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Abstract:

This paper presents a novel methodology for solving fractional integro- differential equations (FIDES) using
fourth-degree hat functions (FDHFs). The fundamental properties of fractional calculus, including Riemann-
Liouville integrals and Caputo derivatives, are explored and employed to formulate accurate numerical
solutions. The study incorporates mathematical assumptions to ensure the existence and uniqueness of
solutions, and the Euler-Maruyama method is applied for numerical approximation. Illustrative examples using
the double Laplace transform demonstrate the efficacy of the proposed approach, yielding precise solutions that
align with theoretical results. The paper highlights the significance of fractional calculus in modeling systems
with long- term memory and chaotic behavior, offering a robust tool for solving complex equations in fields
such as engineering and physics.

Keywords:

Fractional integro-differential equations * Fourth-degree hat functions * Euler-Maruyama method « Weakly
singular kernels « Caputo derivative ¢ Riemann-Liouville integral * Double Laplace transform ¢ Numerical
approximation * Stochastic differential equations * Memory effects.

Received 13 Apr., 2025; Revised 24 Apr., 2025; Accepted 26 Apr., 2025 © The author(s) 2025.
Published with open access at www.questjournas.org

s paliiud)
U ity G300 Lot dpedll lad) ol doms Anghe (B ) B e Gngd
G Ly O ol LY el gl G @ (FDHFS)., dldll sl 5 bl

g Bk G 0 LS dasity R oy b o) clolid Wp) Gl b Rme 0B L) Lty 00K iy g S
Wikl Al By paadl Y g il faal A a6 0 A Jall ol U

Lal B)) a0 Asd bl om0 @b Ja e JR O Ga dasid

Al Lt B Ve faind VI GG By el iy Al WS b Al b 81 ds

I.  Introduction
In fractional calculus, the notion of derivatives and integrals is generalized to any real and even
complex order. The concept of fractional computation arose in 1695 when G.W Leibniz suggested that there
was a possibility of fractional differentiation of the order. Many standard properties are broken by fractional
differential and integral operators, including the standard product (Leibniz) rule, the standard chain rule, the
semi-group property for orders of derivatives, and the semi-group property for dynamic maps. The violation of
the Leibniz rule’s standard form is a characteristic property of non-integer order derivatives. On the other hand,
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long-term memory and non-local dynamics are two of the most important applications of fractional derivatives
and integrals of non-integer order. Fractional calculus has a long and illustrious history that goes back more
than 300 years. Nevertheless, for a long time, it was regarded as a pure mathematical field that lacked real-
world applications. In the last few decades, the subject of fractional-order calculus has gotten a lot of attention
because it allows you to represent a system more precisely without (or with minimal) approximation.
Furthermore, this approach is a good tool for analyzing fractional dimension systems with long-term "memory"
and chaotic behavior, and it is advantageous to model the behavior of a process in fractional-order because the
response will include many values that would otherwise be ignored by integer-order due to approximations. As
a result, fractional calculus has piqued the interest of scientists and engineers alike. For instance, fractional
calculus models have been found to be a useful tool for describing the mechanics of viscoelastic materials and
anomalous particle transport in groundwater. Signal processing, control of dynamic systems, wave propagation,
medicine, economics, and finance are some of the other applications of fractional calculus models.[5]

2. Preliminary

We will vse the following conventions unless stated otherwise. The
expectation corresponding to a probability distribution P will be denoted
by E. If A is a vector or matrix, its transpose will be represented by AT
The notation |. | will be used to denote both the Euclhidean norm on Rd
and the trace norm on R In other words, if x € Rd, x| will refer to the
Euclidean norm, and if A is a matrix. |A| will represent the trace norm.
The indicator function of a set 5 will be denoted by 15, where 1s(x) =1
if x € 5 and 0 otherwise. For two real numbers a and b, we will use the
notation a vV b = max(a, b) and a A b = min(a. b). Additionally, the
uppercase letter C (with or without subscripts) will be used to represent a

positive constant whose value may vary depending on its context, but it

will always be independent of the step size h. Finally, we will introduce
four mild assumptions that will be used later for the nonlinear functions
fii=1.... ,n)andg{j=0.1,2).[3]
3. Assumptions
1) 3 L1 = 0 such that wii. t2. s € [0, T] and vz € RY g1 and g» satisfy the
condition:[8]

letr. 5. 2) — giltr. 5. )| S La(l + 2" — . j= 1,2
i) 3 L = 0 such that wt, 51, 5, € [0, T] and vz € RY 20, £1.5» and fi for

