
Quest Journals 

Journal of Software Engineering and Simulation  

Volume 10 ~ Issue 3 (March 2024) pp: 54-68  

ISSN(Online) :2321-3795 ISSN (Print):2321-3809  

www.questjournals.org  

 
 

 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          54 | Page 

Research Paper 

 

The Perennial Importance of SOLID Principles in 

Software Design 
 

Arun Neelan 

Independent Researcher 

PA, USA 

 

Abstract— The SOLID principles—Single Responsibility, Open/Closed, Liskov Substitution, Interface 

Segregation, and Dependency Inversion—are fundamental concepts in object-oriented design that promote 

maintainable, flexible, and scalable code. This paper provides an in-depth examination of each principle, 

discussing how they can be applied to enhance software design. It also highlights the common challenges 

developers face when implementing these principles and offers practical tips for overcoming them. Ultimately, 

the goal of this review is to help developers understand the real-world impact of the SOLID principles and provide 

actionable advice for incorporating them into their projects. 

 

Keywords—SOLID Principles, Object-Oriented Design, Software Design Principles, Single Responsibility 

Principle (SRP), Open/Closed Principle (OCP), Liskov Substitution Principle (LSP), Interface Segregation 

Principle (ISP), Dependency Inversion Principle (DIP) 

 

I. INTRODUCTION 
In software development, creating code that is maintainable, scalable, and flexible is essential. Over time, 

various design principles have been developed to help developers build software that not only meets customer 

requirements but is also easy to understand, extend, and modify. Among these, the SOLID principles are some of 

the most widely recognized, offering a solid foundation for high-quality object-oriented design. 

Introduced by Robert C. Martin, the SOLID principles consist of five key concepts: the Single 

Responsibility Principle (SRP), Open/Closed Principle (OCP), Liskov Substitution Principle (LSP), Interface 

Segregation Principle (ISP), and Dependency Inversion Principle (DIP). [1] These principles provide a structured 

approach to software development, making code easier to maintain, extend, and test -- qualities that are especially 

important in today’s fast-paced development environment. A deeper understanding of these principles, along with 

awareness of the challenges and best practices, helps development teams create software that is both maintainable 

and flexible. 

 

II. SINGLE RESPONSIBILITY PRINCIPLE (SRP) 
The Single Responsibility Principle (SRP) states that a class should have only one reason to change, 

meaning that a class should only have one responsibility or job. [1] If a class has more than one responsibility, those 

responsibilities become coupled, and changes in one area could lead to unintended consequences in other areas, 

making the code harder to maintain and modify.  

Before delving into its technical application in software development, let's first explore this concept 

through a simple analogy in the context of a car manufacturing plant. We will first look at a scenario where the 

SRP is violated and then see how applying SRP improves the system. 

Imagine a car manufacturing plant where several workers are assigned specific tasks, such as installing 

the engine, painting the car body, testing the brakes, and assembling the interior, with each working independently. 

If one person were responsible for assembling the entire car from start to finish, the process would become chaotic 

and inefficient. The person would be overwhelmed with different tasks, and if any changes were needed, it would 

disrupt the entire assembly process. 

By focusing on a single task, each worker can perform their job more efficiently, ensuring that the overall 

car manufacturing process runs smoothly and results in a high-quality product. Similarly, in software design, SRP 

suggests that each component or module should handle only one responsibility. This makes the system easier to 

manage, maintain, and improve, just like how the specialized workers in the plant contribute to a more efficient 

process. 

http://www.questjournals.org/


The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          55 | Page 

A. Violating the SRP: One class attempting to handle all the tasks. 

Now, let’s apply this analogy to a software development scenario. Consider a class responsible for both handling 

car assembly and inspecting the car. This is like having a single worker trying to perform all tasks in the 

manufacturing plant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this example, the CarFactory class is responsible for both assembling the car and inspecting it. Just like the 

worker handling everything in the manufacturing process, this class is trying to manage multiple responsibilities. 

