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ABSTRACT: This paper presents a new method for constructing finite element models (FEM) for ultrasonic 

transducers, aiming to improve the simulation accuracy and efficiency. The proposed method focuses on 

accurately modeling the interaction between structural components such as the piezoelectric layer, electrode 

layer, and wave transmission layer with the surrounding environment, while considering factors such as the 

piezoelectric effect, reflected wave, and energy loss in the material. The finite element model is built for 2D and 

3D models, taking into account the influence of meshing on the simulation results, especially the meshing of 

ceramic material plates. The simulation results are compared with standard data, showing that the new FEM 

model achieves high accuracy in predicting the frequency characteristics and impulse response of ultrasonic 

transducers. This proposed method opens up potential applications in the design and optimization of ultrasonic 

transducers. 
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I. INTRODUCTION  
Nowadays, ultrasonic vibration plays an increasingly pivotal role in many fields [1]–[4]. In an 

ultrasonic vibration generation system, the vibration head plays a vital role. It consists of a transducer, booster, 

and model components. The performance of this device depends heavily on the complex interaction between its 

mechanical, electrical, and acoustic properties. Therefore, accurate modeling of the ultrasonic head is crucial for 

optimizing the design and achieving the expected performance. Up to now, numerous studies have addressed the 

design and optimization of ultrasonic transducers for various applications. For instance, Xuan Li et al. proposed 

a modified ultrasonic vibration device tailored for rock drilling systems, where compact size and high 

performance are critical requirements [5]. Similarly, Mathieson Andrew adapted the design parameters of a 

conventional Langevin transducer to develop a device suitable for bone surgery, enhancing its applicability in 

medical procedures [6]. In addition to these efforts, several other works [7]–[13] have also focused on the 

development of ultrasonic transducers, each optimized for specific operational contexts and performance goals.  

Finite element analysis (FEA) has emerged as a powerful tool for simulating the complex behavior of ultrasonic 

transducers, allowing detailed analysis of wave propagation, electromechanical coupling, and acoustic 

impedance matching. However, conventional FEA methods often face challenges in capturing multi-physics 

interactions and difficulties in accurately modeling layered structures or damping effects. 

In this work, we propose a novel method for finite element modeling of ultrasonic transducers that 

addresses some of these challenges. Our method emphasizes improved computational efficiency, better 

representation of material interfaces, and enhanced integration of piezoelectric domains. By validating the 

model against benchmark results, it has been demonstrated to provide reliable insights into the behavior of the 

transducer under a wide range of operating conditions. This paper consists of the following sections: Section 1 

presents an overview of published studies related to ultrasonic vibrator heads; Section 2 presents a summary of 

relevant modeling techniques; Section 3 discusses simulation and validation results; and finally, Section 4 

concludes the study with key findings and directions for future work. 
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II. METHODOLOGY   
A transducer is a device that converts electrical energy into mechanical energy. In the structure of the 

transducer, ceramic plates play a central role, so when building a finite element model, it is necessary to pay 

attention to issues related to ceramic plates. 

 

2.1. ELECTROMECHANICAL RELATIONSHIPS OF PIEZOELECTRIC CERAMIC MATERIALS 

According to the IEEE standard on piezoelectricity, the linear piezoelectric material equations are given by: 

 

(1) 

where Ei and Di are the components of the electric field vector and electric field displacement vector, T i 

and Si are the components of the stress and strain vectors: 

 
(2) 

where cE, εS are the elastic stiffness matrix and the dielectric constant matrix, respectively; the 

subscripts E stand for constant electric field and S represent constant strain; e is the piezoelectric constant 

matrix, representing the electromechanical coupling of the material. This system of equations shows that when 

the material deforms, an electric field displacement D will be created, and when there is an electric field, an 

internal stress will be generated.  This is consistent with the operating conditions around the resonance point of 

the ultrasonic vibrator, where the oscillation strain is relatively small, εS: 

 

 (3) 

        These quantities have the following corresponding relationships: 

 

(4) 

