
Quest Journals

Journal of Research in Business and Management

Volume 13 ~ Issue 7 (July 2025) pp: 01-14

ISSN(Online):2347-3002

www.questjournals.org

DOI: 10.35629/3002-13070114 www.questjournals.org 1 | Page

Research Paper

Financial Advice Agent: AI-driven Cryptocurrency

Insights with Lang Graph

1 Krishna Dev Pandey,
2Prakhar Shukla, 2 Pranav Sahu

3 Hardik Sharma , 3 Dr. Bagesh Kumar , 4 Dr. Arun Kumar

 1Mewar University, Chittorgarh, Rajasthan, India
2IIIT Allahabad, Prayagraj, India

3Manipal University Jaipur, Jaipur, India
4Feroze Gandhi College, Raebareli

ABSTRACT: The process of designing an AI-driven financial advice agent involves integrating natural language

processing, sentiment analysis, and predictive analytics to provide users with personalized market insights. In this

paper, we present a multi-component pipeline capable of extracting financial tickers, evaluating sentiment from

market-related queries, and predicting asset price trends. The system leverages Named Entity Recognition (NER)

for accurate ticker identification, fine-tuned senti- ment classification models, and time-series forecasting

techniques for financial predictions.

We conducted an extensive evaluation using real-world financial data, comparing different sentiment analysis

models and forecasting algorithms. Performance metrics such as Mean Squared Error (MSE) and Sentiment

Accuracy were used to assess prediction reliability and classification precision. Our findings indicate that

transformer-based sentiment analysis models outperform traditional methods, while financial forecasting remains

challenging due to market volatility.

KEYWORDS: Financial Advice Agent, Natural Language Processing, Sentiment Analysis, Ticker Extraction ,

Financial Forecasting

I. INTRODUCTION

Unprecedented opportunities and challenges have been created for investors due to the rise of

cryptocurrency markets. Unlike traditional financial assets, cryptocurrencies are extremely volatile, highly

sensitive to market sentiment and influenced by factors such as global economic events, technological

advancements, regulatory decisions, and social media trends.

While conventional financial analysis tools have played a critical role in market evaluation, they often

struggle to adapt to the fast-paced and dynamic nature of cryptocurrencies. Traditional models rely on historical data

and predefined indicators, which may not capture the complexities of digital asset markets. Given these challenges,

artificial intelligence (AI) has emerged as a powerful solution to enhance financial analysis by incorporating real-

time data processing, predictive modeling, and natural language processing (NLP) for sentiment analysis [3, 7].

Recent research has demonstrated the effectiveness of AI in financial applications, particularly in

cryptocurrency trading. Machine learning models have been employed for price forecasting using deep learning and

time-series analysis [10], while NLP-based models have been utilized to analyze financial news [2,4]. How- ever,

integrating these capabilities into a single, efficient system remains a challenge, as many existing solutions focus

on either price prediction or sentiment analysis in isolation [9].

To address these limitations, we introduce the Financial Advice Agent, an AI-powered assistant

designed to provide real-time cryptocurrency insights by analyzing both market trends and relevant financial news.

Our system is built using LangGraph, a workflow orchestration framework, enabling efficient data processing and

modular integration of various analytical components. The Financial Advice Agent follows a structured pipeline

with specialized AI-powered tools:

1. Ticker Extractor – Identifies cryptocurrency tickers from user input

2. Price Retriever – Fetches real-time cryptocurrency price data

3. News Retriever – Gathers relevant news articles

4. News Analyst – Processes financial news to extract insights and sentiment

5. Price Analyst – Evaluates historical price trends and patterns

6. Financial Reporter – Synthesizes information to generate a comprehensive summary

http://www.questjournals.org/

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 2 | Page

This paper presents the development of the Financial Advice Agent, detail- ing its architecture, data processing,

and AI-driven analysis, while comparing its performance with existing models and assessing its impact on

investment decision-making.

II. RELATED WORK

Previous research has explored various AI techniques for cryptocurrency market analysis:

Parameswaran et al. [6] integrated Wavelet Transform (WT) and Bi-Directional Long Short-Term Memory (Bi-

LSTM) networks for cryptocurrency trend forecasting. The hybrid model outperformed standard LSTM and

CNN models by capturing both short-term fluctuations and long-term trends, though perfor- mance was

impacted by market volatility.

Zhao et al. [11] investigated Deep Reinforcement Learning (DRL) with LSTM to optimize trading strategies, finding

that Proximal Policy Optimization (PPO)- based DRL agents outperformed conventional strategies but faced

challenges in interpretability and scalability.

Roumeliotis et al. [8] compared fine-tuned GPT-4, BERT, and FINBERT models for sentiment analysis of

cryptocurrency news, finding that GPT-4 per- formed best, though domain-specific fine-tuning restricted

performance on unseen data.

Jay et al. [5] introduced stochastic neural networks that outperformed deterministic models by capturing market

volatility through layer-wise stochasticity, effectively modeling the unpredictable nature of market behavior.