If the inspection process changes, or if the assembly process needs an update, this class would have to be modified 

in multiple places, which leads to complexity and inefficiency. 

 

B. Applying the SRP: Segregate responsibilities across classes. 

Update the design so the responsibilities are moved to appropriate classes rather than having all in one class: 

CarAssembler and CarInspector. The CarAssembler class is solely responsible for assembling the car, while the 

CarInspector class handles the inspection process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By adhering to the SRP, each class now has a single reason to change. If the assembly process needs to be modified, 

only the CarAssembler class will need to be updated. Likewise, if the inspection process changes, the CarInspector 

class is the only one affected. This separation simplifies maintenance, reduces complexity, and enhances flexibility, 

making the system easier to manage. 

 

Fig. 1 Violating the SRP 

 

 

 

Fig. 2 Applying the SRP 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          56 | Page 

 

C. Challenges and Best Practices 

Topic Challenge Best Practice 

Determining 

the Right 

granularity of 
classes 

Over-splitting responsibilities can create too many small 

classes, making the system hard to maintain and navigate. 
On the other hand, under-splitting can lead to large, complex 

classes that take on multiple responsibilities, which violates 

the SRP. [9] 

Start with broader classes and refactor them as the system 

grows. Break responsibilities into smaller classes only 
when their purpose becomes clearer. Focus on grouping 

related behaviors together, while avoiding unnecessary 

fragmentation. 

Managing 

Dependencies 

between 
classes 

While SRP promotes separating concerns, it can lead to more 

dependencies between small, specialized classes. If these 

dependencies aren’t carefully managed, it can cause tight 
coupling, making the system harder to maintain and extend. 

Dependency injection (DI) can be used to decouple classes 
by injecting dependencies instead of hardcoding them, 

making classes more flexible and easier to test. [10] 

Additionally, design patterns like Facade or Mediator can 
help manage complex dependencies while preserving 

modularity. 

Performance 

Overhead 

Strict adherence to SRP in performance-critical systems can 
result in unnecessary method calls, object creations, or 

communication overhead between small classes. In 

distributed systems, such as microservices, SRP may 
introduce network latency due to frequent communication 

between small services. [9] 

Regular performance monitoring is essential to ensure that 
SRP does not create bottlenecks. If fragmentation causes 

performance issues, consolidating related responsibilities 

or optimizing critical paths involving heavy 
communication between classes or services may be 

necessary. [4] 

Applying to 

Legacy code 

Refactoring a legacy system to adhere to SRP can be 

challenging, particularly in systems with tight coupling and 
large monolithic classes. This process is often time-

consuming and carries risks, such as introducing regression 

bugs or breaking existing functionality. 

SRP should be applied incrementally in legacy code, 

starting with small, isolated portions that have clear, 

defined responsibilities. It's important to ensure 

comprehensive unit tests are in place to verify the 
refactored code and maintain backward compatibility 

throughout the process. [4] 

Expertise and 
Brainstorming 

Less experienced developers may misapply SRP by over-

splitting classes, leading to over-engineering. This can 
introduce unnecessary complexity without clear benefits, 

making the system harder to maintain. 

SRP should be applied with a clear understanding of the 

business domain, focusing on meaningful responsibilities 
rather than just technical reasons. Test Driven 

Development (TDD) ensures classes remain focused and 

testable. Brainstorming and iterative approaches help 
refine the design, aligning it with both business needs and 

technical goals. 

Table 1. Challenges and Best Practices for SRP 

 

III. OPEN/CLOSED PRINCIPLE (OCP) 

The Open/Closed Principle (OCP) states that software entities—such as classes, modules, and functions—

should be open for extension but closed for modification. [2] 

Let’s explore this concept in more depth with an example. We will first look at a scenario where the OCP 

is violated and then see how applying OCP improves the system. 