The piezoelectric coefficients are presented in the matrix [d], which represents the coupling between 

strain and electric field, characteristic for each piezoelectric material. The coefficient matrix of the piezoelectric 

ceramic (PZT) material with polarization in the z direction (3-direction) is: 

 

(5) 

In which d31 = d32, d15 = d24 for normal PZT material, is isotropic in the plane perpendicular to the 

polarization direction. The constitutive equations for the plane strain response (S2, S4, S6 = 0) of a piezoelectric 

ceramic with a polarization axis coplanar with the 3-axis and hexagonal symmetry around the 3-axis can be 

expressed as follows[14]: 

 

(6) 

The relationship between the electric field E and the electric potential ∅: 

 (7) 



A New Approach to Finite Element Modeling of Ultrasonic Transducers 

DOI: 10.35629/8185-11031119                                 www.questjournals.org                                            13 | Page 

II.2. ELECTROMECHANICAL RELATIONSHIP OF PIEZOELECTRIC CERAMIC MATERIALS IN FEM 

In finite element analysis for PZT materials, it is very important to determine the nodes of each 

element, including the mechanical displacement vector u and the electric field potential vector ̂ . To determine 

the continuous mechanical and electrical quantities from the values at the nodes, it is necessary to use the 

polynomial interpolation functions Nu and N∅ [15]. Applying the transformations from equations (1) and (2), 

we can obtain the following finite element equation system: 

 

(8) 

where: u,u are the acceleration vectors and nodal velocity vectors of the elements; kuu is the element 

stiffness matrix; duu is the damping matrix; ku∅ is the piezoelectric coupling matrix; k∅∅ is the dielectric stiffness 

matrix; m is the mass matrix; f, Q are the mechanical force and charge vectors, respectively, including volume, 

surface and point distribution quantities. 

The damping matrix duu represents the influence of the degree of deformation loss or mechanical 

displacement of the material (Rayleigh damping), expressed by the following formula: 

                (9) 

where α and β are the Rayleigh coefficients, which indicate the influence of the mass and stiffness 

matrices, respectively. Depending on the values of the coefficients α and β, four different damping cases can be 

distinguished: 

• α = 0, β = 0: case of no attenuation 

• α = 0, β > 0: viscous damping or attenuation only proportional to stiffness 

• α > 0, β = 0: viscous damping or attenuation only proportional to mass 

• α > 0, β > 0: viscous damping or total Rayleigh attenuation 

The Rayleigh coefficients are determined from the damping ratio for two unequal frequencies ω i and 

the damping coefficient ξi of the corresponding vibration, according to the following equation [91] 

     (10) 

However, in simulation problems, numerical calculations in design, the oscillation frequencies and 

damping ratios are often not known in advance. Furthermore, many structures or materials are viscously damped 

(α = 0). Therefore, the constant β can be determined by expression (4.10) for isotropic materials [97] and the 

following expression for piezoelectric materials: 

     (11) 

Where ωr is the resonance angular frequency of the vibration mode and Qm is the mechanical quality 

factor. The mechanical quality factor can be declared by the manufacturer [16] or determined by an electrical 

impedance analyzer through the resonance frequency fr and the two frequencies f1, f2 corresponding to the 

frequencies where the impedance amplitude is 3dB less than the resonance value: 

 
(12) 

The loss constant β for the piezoelectric ceramic (4.11) can be set directly in the CAE interface of the 

FEA software. In Abaqus [17], the user can choose to model the damping using the damping properties of the 

material. The damping matrix is proportional to the viscosity, mass and/or stiffness, and will include the 

Rayleigh damping coefficients of the material. The overall viscous damping matrix of the material can be 

written as: 

 

(13) 

The overall element equation system (after element coupling) of the PZT medium is described by a 

system of linear differential equations with vectors U and ∅ as global variables at the nodes of the mesh, 

expressed as follows: 

     (14) 

where: 
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Overall mass matrix 

 

Overall stiffness matrix 

 

Overall electromechanical coupling matrix 

 

Overall dielectric stiffness matrix 

F and Q are the total force and the charge vector, respectively. The system of equations (14) is a semi-discrete 

finite element system, in which space is discrete and time is continuous. 