1=1, ..., nsatisfy the condifion:

leolsi-z)-gglsy.2| v

g; [t.s-_,z]—gjlt,s:.zl =L, {1+gfs —52
[ (51,20~ fi(s2.2] < Lall+[d o1 —sa] . i=12 .0
u1) v integer m = 1, 3K = 0 depending only on m, such that wt,

- j=12

sE[0, T]and vz, 2z € R with |z v |z <m 30, g1, & and, fi for

i=1,.... nhold the local Lipsichitz condition:

J|gg|:3.21 —gols.za|v |gj[t,s,z-_ )-g;lt.s.z; j' 2Kyl -2a

. j=12,
f:(s. 21 )~ fils.20 | £ Klzy — 2] . i=12._..n
) 3 L = 0 such that wt, s € [0. T] and vz € Rd, Zp. Z1.%. and fi for
1=1,..., nsatisfy the linear growth condition:

!.
IE6.z] <L), for i-12..a

gols.z| vgilts.z]= L[|1+|z||:': j=12,

Remark(3.1)[8] We emphasize that the local Lipschitz condition
mentioned above (1.e. Assumption 3) is weaker than the next global
Lipschitz condition in order to represent the generality of our
conclusions: 3 K = such that wt, s € [0, T] and vz). z: € RY, Zp, 1. g and

fi(1=1.....n) satisiy the mequalities
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(1

j|5-3':"=2- J—ggls. z, 11\; |gj'lt: 5,2, I—_E__ lt.s.z, :1 = qu._ —Z:|__ j=1Lx
|[E:ls. 2 ) —fils. 22 | £ K]z — 2z, . i=12...n

4. Well-posedness of stochastic fractional neutral integro-differential
equation

We will examine the existence. uniqueness, and continuous dependence
on the mitial value of the exact solution to the stochastic fractional
mtegro-differential equation (1) using the preparation from the previous
part [3]

5. Existence and unigueness of solution of stochastic fractional
neutral integro-differential equation

We first propose the EM approximation to facilitate in the proof of the
existence result. For each integer W 2 1, EM-approximation can be

shown as[5]

T n T iy A % ) T - ATl
z“l_tl=zD + ¥ _IF]-{r_s_zhis.lﬂs—_|G.3'.r_=,,z'\1$."ﬂs

i-1 0 0
3 A L .
+ [ Gyt 5. 2% (s) s+ [ G,lts. 2% (s HWs ) ()
[ [
where the simplest step process éN.js;.=E:f____|t” My, oy (1) and the mesh

points ty=nh (n=20, . N)withh= L.
Lemma(5.1)[9] If assumption (4) is true. then there is a positive
constant C that does not depend on the value of N. This constant satisfies
the following inequalities for any integer p = 2. and for all values of t in
the interval [0, T]:

E[Z%tp]=C and, [ P (tip] = C. wt € [0, T].
Proof. First, we prove the case where p = 2. Let k = 1 be an integer. We

define the stopping time

o¥=Tamfite [0, T) - |20 = m}

N .
where py m T T almost surely as m — o« For convenience, we set

Nt A p¥) for all t € [0, T]. Using

250 =2t A plyand 25(0) = 2
Holder inequality, Burkholder-Davis- Gundy inequality, assumption (4),
and the fact that E[|zg["]< +co. we can deduce from (2) that there exists a

positive constant q € (0. pu), which only depends enp>2and 0=a<

o; = 1. so that
E'_|z-\'1r'|P_"Mf pi&LEhZ "‘1':']
(L B =T 3 B
(1.5 ")
P Ll [ Pile (o anp )
.2 r .1&IE_ I feapr -/ gk 6k |
=0l Piey ) || o /
p& . [ I "
SE| | [t A pE _s_f:( fils.z0 (s s
0
f :-._,-_-% ; Yt —1 T " |
+BF(wl-BE | | |,rAPE:—S.F] - osup |g._|,-,-?s:£;[s]|d5
5 FRVIUN
VITARm

' 5L

7]

tnpk .