Imagine a software system where logging is implemented in multiple ways: one part of the system logs to 

the console, other writes to a file, and a third logs to a database. If these logging methods are tightly coupled to the 

core logic, introducing a new logging strategy—such as logging to a cloud service—would require significant 

changes across the system. This tight coupling increases complexity, introduces potential bugs, and complicates 

future maintenance. 

By adhering to the OCP, each logging strategy can be encapsulated in independent components that 

implement a common interface. This design ensures the system is "open for extension but closed for modification." 

When a new logging method is needed, it can be added as a new strategy without modifying the existing codebase. 

This approach enhances flexibility, simplifies maintenance, and allows the system to scale and evolve in a modular, 

efficient manner. 

 

A. Violating the OCP - One class attempting to handle all the implementation. 

The design, where all logging implementations (such as logging to the console, file, database, or cloud service) are 

handled within a single class, violates the OCP. This leads to modifying the same class whenever additional 

behaviors need to be added. 

 

 

 

 

 

 

 

 

 

 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          57 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Applying the OCP 

Update the design by introducing interfaces and separate implementation classes, each handling a specific 

responsibility. For example, a Logger interface is used, with implementations like ConsoleLogger, FileLogger, and 

CloudLogger.  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Violating the OCP 

 

 

Fig. 4 Class Diagram For Logger Example With OCP Applied 

 

Fig. 5 LoggerStrategy Interface 

 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          58 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This approach allows new functionality to be added without modifying existing code, enhancing encapsulation and 

maintainability. The system is open for extension but closed for modification, reducing bug risks and increasing 

reusability and modularity. Additionally, interfaces simplify unit testing and mocking by enabling isolated testing 

of implementations. 

 

C. Challenges and Best Practices 

Topic Challenge Best Practice 

Managing 
Complexity 

The OCP can add unnecessary complexity when developers 

introduce abstractions, like interfaces or abstract classes, to 

plan for future extensions. Over-engineering—where 
developers build for potential needs that may never 

happen—can make the situation worse, leading to a 

codebase that's bloated and overly complicated. [5] 

To avoid unnecessary complexity, keep the design 

simple and focused on the current requirements. 
Only introduce abstractions when they offer clear 

value, and steer clear of over-engineering. Follow 

the YAGNI (You Aren’t Gonna Need It) 
principle—design for today’s needs and refactor as 

new requirements emerge. [3] 

Anticipating 

Future Changes 

Predicting how software will evolve is difficult, and 

designing for speculative changes can result in solutions that 
are either too flexible or too rigid. Over-anticipating future 

requirements can cause the design to deviate from actual 

needs, leading to wasted effort and poor decisions. 

Iterate and refactor as new requirements emerge. 

Design for the present while focusing on realistic 

future changes rather than hypothetical ones. 

Instead of anticipating every possibility, allow the 
system to evolve organically through future 

iterations. 

Refactoring 

code to apply 

OCP 

Refactoring code to comply with the OCP can lead to 

integration issues, particularly when working with legacy 
systems. Significant changes made to enable extensibility 

can disrupt existing functionality, resulting in new bugs. 

Incremental changes should be made to refactor the 
code, ensuring small, manageable improvements 
over time. The code should be modularized with 

clear interfaces, enabling easier extensions without 
disrupting existing functionality. Extensive testing 

 

 

 
Fig. 6 LoggerStrategy Impl Strategies 

 

 

Fig. 7 Logger class Refactored 

 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          59 | Page 

is essential to identify and resolve any integration 

issues. 

Difficulty in 

Identifying 
Extension 

Points 

Identifying where and how to extend a system without 

modifying existing code can be challenging. If extension 
points are not clearly defined, adding new features may 

unintentionally alter core behaviors. 

Design clear extension points with well-defined 
interfaces or abstract classes. Use event-driven or 

plugin-based architectures, and document extension 

points to enable easy feature additions without 
disrupting existing functionality. 