 

2.3. Finite element model construction for vibrator 
In this study, Herrmann Ultrasonic transducer – Ultraschall 20 kHz, 20/4000 KO Converter – 

Transducer Schwinger Konvertern is the research object. The technical parameters are presented in Table 1. The 

detailed dimensions of the vibrator are shown in Figure 1. 

 

Table 1. Parameters of the transducer 

Parameter Unit Value 

Resonant frequency kHz 20 

Power W 2000 

Outer diameter of PZT-8 ring mm 50 

Inner diameter of PZT-8 ring mm 17 

Number of piezoelectric rings - 4 

Design oscillation amplitude m 10 

 
Figure 1. Ultrasonic transducer size 

 

The 2D and 3D ultrasonic vibration head models were created in Abaqus software as shown in Figures 2a, 2b. 
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Figure 2. Diagramming of links on models 

❖ Element Model and Element Mesh 

In the 2D axisymmetric model, the CAX8E element – an axisymmetric quadratic element with 8 nodes 

– is used for the piezoelectric ceramic parts and CAX8 is used for the rest of the vibrator parts (Figure 3). 

 
Figure 3. Element mesh diagram in a 2D model 

 

In the 3D model, a quadratic solid element with 20 nodes (C3D20) in Abaqus is used. This type of 

element allows for efficient simulation of complex geometries as well as large deformation states. In addition, 

C3D20 can also simulate a variety of material properties such as linear and nonlinear elasticity, plastic 

deformation, or damage, suitable for many types of engineering problems in fields such as aerospace, 

mechanical engineering, or civil engineering. Compared with first-order elements, C3D20 elements provide 

faster convergence and higher numerical stability in analyses with high accuracy requirements. In this study, 

two types of elements, C3D20R (integral reduction) and C3D20E (electric effects included), are selected to 

perform modal analysis for the ultrasonic vibrator model (Figure 4). 

To ensure the accuracy of numerical simulation as well as the ability to faithfully reflect the 

mechanical-vibration characteristics of the ultrasonic vibrator, the meshing process must comply with the 

following technical requirements: 

✓ Local mesh density increases at complex load-bearing or contact areas; 

✓ Locations such as the interface between PZT layers, front-back guide blocks, and tightening bolts 

require thicker meshes to accurately capture local deformation and stress concentrations; 

✓ Use smaller elements at mechanical focal points or material boundaries with large elastic modulus 

differences; 

✓ Reasonable element geometry and uniform expansion ratio; 

✓ Elements should have reasonable aspect ratios, avoiding excessive elongation in one direction (high 

aspect ratio), especially in PZT blocks, to avoid distorting transmitted ultrasonic waves; 

✓ Prefer square or quasi-equilateral mesh elements to ensure numerical stability; 

✓ Node-to-node contact at fixed interfaces 
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✓ Contact surfaces between overlapping components (PZT - guide blocks - bolts) should be meshed with 

matching nodes. 

✓ To achieve efficient node-to-node contact, it is necessary to design precise geometry and use uniform 

meshing techniques at the interfaces. 

✓ Reduce mesh density in less affected areas to optimize computational resources. 

✓ Blocks far from the main active area (e.g., the end of the following block) can use larger elements to 

reduce computation time without affecting the overall results; 

✓ Optimize element orientation in the main oscillation direction; 

✓ In axial oscillation problems, element orientation should be prioritized in the Y or Z axis direction 

(depending on the axis system), to better describe the propagating wave. 

