Quest Journals

Journal of Software Engineering and Simulation Volume 10 ~ Issue 11 (November 2024) pp: 60-63 ISSN(Online) :2321-3795 ISSN (Print):2321-3809

www.questjournals.org

Research Paper

Evaluating Machine Learning Models in Various Domains: An Extensive Analysis and Comparison

Satveer Kaur

Assistant Professor
Department of Computer Science
GSSDGS Khalsa College, Patiala-147001, India

Abstract

By facilitating automation, administration work, and predictive analysis, Machine Learning (ML) has transformed several industries. Deployments in a wide range of applications such as educational institutions, healthcare, agriculture, finance, and cybersecurity demand models of different levels of accuracy, interpretability, and computational power. Decision Trees, Support Vector Machines (SVM), Ensemble Methods, and Deep Learning structures are a few of the Machine Learning (ML) models that are deeply contrasted in this work. The research gives insights towards the choice of models by focusing on strengths, weaknesses, and area-specialized fitness. It also discusses challenges such as model interpretability, data sparseness, and ethical aspects. Future perspectives are also discussed such as AutoML, amalgam models, and ethical protocols.

Keywords: Machine Learning, Comparative Analysis, Decision Trees, SVM, Ensemble Models, Deep Learning, Healthcare, Finance, Agriculture, Education, Cybersecurity

I. Introduction

With the potential to enable automation, predictive modelling, and improved decisions-making, machine learning has become an important tool in research work and industry today (Jordan & Mitchell, 2015). Personalized learning in education, crop yield prediction in agriculture, danger detection in cybersecurity, credit card fraud detection in banks, and disease prediction in healthcare are a few of the applications that employ machine learning. Despite exponential growth, Machine Learning models are depicted monumental differences in performance relative to the area of application.

Classic algorithms such as Decision Trees and Support Vector Machines offer interpretability and are applicable for small to medium-sized datasets. Random Forests and Gradient Boosting are relative examples of collective methods that boost accuracy and robustness, whereas CNNs and RNNs are typical Deep Learning models that perform the best for high-dimensional and unstructured data. There is a need for understanding domain-specific needs and trading accuracy against interpretability, computational efficiency, and ethical concerns while model-choice (Doshi-Velez & Kim, 2017).

The goal of this paper is to provide a comparison review of a number of Machine Learning models, pointing out their advantages, constraints, and usage. This research help researchers and practitioners to determine suitable models by integrating recent literature and evaluating models on important parameters.

II. Summary of Machine Learning Models

Machine learning models fall roughly into three camps: classical algorithms, ensemble methods, and deep learning models.

2.1 Classical Models

Because of their interpretability, ease of use, and performance on small datasets, old-fashioned models such as Support Vector Machines (SVM), Naive Bayes, Decision Trees, and k-Nearest Neighbours (kNN) have been popular (Shalev-Shwartz & Ben-David, 2014). Although Support Vector Machines (SVM) are good for challenging tasks of classification and high-dimensional features, Decision Trees have accurate criteria for decisions.

2.2 Ensemble Methods

Ensemble methods Minimize overfitting and add accuracy to predictions by lining up a number of base learners. Whereas Random Forest combines a variety of decision trees for higher accuracy, Gradient Boosting (e.g., XGBoost, LightGBM, CatBoost) rectifies weaknesses of the previous models sequentially (Zhou, 2021; Chen & Guestrin, 2016). Ensemble methods are commonly employed in the area that requires high precision and robustness.

2.3 Deep Learning Models

Deep Learning models such as Multi-Layer Perceptron's (MLPs), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) are able to learn high-level representations from extensive and unstructured data (Goodfellow et al., 2016; Hochreiter & Schmidhuber, 1997). They are widely utilized in the fields of image recognition, natural language processing, and time-series analysis. Despite the high accuracy, the models generally lack interpretability and require significant computational resources.

2.4 Recent Develop

Explainable AI (XAI) for interpretability (Lipton, 2018; Lundberg & Lee, 2017), Auto ML for automated model selection, and Federated Learning for privacy-preserving decentralized training (Yang et al., 2019; Chen et al., 2020) are three new advances in machine learning. They respond to new challenges and expand the applicability of machine learning in a number of fields.

III. Comparative Analysis within Domains

3.1 Healthcare

Healthcare applications are personalized treatment planning, disease prediction, and imaging for medicine. Under Medical Decision Making, the (feasibility of a model depends significantly. Hence most models consider this criterion. Under Medical Image Analysis for applications such as retinal imaging and tumour detection, CNNs have proved unbeatable (Esteva et al., 2019; Rajkomar et al., 2019).

Challenges:

- Ensuring model interpretability for medical use.
- Restricted availability of interpreted datasets.
- Ethical interests concerned to patient data.

3.2 Finance

Financial applications include algorithmic trading, credit scoring, and fraud detection. Logistic Regression models, Random Forest models, and Gradient Boosting models are popular because they are stable (Lessmann et al., 2015). Deep Learning is becoming popular for fraud detection, although interpretability remains a problem (Kou et al., 2021).

