x v

N
T T

x v i i x v

i i

N
x v

x v v v x v

i i

T T

x x N x v v N v

W I F t t t

f t x t v t f t t t
w

c c
c c

w t t

T
c W I c W I

h l

   

   

 
     

 

     

=

=

+ 

 = + −
 

  
 + + +  

    

  
 


+  + +  

  







 (21) 

By simple calculations, we obtain 

 

( )( )( )( )

( ) ( )

( )

( ) ( ) ( )

1 2

1 2

1 2

1 2 1 2 ,

1 1

2 2

1

2 2

2 2 2

T T

x v N N x v

T T T T

x N x v N v

T T

x N v

T T T

x N x v N v x N v

W I L I k k

k WL L W I k WL L W I

k k
WL L W I

k k k k
I I I

   

   

 
 

   
     

+   +

   
= +  + +    

   

+  
+ +  

 

+
=  +  + 

 (22) 

and 

 

( ) ( )

( )

( ) ( )

2

min

1

2

min min

1

min min .

1

N
T

x N x xi

i

N

xi

i i

T

x N x

I

w
w

w W I

   

 

  

=

=

 



=

 



 



  (23) 

Similarly, one gets 

 ( ) ( ) ( )min min ,T T

v N v v N vI w W I         (24) 

with the help of Lemma 1, we get 
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From the trigger condition (13), one gets 
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 (26) 

In this way, one can obtain 
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Combining (20)-(27) results in 
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Above all, we have 
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Hence 
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Therefore, ( ) 0t →  when 0t t T→ +  and ( ) 0t   when  )0 ,t t T +  , that is 

( ) ( )
0

0limt t T i i jx t x t→ + − =  and ( ) ( ) ( )
0

0l , 1,2,. .i .m ,t t T i i jx t x t i N→ + − = = , so the proof is completed. 

3.3 ZENO BEHAVIOR ANALYSIS 

Theorem 2. Using event-triggered function (13) and control protocol (10) to achieve bipartite consensus of 

system (1), the Zeno behavior is excluded. 

Proof. 
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According to (17), we know that 
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Hence 
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It follows from ( )ˆ 0i

i ke t =  that 
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At trigger instant 1

i

kt + , it follows 
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According to (13), at trigger instant 1

i

kt + , 
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Combined with (33) and (34), it follows 
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Next, by using reduction to absurdity, it will be proved that the trigger interval 1 0i i

k kt t+ −  . Assume 

that 1 0i i

k kt t+ − = . Then, from (35), it follows that 0a = , which leads to a contradiction. Therefore, the 

hypothesis is not valid, which means that Zeno behavior is excluded. This completes the proof. 

 

IV. NUMERICAL RESULTS 
In this section, examples are provided to demonstrate the theoretical results. The network topology is 

assumed as in Figure 1, apparently, the network is structurally balanced with  1 1,2,3=V  and  2 3,4,5=V . 

1

1

1 -1
1

1

1

31

2 4

5

6
1

 
Figure 1: The communication topology. 

 

Consider MASs with the topological relationship of six agents shown in Figure 1. The dynamics are 

described by Error! Reference source not found.. We set 1 3k = , 2 4k = , 2h = , and 

( ) ( )( ) ( )( ) ( ), , 0.2sini i i if t x t v t x t v t= . Substitute the above parameters into the MASs 

Error! Reference source not found., the control protocol Error! Reference source not found., and the time 

scale function (3). Moreover, we set the initial position states ( )  0 5,  2,  4,  1,  5,  3x = − − , and the initial 

velocity states ( )  0 1,  2,  4,  4,  5,  6v = − − −  for the protocol in Error! Reference source not found. to 

achieve of control objectives. 

Setting the parameter 0.51a = ,  0.7,  0.6,  0.5,  0.5,  0.7,  0.7b =  and 0.5c =  in the event-triggering 

function, the event-triggered function becomes 

( ) ( ) ( ) ( )10.5   1,2,3,...,6.i i ih t e t t b t i  −= − − =  

  
Figure 2: State trajectories of each agent (T=4s). Figure 3: Interevent intervals of agents (T=4s). 

 

Under the above-mentioned initial conditions, the state trajectories of the MASs for 4T s=  and 

5T s=  are shown in Figure 2 and Figure 4, respectively. From Figure 2, it can be seen that the MASs 

Error! Reference source not found. achieve bipartite consensus within 4T s= , and the results in Figure 4 

show that bipartite consensus can also be achieved within 5T s= . The simulation step size set in this paper is 

0.01, and the total simulation time is 8s, so the total number of iterations is 800. Furthermore, by comparing the 

results in Figure 2 and Figure 4, it can be concluded that the designed protocol is able to drive the MASs to 

achieve bipartite consensus within a prescribed time regardless of the initial state of the MASs. 

Figure 3 and Figure 5 show the inter-event intervals of each agent, i.e., the number of triggers for 6 

agents. During the simulation time of 8s, the event-triggered mechanism greatly reduces the communication 

burden and excludes Zeno behavior. 
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Figure 4: State trajectories of each agent (T=5s). Figure 5: Interevent intervals of agents (T=5s). 

 

V.  CONCLUSION 
This paper investigated the event-triggered prescribed-time bipartite consensus control problem of 

nonlinear MASs. A novel event-triggered mechanism was designed for each agent, which requires sampled 

states of both the agent and its neighbors. Based on the designed event-triggered mechanism, a prescribed-time 

control protocol was proposed to achieve bipartite consensus within the prescribed time. The stability of the 

nonlinear MASs was analyzed in detail, and the corresponding sufficient conditions were established. 

Additionally, it was proved that Zeno phenomenon can be excluded. Numerical simulations results have been 

provided to confirm and illustrate the theoretical results. 
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