Table 2. Challenges and Best Practices for OCP 

 

IV. L - LISKOV SUBSTITUTION PRINCIPLE (LSP) 
The Liskov Substitution Principle (LSP) states that objects of a superclass should be replaceable with 

objects of its subclasses without altering the correctness of the program. [2] 

Let’s explore this concept in more depth with an example. We will first look at a scenario where the LSP 

is violated and then see how applying LSP improves the system. 

Imagine a software system for managing birds, the core functionality assumes all birds can perform actions 

like flying, eating, and singing. However, this assumption breaks down when specialized bird types, like Eagles 

and Penguins, are introduced. Since Penguins can't fly, calling a fly() method on a Penguin would violate the LSP, 

causing errors or requiring cumbersome checks in the code. 

To align with LSP, the design is adjusted by introducing subclasses such as FlyingBird and 

NonFlyingBird, both inheriting from a common Bird class. This ensures that the fly() method is only called on 

flying birds, maintaining the correctness of the program and allowing subclasses to be substituted for their 

superclass without errors or unexpected behavior. 

This approach adheres to LSP by ensuring that the behavior of subclasses remains consistent with the 

expectations set by the superclass, avoiding the need for complex checks or invalid method calls. 

 

A. Violating LSP – Certain classes implementing more than its behavior. 

In this case, substituting a NonFlyingBird for a FlyingBird breaks the system, as it unexpectedly throws an 

exception. This tight coupling between the base class and the subclasses violates the Liskov Substitution Principle, 

making the code brittle and difficult to maintain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Applying LSP 

To address this violation and ensure system flexibility, subclasses should be designed to be interchangeable with 

their parent class without altering expected behavior. In this case, the behavior of flying birds should be separated 

from non-flying birds. A solution is to introduce a Flyable interface for birds that can fly, while non-flying birds 

don’t implement it. This design allows Bird objects to be substituted with specific subclasses without violating 

LSP. Here's how the design and code can be refactored: 

 

Fig. 8 Bird Example with LSP Violation 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          60 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By separating bird behavior into distinct categories, the system becomes more flexible, allowing different 

bird types to be substituted without errors. FlyingBirds and NonFlyingBirds can be used interchangeably without 

affecting stability. This approach reduces complexity, as non-flying birds do not implement unnecessary methods, 

making the code cleaner. Scalability improves, with new bird types added by implementing the Flyable interface. 

This design also simplifies testing and maintenance, as each bird type can be tested independently, leading to 

more reliable code. 

 

C. Challenges and Best Practices 

Topic Challenge Best Practice 

Maintaining 

Consistent Behavior 

Ensuring that subclasses preserve the expected 

behavior of the base class, particularly when 

overriding methods. This includes not altering 

inherited methods in a way that violates the 

established contract. 

When overriding methods, subclasses must 

preserve the behavior of the parent class without 

changing expected outputs. The same 

preconditions and postconditions defined by the 

parent class must also be adhered to. 

Maintaining 

Contract 

Subclasses may alter or violate the invariants, 
preconditions, or postconditions defined by the 

base class, breaking the expected contract and 

leading to errors. 

Subclasses should avoid introducing more 
restrictive preconditions, should maintain or 

strengthen postconditions, and must adhere to the 

invariants established by the parent class. 

Excessive 

Inheritance & 

Hierarchy 
Complexity 

Excessive or inappropriate use of inheritance, 

along with complex inheritance hierarchies, can 

make it difficult to maintain LSP and ensure 
proper substitution between classes. 

Composition should be preferred over inheritance 

when possible. Inheritance hierarchies should be 

simplified, and relationships between base and 
derived classes should be clearly defined. [7] 

 

Fig. 9 Class Diagram for Bird Example with LSP Applied 

 

 

Fig. 10 Bird Example with LSP Applied 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          61 | Page 

Maintaining 

Consistent 

Interfaces 

Subclasses may expose different interfaces or 

behaviors compared to the parent class, causing 

incompatibility. 

Subclasses must adhere to the same interface as the 

parent class or implement interfaces that extend 

the contract defined by the base class. 