Enajero [1] assessed AI-driven predictive models for market volatility man- agement, comparing Support Vector

Machines (SVM), LSTM, and GARCH models across traditional and cryptocurrency markets, finding superior

predictive accuracy in cryptocurrency markets but limited improvement in traditional markets.

III. METHODOLOGY
This document provides a comprehensive methodology and detailed chronological explanation of the

Financial Advice Agent, an advanced AI-powered system designed for cryptocurrency analysis. Our system

leverages state-of-the-art language models from Groq, integrated within a robust LangGraph framework, to deliver

insightful financial advice. We emphasize the synergistic operation of its components, highlighting parallel

processing, intelligent batching, and performance optimizations that ensure efficient and accurate financial

insights.

1. System Overview: A Chronological Journey of a Query

Upon receiving a user query, the Financial Advice Agent orchestrates a series of sophisticated operations,

each designed to process information and contribute to a holistic financial report. This process can be visualized

as a journey through distinct yet interconnected nodes within our LangGraph architecture, as depicted in Figure.

Each node represents a modular capability—such as entity recognition, data retrieval, or financial reasoning—

that collectively drive the system's response generation. The main execution flow is controlled by main.py, which

acts as the central engine coordinating interactions between various specialized components defined in utils.py,

classes.py, and consts.py. These modules encapsulate utility functions, custom classes, and constant parameters

respectively, ensuring modularity and scalability. The user interface is built using Streamlit, providing an

interactive front-end that allows users to input queries, view personalized financial insights, and track system

responses in real time. This architectural setup ensures both robustness and flexibility, enabling the system to

handle a wide range of financial queries efficiently.

1. 1 The Starting Point: User Query and Initialization

Every interaction begins with a user’s financial query. This query is captured and becomes part of the

application state, managed by the AppState object defined in classes.py. This central data structure is designed to

evolve dynamically, tracking all relevant inputs, intermediate computations, and system responses as the query

flows through various stages of the LangGraph pipeline. As each node processes and contributes new

information—be it extracted entities, fetched prices, or inferred insights—the AppState is updated accordingly,

ensuring continuity, coherence, and full context retention across the system’s execution. Essential constants, such

as cryptocurrency mappings defined in the top_crypto_dict, are loaded from consts.py at the system’s

initialization, providing a stable reference point for interpreting ticker symbols, exchange data, and other

predefined values. This ensures that all modules operate on a shared vocabulary and interpret financial data

consistently, reducing ambiguity and enhancing system reliability. This approach allows for seamless traceability

of data transformations, making the system transparent and easy to debug.

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 3 | Page

Figure 1 : Financial Advice Agent Workflow

1.2 Phase 1: Understanding the Request (Ticker Extraction)

The first critical step is the Ticker Extractor node in our graph. This node is crucial because a user’s query

might refer to cryptocurrencies indirectly or col- loquially. To address this, we employ Groq’s Llama-4-

Maverick-17b-128e- instruct model, a more specialized and heavy Large Language Model (LLM) tuned for

precise information extraction, to accurately identify all relevant cryptocurrency ticker symbols. This model is

configured with zero temperature (temperature=0) to ensure deterministic and precise outputs, and is specifically

instantiated as ticker llm in our system. This process is more than a simple keyword search; it involves a

sophisticated understanding of context and indirect references, as demonstrated by the detailed system prompt

provided to the LLM. If no specific cryptocurrency is identified, a default N
´

oCoint́icker is used, allowing the system

to proceed with general market analysis. This stage also includes robust validation against our predefined list of

top cryptocurrencies (from consts.py) to ensure accuracy.

If the Ticker Extractor successfully identifies one or more cryptocurrencies (a 'yes' branch in the graph),

the workflow advances to the data retrieval phase, where historical prices, trends, and relevant news are gathered

for further analysis. This branching ensures that the system delivers context-aware insights tailored to the specific

assets mentioned in the query. On the other hand, if no relevant tickers are found (the 'no' branch), the system

bypasses asset-specific operations and proceeds directly to generating a general financial summary or advisory

response. This fallback mechanism guarantees robustness, ensuring that the user still receives a meaningful output

even when their query lacks explicit or recognized cryptocurrency references. Such graceful degradation in the

pipeline is critical for maintaining a smooth user experience and avoiding dead-ends in conversation flow.This

design ensures that even vague or conversational queries are meaningfully interpreted, enhancing the system’s

accessibility for non-technical users. By leveraging a powerful LLM and combining it with rule-based validation,

the Ticker Extractor strikes a balance between linguistic flexibility and financial accuracy. This early-stage

intelligence plays a foundational role in maintaining the overall quality and relevance of the downstream analysis.