 
Figure 4. Element meshing diagram in a 3D model 

 

III. RESULTS AND DISCUSSION 
The material specifications of the Herrmann Ultrasonic converter parts are shown in the following table 

2. The element types and meshing are shown in Table 3. 

Table 2. Material parameters in the finite element model 

Detail Material Density (g/cm3) 

Back mass Inconel 718 8,24 
Ceramic PZT PZT-8  

Intermediate block Stainless steel ST304  7,930 

Belt block Alloy AL-7075T6 2,81 

Front mass 
Titanium 

Ti-6AI-4V 
4,43 

Bolt  Inconel 718 8,24 

Back mass Inconel 718 8,24 

 

Table 3. Element types and mesh sizes used in 2D and 3D models 

 
Element type 

Mesh size 
PZT Other details 

2D CAX8RE CAX8R 1mm 

3D C3D20RE C3D20R 1mm 

❖ Natural oscillation problem 

Figure 5a illustrates the axial displacement field distribution (U2) of the ultrasonic vibrator at the first 

fundamental mode of vibration, extracted from the natural vibration analysis in an axisymmetric 2D finite 

element model. The problem is solved by the Lanczos method, which allows for the determination of the natural 

frequencies and corresponding mode shapes, thereby evaluating the resonance ability and vibration 

characteristics of the system. 

The results obtained from the natural oscillation problem at the first resonant mode (20.290 kHz) are 

shown by the distribution of the longitudinal displacement U2 at characteristic points along the structure of the 

vibrator. The points in the main body of the vibrator, especially the leading block region, have the largest 

displacement values, with an amplitude of approximately 1.036 mm. Meanwhile, the belt block, which is 

assumed to be the fixed connection to the body, has the lowest displacement value, at about 0.0377 mm - still 

higher than expected for ideal boundary conditions. 
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(a)    (b) 

Figure 5. Axial displacement field distribution in the basic natural vibration mode of 2D and 3D 

models 
Figure 5b shows the longitudinal displacement field distribution U3 obtained from the natural vibration 

analysis of the 3D full-body model of the Herrmann vibrator. This is the first fundamental mode of vibration 

(main mode), corresponding to the first natural resonance frequency of 19,810 Hz (result obtained from the 

static problem), very close to the target resonance range of the device (20 kHz). 

 

❖ Forced oscillation problem 

Figure 6a shows the longitudinal displacement field distribution obtained from the forced oscillation 

problem at the main resonance frequency, using the 2D axially symmetric finite element model of the ultrasonic 

vibrator. This is the final simulation step in the series of three FEM problems (static - natural oscillation - 

forced), to evaluate the actual oscillation amplitude response of the transmitter under operating conditions 

equivalent to the experiment. The results show that the maximum oscillation amplitude reaches nearly 10μm at 

the top of the leading block, corresponding to the working surface of the device, with a specific value at the P23 

measurement point of 0.0099664mm. This figure is almost identical to the value announced by the manufacturer 

(≈10μm), showing that the model accurately reflects the resonance characteristics and oscillation transmission 

efficiency of the system. The displacement amplitude is distributed linearly from the belt block (with a value of 

approximately 0) to the transmitter, clearly showing the basic oscillation mode in the longitudinal direction. 
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(a) (b) 

Figure 6. Axial displacement field distribution at resonance frequency of 2D and 3D models 
 

Figure 6b shows the axial displacement amplitude distribution (U3) obtained from the forced vibration 

problem of the 3D finite element model of the ultrasonic vibrator. The results show that the maximum 

oscillation amplitude reaches about +9.9 µm at the working end. The displacement distribution clearly shows 

linear variation, with a half-period sine wave form, consistent with the first-order axial resonance mode of the 

half-wave structure system. This result shows that care must be taken when choosing the ideal oscillation node 

location in practical designs, and suggests that the booster, rather than the belt block, should be the preferred 

location for clamping to limit energy dissipation. 

 

IV. CONCLUSION 
In this study, a novel finite element modeling method for ultrasonic transducers was proposed to 

address the major limitations of existing simulation methods. By incorporating more accurate piezoelectric 

coupling, advanced material damping, or fine meshing techniques, the proposed model improves both the 

accuracy and efficiency of ultrasonic transducer analysis. The simulation results showed good agreement with 

the benchmark data provided by the manufacturer. Furthermore, the 2D model provides the flexibility to 

simulate complex transducer geometries and material properties, making it a valuable tool for both research and 

industrial applications. Future work will focus on extending this method to model transducer arrays and 

studying nonlinear effects in high-intensity ultrasonic applications.  
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