Challenges:

- Data confidentiality and governing compliance.
- Adversarial outbreaks and model sturdiness.
- Managing imbalanced datasets.

3.3 Agriculture

Machine Learning for agriculture aids crop yield prediction, soil quality assessment, and pest identification. SVM and Random Forest are generally employed for table or matrix-stored data, whereas CNN are employed for image-based crop disease detection (Liakos et al., 2018; Kamilaris & Prenafeta-Boldú, 2018).

Challenges:

- Limited supervised datasets for training purpose.
- Adaptability due to environmental and weather changes.

3.4 Education

Education applications include prediction of students' performance, analysis of dropouts, and adaptive education. Decision Trees and ensemble methods provides interpretability and scalability, a necessity for education practitioners (Viberg et al., 2018; Baker & Inventado, 2014). Despite being least transparent, neural networks are employed for recognizing patterns in very large datasets.

Challenges:

- Confirming impartiality and justifying bias in predictive models.
- Managing dissimilar student backgrounds and educational frameworks.

3.5 Cybersecurity

Cybersecurity applications are phishing detection, intrusion detection, and malware classification. While ensemble methods and deep learning models have very high accuracy for recognizing compounded attacks, the question remains about the adversarial robustness (Buczak & Guven, 2016; Javaid et al., 2016).

Challenges:

- Rapidly growing approaches of attacks.
- Model drift in datasets.
- Prerequisites for real-time detection.

IV. Evaluation Parameters

Several criteria may be used to evaluate machine learning models:

- Performance Metrics: Accuracy, Precision, Recall, F1-score
- **Interpretability**: Naive ensemble methods and Decision Trees are interpretable when dealing with a comparison versus deep networks.
- Scalability: Ensemble and deep learning models are better when larger datasets are involved.
- Ethical Considerations: Fairness, transparency, and obscurity are crucial to be established across various fields (Mehrabi et al., 2021; Kelleher & Tierney, 2018

V. Key Findings and Discussion

There is no perfect machine learning model. Model selection is dependent upon the requirements of the given domain.

- Healthcare: Pre-eminence to interpretability; Decision Trees and SVMs preferred.
- Finance: Precision is vital; ensemble methods are prominent.
- Agriculture: CNNs are outliers in image-based work; traditional models for tabular data.
- Education: Interpretability and objectivity are prioritized; ensemble and tree decisions are prominent.
- Accuracy and interpretability are subject to constant compromises; domain-aware selection is essential.

VI. Challenges and Open Issues

- Frequency and index smells affect index computation time.
- Domain dependence for interpretability vs. accuracy trade-off.
- Generalizing across domains is restrained; models frequently require retraining.
- Welcoming and inclusivity issues, such as in healthcare and education. 7. Conclusion and

VII. Future Directions

The paper provides a thorough assessment of machine learning models across several areas. While ensembles improve accuracy, traditional models provide interpretability, yet deep learning excels at jobs involving unstructured data.

Future research has to address the following aspects:

- Hybrid models that incorporate prediction power and interpretability.
- The purpose of AutoML is to produce a cross-domain model.
- Frameworks of ethics that ensure privacy, transparency, and objectivity.

These developments will help Machine Learning to manage domain-oriented issues efficaciously while being scalable and reliable.

References

- [1]. Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Learning Analytics (pp. 61–75). Springer.
- [2]. Buczak, A. L., & Guven, E. (2016). A survey of machine learning methods for cybersecurity intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176.
- [3]. Chen, L., et al. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50–60.
- [4]. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
- [5]. Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv:1702.08608.
- [6]. Esteva, A., et al. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29.

- [7]. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
- [8]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
- [9]. Javaid, A., Niyaz, Q., Sun, W., & Alam, M. (2016). A deep learning approach for network intrusion detection system. EAI Endorsed Transactions on Security and Safety, 3(9).
- [10]. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.
- [11]. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90.
- [12]. Kelleher, J. D., & Tierney, B. (2018). Data science for the life sciences. CRC Press.
- [13]. Kou, G., et al. (2021). Machine learning methods for systemic risk analysis. Technological Forecasting and Social Change, 163, 120421.
- [14]. Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Benchmarking classification models for credit scoring: An update of research. Journal of the Operational Research Society, 66(6), 1073–1085.
- [15]. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674.
- [16]. Lipton, Z. C. (2018). The mythos of model interpretability. Communications of the ACM, 61(10), 36-43.
- [17]. Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2016). Learning to diagnose with LSTM recurrent neural networks. International Conference on Learning Representations (ICLR).
- [18]. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774.
- [19]. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35.
- [20]. Rajkomar, A., Dean, J., & Kohane, I. (2019). Scalable and accurate deep learning for electronic health records. npj Digital Medicine, 2(1), 18.
- [21]. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
- [22]. Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98–110.
- [23]. Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 12.
- [24]. Zhou, Z.-H. (2021). Ensemble learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(4), e143.