P I
+BP(ol-B,JE | [ (tapk —s]

(a-Fa) f 1ranl?
[a—f2) g:[v;s_iglsjl ds| [}

\p=1
ol t.f-_p.'m ; . Wl i
2Cl+ T | {rf\pm—s.' p-1 ds |

‘ i=l 0 |

thPm Y, R '
. 1 1 B

I ltaph—s|1+E |2Eul_3_ ids
. | )
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- _p2
¥ R o _ -
tAPm N 2po—q) 2 trom; i Y e ‘l
LT ltapl —s] e-7 ds| I lta pﬁ\l—s:ﬁ | 1+E i;;[sf| I |ds.
| o | 0 \ A Ly J

+

<C,

tpR, f w -l Mz @1 I
.]_+ c. [t ph —s] | 1+E]'_|Zin+"-| _||ds |

By taking the supremum on both sides of the equation, we find that the

posifive constants C; and C; are independent of m and N.

. N 1
hnphi S w4 T [
B 1] 1 WP

| npn —sf! sup E| |z;n|_3,1 }ds b
0 O=n=t L |

5

O=Ast

sup E|:|zi[}_ :Ip_i =05 «i 1+
A |

If we replace v=—= - We will get

hARM

D'I,up Ei_ |z§i_.h Ip_i

21+ sup (apl —sfll-vF?  sup E[|z$m Zr }d‘l
f ! .

| egag 0 o<n<l ol W

20, 1+t3]{1-vT sup E ‘z;};mf ld\-"-
L 0 0smEre L 4 |

When we alternate with s = tv, then we have

[ ] [t e [l ] ‘.1
or-’_:ﬂ-.EIJZ;I"L | }_\Cgc_.-1+éll_t—sf‘ 5:]1?“_E]_|z;m_' _Id" J

which with the application of weakly singular Gronwall's inequality

vields
E[|z§ljtﬂ £C  Tte[0.T).

Letting m — +wo and using Fatou’s lemma to indicate

Ei|z“'u;ti|1’]sc__ Tt=[0.T).
Additienally, by using the same logic and approach as in the previous
procf for the scenario where p = 2, we can also derive the same results
when p = 2. However. instead of utilizing Holder's inequality, we will
substitute it with Cauchy-Schwarz’s inequality.
6. Fractional Calculus
Fractional calculus is a branch of mathematics that studies the properties
of integrals and derivatives with non-mteger orders of mntegranon and
differentiation (called fractional integrals and derivatives). The
Riemann-Liouville and Caputo defimitions are the most widely used for
fractional mtegrals and derrvatives. This article 1s based on the Caputo
definition of fractional derivative because it is the only cne that has the
same form as integer-order differential equations in  initial
conditions.[10]
Now, the fractional integral of Riemann-Liouville and the Caputo
derivative are defined as follows:
Definition(6.1)[10]. Let v(t) be a continuous function with t = 0. The
Riemann-Liouville fractional integral operator of order . o = 0 of the

function y(t) is defined as follows:

i' 1 -
IEylt)=4 =
| ¥t a=0

F(t—s)*yis)ds, a=0,

3)

where () 1s the fractional-order gamma function.
Definition(6.2)[11] Let %(t) be a continuous function with t > 0. The
Caputo fractional derivative of order o = 0 of the function v(t) is defined

as follows:
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t 3
(esPF Ty isids, 10T (&)

Cyoais
D%y(t)=
# Tig—alg

where v9(s) = %l JQeEN andg-l<o=q.