Table 3. Challenges and Best Practices for LSP 

 

V. I - INTERFACE SEGREGATION PRINCIPLE (ISP) 
Interface Segregation Principle (ISP) states that no client should be forced to depend on methods it does 

not use. It promotes the design of small, client-specific interfaces, ensuring that classes are not burdened with 

unnecessary functionality. This leads to systems that are more flexible, maintainable, and easier to understand by 

keeping interfaces focused on the needs of the implementing class. 

Let’s explore this concept in more depth with an example. We will first look at a scenario where the ISP 

is violated and then see how applying ISP improves the system. 

Imagine a printing company with different types of printers. Some printers only print, while others can 

print, scan, and fax. If all printers shared the same interface that included methods for scanning and faxing, even 

the basic printer would be forced to implement those extra methods, making it unnecessarily complex. 

Now, imagine splitting those tasks into separate, more specific interfaces. The basic printer only needs the 

Printer interface for printing, while the multifunction printer can implement additional interfaces for scanning and 

faxing. This way, each printer is only responsible for the functionality it needs, adhering to ISP by avoiding 

unnecessary complexity. 

 

A. Violating ISP – Larger interfaces complicating implementation classes to implementing unsupported 

behaviors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11  Printer Example with ISP Violated 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          62 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Printer interface includes methods for all functions (print(), scan(), sendFax()), but the BasicPrinter 

class, which only supports printing, is forced to implement unnecessary methods. This can lead to exceptions or 

unwanted behavior. While the AdvancedPrinter class works fine, bundling all methods into one interface violates 

the Interface Segregation Principle. 

 

B. Applying ISP 

A solution is to introduce separate interfaces such as Print, Scan, and Fax, allowing each printer to implement only 

the methods it requires. This design adheres to the Interface Segregation Principle, promoting simplicity and focus 

to the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Printer Example with ISP Violated (Cont..) 

 

Fig. 13 Class Diagram for Printer Example with ISP Applied 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          63 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After implementing ISP, the BasicPrinter implements only the Printer interface, as it supports only 

printing, while the AdvancedPrinter implements the Printer, Scanner, and Fax interfaces to support all three 

functionalities. This design adheres to the Interface Segregation Principle (ISP) by ensuring that each class only 

implements the methods it actually needs, keeping the system simple and focused. 

 

 

 

 

 

Fig. 14 Printer Example with ISP Applied (Separate Interfaces for 

Each Feature) 

 

Fig. 15 Printer Example with ISP Applied (Separate Impl Based on Its  

Behavior) 

 

Fig. 16 Printer Example with ISP Applied (Usage) 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          64 | Page 

C. Challenges and Best Practices 
Topic Challenge Best Practice 

Excessive Interfaces & 

Implementation 
Complexity 

Over-segregating interfaces can result in an 

excessive number of small interfaces, which 
increases complexity. Implementing 

numerous small interfaces can also 

complicate implementations, necessitating 
explicit casting or interface checks. [7] 

Striking a balance when creating interfaces is 

essential. Interfaces should only be split when there is 
a clear distinction in functionality. Composition or 

delegation can help maintain clean implementations 

and avoid excessive inheritance or interface 
implementation. 

Code Duplication 

Multiple classes sharing common 

functionality may lead to code duplication if 

each class implements separate interfaces. 

Composition can be used to delegate shared 

functionality to reusable components, reducing 
duplication. Abstract classes or default methods can 

also help minimize repeated code. 

Managing With 

Changing 
Requirements 

Narrowly defined interfaces may not be 
flexible enough to adapt to new or changing 

requirements, requiring frequent refactoring. 

[6] 

Interfaces should be designed to be extensible using 

inheritance or abstract classes, allowing easy 
extensions without constant refactoring. 

Managing Identifying 

Boundaries 

It can be challenging to identify clear 

boundaries between different interfaces, 
leading to confusion. [2] 

Collaboration with stakeholders and domain experts 
can help align interfaces with real-world use cases, 

ensuring that each interface focuses on a cohesive set 

of actions. 