The following formula establishes the relationship between the Caputo

fractional derivative and the Riemann-Liouville fractional integral:

(D)) = ¥(0), (%)
Oy, 3 o ! Ar)y -tr - f
IF-DYiti=vlt)- = ¥ I._D'_IF, g-l<a=q. ()

r=il -

7. Fourth-Degree Hat Functions and Their Properties
In order to construct the FDHFs, assume that the interval O = [0.T] is
divided into n equdistant subintervals, and then each of these

subintervals must be divided again mto four equidistant subintervals

with a length equal to b, where h= 4—1: and n € N. The FDHFs form a set
of (4n+1) linearly independent functions in L‘?[{]:T]. These functions are

defined as follows: [1]

. . :‘.—I.‘::I't—E\'_'l.‘I:[—-l':l‘l: 0<t<4h
Eplt)=1 24n* )
|_U, otherwise

ifk=12 _.n1

(= (DB (=R - (Sh I+ 3 g (v et ko1
[ e . 4k-Dh<t<4k=1h

(= k1))t =4k + 2RIt = ($k+ ) h)(1—(Fh +4)1)

Eaglt)=1 3 dh=t=4k+1jh
24b
0, otherwise
(8)
ifk=12 . _n
_ —([-41;1;:.@—(43-::h1(1__.;4:-‘-3;-11):-.—[41&-4111)’ 4(k—Hh << (4K,
Eagy(t)= sh*
|0, otherwise
(9
i " -:-_—4'.-‘h]-:(—-:41:—2)L1]-k—i4k—3]h){'——[4k—4]11): (4 —4)h <t < 4kh.
Eapalt)=1 4
|_0, otherwise
(100
_ . J"[t—(-?'s—E)];)(t—(-t'_-\:—l}h]-:;—-:4]:—4)h]([—(4k—4}h]_ (4k —Hh <t < 4kh,
Eap_slt)= 6h
10, otherwise
(11)
and
o ’{l—[T—L1]}{(—(T—2];)):(4—(1'—E-IJ]}['.—:T—-HJ]): T—4h=t=T,
Ealt)= sh (12)

|0, otherwise

According to the definition (3), FDHFs have the following properties:

(1) According to the definition of FDHFs, there is a significant relation:

. £ 1. i=j, .. .
Eflgh)=4 .~ =012 4n 13
=LY <'__o, =i L] . 1 (13)
(ii) The total sum of FDHFs is one, implying:
4n
TEilt)=1. (14)
i=0

(iii) The functions Z5(t), Z1(t).....2:(t) are linearly independent for all
t=[0.T]
(iv) Any function v(t) € L][O,T] can be approximated in terms of FDHFs

as:
P , dn \ Terey =T P
¥it) = vau(t)l= Zve&ilt) =Y Et)=="(tJ¥, (15)
1=

where Z(1) = [Zp(0). Z1(1), &(1), ... 2017, and Y = [vo. 1. . Vaa]
)
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The use of FDHFs to approximate a function v(t) 1s significant because
the coefficients v, in Eq.(5.1.15) are given by:

Ve=v{kh), k=01__4n (16)
(v) Any function K(t, 5) € LJ{[U,T] #[0,T]) can be approximated in terms
of FDHFs as:

4n
Kits)=Ky(ts)= T ZI\,_.,_lrr1 (t)==TDZ(t)==" (s DT=(t) (17)

r-0%-0
where, Ko(t, s) = Lixh, th). wic 1=0.1.2, .. 4n.

8. Methodology

The double Laplace transform method for obtaining the general solution
vix, 1) of Equation (5.3.1) 1s developed in this segment. Transforming
Equation (5.3.1) by double Laplace transfo:m, we obtain[10]

oo, om=l g
s*vp.s)- 3 s*7IL

>+LL<|It dr>—Klpsn

\I:.OI _bc\:s[]l
M T
C

(18)
where Rip.s)=L.L,[K(p.s]].
Convolution Theorem, If DLT of fix.f) and single Laplace transform of
g (t) are given by L,L, [f(x. ©)]=F(p.s)and L, {g ()} = T (s) then
|

('t
L.Lfelt)=fix.t)}=L,L. elt—y)fix.t 'ﬂ}-‘l
Lo J

=FsFlxt) (19

T
where gt )+ f{x t)=g(t—v)f(x t)dv.

0

Using convolution theorem Equation (19), we get
m-1 ) (=2i-de il
a“?lp,sl—Zs“"}'JLI{—c "j'}f"m:-,
=L Qo)
sLfr LII_{[H e S0 4 : —Kips)
. at?

The fourth order partial derivatives double Laplace transform formula is

r_.thgﬂ L p*ps) zp ] 2 V0.0 oy
et j=0 R
Using Equation (5.3.7) in Equation (5.3.7), we obtain
=] [ 2. vl
SNT:p:SI_TSg_;__-Lx_: C L‘l?-{_c'.l
"7 Lo l k)
: ; (22)

TOb) o) T‘p“L & 11I[Jt|| —Rip.s)
55 i [T J

Further, transforming Equations (17) and (18) by single Laplace
transform, we get

r=fipl Lo - =T, (5 .
CO A B 3

j=012,..m-1and k=123

i o] S
Lx{c '..)_.,O_I. . e ul0.1)|

By putting Equation (5.3.9) in Equation (5.3.8) and we obtam by

simplifying
ﬁp_s|=_% Klp.s)+ ‘>_ s“ 'Jflplrll bl 3 /_p _kalsl}
g2 o Til-b) 4 o 3 e
| 1-b |~
L 5 J
(24)
We obtain the solution of Equation (15) by using the mverse DLT to
Equation (24).
vx.t)
—1p -1 1 a-1-j 1" 3
=L —— K-ps-—Zs f{pl Zp J'E'Sl
|| oo T{l-b) 4 =il
|[® T P 7
(25)

In this case, we assume that the inverse DLT of Equation (25) exists.
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3 Results and discussion
In this part, we provide examples to exhibit the applicability of the

previous technique.

Example (8.1)[11]: By changingb=1 m=1and K (x, r}l—:»\.4 ‘1 o+

T(2-a)
LR
32t2+ 484/t in Equation (15),
Sulxt) @ 1 2%(x,0)
—— =+ [it-1 2 —F—dt
4 “ (26)
I.1—cs. _3
=x* +322 481, x120,0<a sl
2-a)
subject to
x0)=fy(x)=x*, v(0.1)=golx)=0. 22 5 (t)=0,
= 27
20 _, 1)=0, _'Qi' J(t)=0
ox” ox”
Transforming Equation (5.3.13) by single Laplace transform, we get
Tc.ipil=2—fr. Bels)=0. k=01L23, (28)
P
Transforming K (x. t) by double Laplace transform. we get
2 Ti3)
K|p,3|——4 ! —Sjlq—_'_—, {29]
p’st™™ T p 2 g i)

Substituting above in Equation(25), we get solution of Equation(26):

vix.t)
2 ) ) g
o =y 1 24 1a_ l_:_+43_1_ 2 _Su-L;;i
) s T p i e 2
ey ;
| 2
(30)
\ 9
v )= L el [ 5 s+
|s®+ Jopt |15 P ' G1)
L Vs |

Figure 1. shows the exact solution v (X, t) = (t + 1) x* utilizing a variety

of valuesof 0 =x=<1land0=t=15

uce e

Fig 1. Exact solution (t + 1) x°

Example(8.2)[11]. By changing b= <. m=2 and

w

L T~ 12843
K(x )= 2" T al'Tt'-
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Sl T 1 2y
€ '.:atl_l.“ 13 Hfmdr
a% o . ct . (32)
2 .
L S NPT LD
I'3-w) 3
subject to
v{x,0)=£,(x)=0. %’0-'4_[[#0, v{0,t)= g(x)=0.
cX -
“vi0,t) =v(0,t) 22 10.t) (33)
W | i ki) W \
L=g1-._r.u=0. R B 1 R S YT §
&% ex’ &

Transforming Equation (5.3.19) by single Laplace transform, we get

Blp)=E()=0 z,(s)=0. k=0123. (34
Transforming K (x. ) by double Laplace transform, we get
- 24 1 1281TE) e
Kips)=l—a—+—-— {35)
5 5p 9;3

Substituting above in Equation(32), we get solution of Equation(31):

2 2 1'1:. riZ)
vix t) =T ————— i 11 1281 - ~482 2|
o TR, ps™ 23 Py

o | _

Computing, we get desired solution:

vix.t)=LJL;

i n:.ml} e a7
5

- . " 3 e - :
Figure 2. shows the exact solution v (X, ) = x't utilizing a variety of

valuesof 0=x=land 0 =t= 135

Fig 2. Exact solution x*t° .