System Complexity 

Applying ISP to simple systems can lead to 

unnecessary complexity and over-

engineering. [7] 

ISP should only be applied when necessary. In simpler 

systems, keeping the design straightforward and 

avoiding premature complexity is advisable. 

Table 4. Challenges and Best Practices for ISP 

 

VI. D - DEPENDENCY INVERSION PRINCIPLE (DIP) 
The Dependency Inversion Principle (DIP) states that high-level modules should not depend on low-level modules. 

Both should depend on abstractions, such as interfaces or abstract classes. Additionally, abstractions should not 

depend on implementation details; rather, details should depend on abstractions. [2] 

Let’s explore this concept in more depth with an example. We will first look at a scenario where the DIP is violated 

and then see how applying DIP improves the system. 

Consider a trading platform where the order processing system is tightly coupled to specific order types, such as 

CashOrder or QuantityOrder. As a result, when a new order type like LimitOrder is introduced, the system must be 

modified to accommodate the new type. This leads to code changes across multiple areas, making the system harder 

to maintain, extend, and scale. 

By applying DIP, we introduce an abstraction—an Order interface. Instead of the order processing system 

depending directly on specific order types, it now depends on this interface. As a result, we can add new order types 

without changing the core order processing logic. This makes the system more flexible, scalable, and easier to 

maintain. 
A brief note on the types of orders to better understand the examples: 

CashOrder: In a CashOrder, the system determines the number of shares to purchase based on the cash amount 

provided, ensuring that the total cost does not exceed the specified amount. 

QuantityOrder: In a QuantityOrder, the system buys a specified number of shares at the current market price, 

without considering the total cost. 

LimitOrder: A LimitOrder specifies the price at which shares should be bought or sold. The order is only executed 

if the market price is equal to or better than the specified limit price. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          65 | Page 

 

A. Violating DIP – Implementation Dependent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a system, the order processing module directly depends on specific order types, such as CashOrder and 

QuantityOrder. This tight coupling results in the need to update the order processing logic in multiple places 

whenever a new order type, like LimitOrder, is introduced. This violates the DIP, as the high-level order processing 

module depends on low-level order types. The absence of abstraction makes the system harder to maintain and 

extend. 

 

 

B. Applying DIP 

Introduce abstraction to the design, Order, and let the CashOrder and QuantityOrder implement it, so 

OrderService relies on the abstraction rather than implementation and become flexible to support future ones as 

well. 

 

 

 

 

 

 

 

 

Fig. 17  Printer Example with DIP Violated 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          66 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 Class Diagram for Order System With DIP Applied 

 

 

 
Fig. 19  Order System With DIP Applied 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          67 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By applying the DIP, the OrderService now relies on the Order interface rather than specific order types 

like CashOrder and QuantityOrder. This makes it easier to add new order types, such as LimitOrder or MarketOrder, 

without changing the OrderService. With Dependency Injection, different order types can be easily injected, 

boosting flexibility and making the system simpler to maintain and scale. 

 
C. Challenges and Best Practices: 

Topic Challenge Best Practice 

Increased 

Complexity & 
Over-Abstraction 

Adhering to the DIP can introduce additional 

abstractions, such as interfaces and abstract classes, 

increasing system complexity. While it improves 

decoupling, there is a risk of unnecessary abstractions 

that may make the system harder to understand. [8] 

Abstractions should be introduced gradually, offering 

clear value such as flexibility, testability, or reusability. 

Over-abstraction should be avoided; abstractions should 

be applied only when they enhance flexibility or 

maintainability. The design should remain lean, creating 
abstractions only when necessary. 

Difficulty in 
Deciding 

Abstractions 

Choosing the right level of abstraction can be 

challenging, as determining which concrete classes 

should depend on which abstractions is highly 
context-dependent. 

Focus on abstracting key components that are prone to 

change or require flexibility. Dependency Injection can 
be used to manage dependencies and simplify the 

design. Dependencies should be carefully assessed to 

determine which ones truly require abstraction. 

Performance 

Overhead 

Dependency Injection and other implementations of 
DIP can introduce slight performance overhead due 

to additional layers of indirection or dynamic 

resolution of dependencies. 

In most applications, the performance cost of DIP is 
negligible. For performance-critical applications, lazy 

loading or selective injection strategies can help 

mitigate overhead while preserving the benefits of DIP. 

Testing 

Difficulties 

Systems heavily relying on Dependency Injection 

can require complex setup in testing environments, 
potentially making unit testing more difficult. 

Lightweight Dependency Injection libraries that are 

easy to mock during tests should be used. Constructor 

injection should be preferred over setter injection to 
ensure dependencies are provided upfront, making 

testing easier. 

Table 5. Challenges and Best Practices for DIP 

 

VII. CONCLUSION 
In conclusion, this paper has explored the five SOLID principles—Single Responsibility (SRP), Open-

Closed (OCP), Liskov Substitution (LSP), Interface Segregation (ISP), and Dependency Inversion (DIP)—which 

provide valuable guidelines for building modular, maintainable, and flexible software. When applied correctly, 

these principles help ensure that software remains scalable, adaptable, and easy to maintain, leading to more 

efficient and robust designs. It's important to keep the challenges and best practices discussed for each principle in 

mind during development to avoid common pitfalls. 

While each principle stands strong on its own, applying them in isolation, especially in complex projects, 

can lead to unnecessary complications. For the best results, these principles should work together as part of a 

 

 
Fig. 20  Order System With DIP Applied (Cont) 



The Perennial Importance of SOLID Principles in Software Design 

DOI: 10.35629/3795-10035468                                   www.questjournals.org                                          68 | Page 

cohesive strategy. Ongoing learning, collaboration, and expert insights are essential for refining their application, 

and regular reviews help ensure they continue to meet the evolving needs of software development. 

 

REFERENCES 
[1] “ArticleS.UncleBob.PrinciplesOfOOD.” Available: http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod 

[2] “Bob Martin’s Design Principles page.” Available: https://condor.depaul.edu/dmumaugh/OOT/Design-Principles/ 
[3] M. Fowler, “bliki: Yagni,” martinfowler.com. Available: https://martinfowler.com/bliki/Yagni.html 

[4] F. Moretti, “Single Responsibility Principle (SRP),” Francisco Moretti, May 31, 2023. Available: 

https://www.franciscomoretti.com/blog/single-responsibility-principle-srp 
[5] F. Moretti, “Open-Closed Principle (OCP),” Francisco Moretti, Jun. 01, 2023. Available: 

https://www.franciscomoretti.com/blog/open-closed-principle-ocp 

[6] F. Moretti, “Liskov Substitution Principle (LSP),” Francisco Moretti, Jun. 01, 2023. Available: 
https://www.franciscomoretti.com/blog/liskov-substitution-principle-lsp 

[7] F. Moretti, “Interface Segregation Principle (ISP),” Francisco Moretti, Jun. 28, 2023. Available: 

https://www.franciscomoretti.com/blog/interface-segregation-principle-isp 
[8] F. Moretti, “Dependency Inversion Principle (DIP),” Francisco Moretti, May 30, 2023. Available: 

https://www.franciscomoretti.com/blog/dependency-inversion-principle-dip 

[9] G. Gorantala, “SOLID: Learn about the single responsibility principle with examples,” HackerNoon, Aug. 18, 2023. Available: 
https://hackernoon.com/solid-learn-about-the-single-responsibility-principle-with-examples 

[10] M. Fowler, “Inversion of Control Containers and the Dependency Injection  pattern,” martinfowler.com. Available: 

https://martinfowler.com/articles/injection.html 

https://martinfowler.com/bliki/Yagni.html
https://www.franciscomoretti.com/blog/dependency-inversion-principle-dip
https://hackernoon.com/solid-learn-about-the-single-responsibility-principle-with-examples
https://martinfowler.com/articles/injection.html