Conclusion:

This study presents a numerical solution for neutral fractional mtegro-
differential equations with weakly singular kernels using fourth-degree
hat functions and Euler-Maruvama approximation. The equation is
transformed into a linear algebraic system via numernical guadrature,
while the stochastic Euler-Mamvama scheme models system noise.
Numerical results demonstrate the efficiency and accuracy of the

proposed method compared to known analytical solutions.

DOI: 10.35629/9467-1304122130 www.questjournals.org 129 | Page



Numerical Solution of Neutral Fractional Integro-Differential Equations via Fourth-Degree ..

[11.

[2].
3.
[4].

[5].
[6].

[71.

8.
(9]

[10].

[11].

References
Loh JR, Phang C, Tay KG. New method for solving fractional partial integro-differential equations by combination of Laplace
transform and resolvent kernel method. Chinese Journal of Physics. 2020;67:666-680. Available from:
https://doi.org/10.1016/j.cjph.2020.08.017.
Shafee A, Alkhezi Y, Shah R. Efficient Solution of Fractional System Partial Differential Equations Using Laplace Residual Power
Series Method, . Fractal Fract;2023:429-429. Available from: https://doi.org/10.3390/fractalfract7060429.
Ozkan O, Kurt A. A new method for solving fractional partial differential equations. The Journal of Analysis. 2020;28:489-502.
Available from: https://doi.org/10.1007/s41478-019-00186-0.
Ahmed SA, Elzak TM, Elbadri M, Mohamed MZ. Solution of partial differential equations by new double integral transform
(Laplace - Sumudu transform). Ain Shams Engineering Journal. 2021;12:4045- 4049. Available from:
https://doi.org/10.1016/j.asej.2021.02.032.
Babaei A, Banihashemi S, Cattani C. An efficient numerical approach to solve a class of variable-order fractional integro-partial
differential equations. Numer Methods Partial Differential Eq. 2020;p. 1-16. Available from: https://doi.org/10.1002/num.22546.
Babaei A, Moghaddam BP, Banihashemi S, Machado JAT. Numerical solution of variable-order fractional integro-partial
differential equations via Sinc collocation method based on single and double exponential transformations. Communications in
Nonlinear Science and Numerical Simulation. 2020;82. Available from: https://doi.org/10.1016/j.cnsns.2019.104985.
Atta A, Youssri Y. Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial
integro-differential equation with a weakly singular kernel. Computational and Applied Mathematics;2022:381-381. Available
from: https://doi.org/10.1007/s40314-022-02096-7.
Mingzhu L, Chen L, Zhou Y. Sinc Collocation Method to Simulate the Fractional Partial Integro-Differential Equation with a
Weakly Singular Kernel. Axioms 2023;12. Available from: https://doi.org/10.3390/axioms12090898.
Fakhari H, Mohebbi A. Galerkin spectral and finite difference methods for the solution of fourth-order time fractional partial
integro- differential equation with a weakly singular kernel. J Appl Math Comput. 2024. Available from:
https://doi.org/10.1007/s12190-024- 02173-6.
Rawani MK, Verma AK, Cattani C. A novel hybrid approach for computing numerical solution of the time-fractional nonlinear one
and twodimensional partial integro-differential equation. Communications in Nonlinear Science and Numerical Simulation.
2023;118. Available from: https: //doi.org/10.1016/j.cnsns.2022.106986.
Mohib A, Elbostani S, Rachid A, Jid RE. Numerical approximation of a generalized time fractional partial integro-differential
equation of Volterra type based on a meshless method. Partial Differential Equations in Applied Mathematics. 2024;11. Available
from: https://doi.org/10.1016/j.padiff.2024.100791.

DOI: 10.35629/9467-1304122130 www.questjournals.org 130 | Page