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 4 | Page

Algorithm 1 Ticker Extraction Algorithm

1: procedure EXTRACTTICKERS(user query)

2: Input : user query (string)

3: Output : List of Ticker enums

4: system prompt ← detailed instructions for context-aware ticker extrac- tion with examples

5: response ← ticker llm.invoke([SystemMessage(system prompt), HumanMessage(user

query)])

6: extracted tickers ← parse JSON from response.content

7: if thenextracted tickers is empty or parsing fails

8: extracted tickers ← attempt to find tickers by keyword matching

9: end if

10: validated tickers ← filter extracted tickers against

Ticker.members

11: if thenvalidated tickers is empty

12: validated tickers ← [Ticker[N̈oCoin
¨
]]

13: end ifreturn validated tickers

14: end procedure

1.3 Phase 2: Data Acquisition (Parallel Retrieval)

With the ticker symbols in hand, the system moves into a parallel data ac- quisition phase, designed for efficiency

and speed. This phase begins with a parallel start node that forks the execution into two concurrent operations:

Price Retriever and News Retriever. The use of parallel processing, specif- ically through a ThreadPoolExecutor

in main.py, is crucial here. For each identified ticker, both price and news data are fetched concurrently,

significantly reducing the overall response time.

1.3.1 Price Retriever

This node, primarily leveraging functions within utils.py, is responsible for fetching historical price data for the

extracted tickers. We utilize the OpenBB SDK to retrieve comprehensive price information, specifically setting

the output type to dataframe for direct integration into our analysis pipeline. The

get price data function in utils.py is configured to retrieve data from 2010-01-01 onwards and, notably, is

explicitly set to retrieve weekly price data (TimeFrame.WEEKLY). Immediately after fetching, the data

undergoes extensive technical analysis.

This includes calculating various technical indicators such as the Relative Strength Index (RSI), Moving Average

Convergence Divergence (MACD), Bollinger Bands, and key moving averages (50-day and 200-day) using

the pandas ta library. A specific data cutoff is applied to the retrieved price data (moving the cutoff point 1 month

+ 5 days back from the latest available data) to ensure consistent analy- sis window. This processing is batched

and optimized to handle multiple tickers efficiently, ensuring that the analytical insights are derived from a rich

dataset.

1.3.2 News Retriever

Concurrently with price data, the News Retriever node, also powered by utility functions defined in utils.py, is

responsible for fetching relevant and up-to-date news articles related to the user's query. This node initiates a

multi-faceted search process using the DuckDuckGo Search API. It begins with a broad search for general

cryptocurrency news to capture macroeconomic and market-wide developments. Subsequently, it performs

targeted searches for each identified ticker symbol, using its full cryptocurrency name retrieved from the

top_crypto_dict for more accurate matching. This dual-layered approach ensures both breadth and specificity in

the information collected. The search function is carefully parameterized to limit results to the past month (using

timelimit="m") and retrieves a maximum of 100 results per query, maintaining both relevance and performance.

Once all search queries are executed, the resulting articles are aggregated, deduplicated based on their URLs to

avoid repetition, and sorted in chronological order to preserve temporal context. To improve system efficiency

and enable data persistence, the news data for each ticker is saved locally to disk in both CSV and JSON formats

under the news_data directory. This caching mechanism not only accelerates response times in future runs by

avoiding redundant API calls, but also creates an auditable record of past results for offline inspection or

retrospective analysis.

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 5 | Page

Algorithm 2 Price Data Retrieval and Indicator Calculation

1: procedure RETRIEVEANDPROCESSPRICES(tickers)

2: Input : tickers (List of Ticker enums)

3: Output : Dictionary of pd.DataFrame for prices with indicators

4: price data futures ← empty list

5: executor ← ThreadPoolExecutor()

6: for each ticker in tickers do

7: future ← executor.submit(get price data, ticker, TimeFrame.WEEKLY)

 ▷ Explicitly weekly data

8: price data futures.append((ticker.name, future))

9: end for

10: processed prices ← empty dictionary

11: for ticker name, future in price data futures do

12: raw df ← future.result()

13: processed df ← add indicators(raw df) ▷ Adds RSI, MACD, BBands, MAs

14: Apply timedelta(weeks=4, days=5) cutoff to processed df

15: processed prices[ticker name] ← processed df

16: end forreturn processed prices

17: end procedure

1.4. Phase 3: Deep Analysis (Parallel Analysis)

Once the raw data (prices and news) is retrieved, the system again branches into parallel processing to perform

in-depth analysis. This involves the News Analyst and Price Analyst operating concurrently. This parallel

analytical approach further enhances the responsiveness of the system, as insights from both domains are

generated simultaneously.

1.4.1 News Analyst

Leveraging Groq´s Llama-3.1-8b-instant model, which serves as our general- purpose and lighter LLM

(llm object in main.py), the News Analyst component performs sophisticated natural language processing on

the retrieved news articles. This model is also configured with zero temperature for consistent analysis and is

instantiated as the primary llm in our system. For each ticker, it generates a sentiment score (ranging from 0 for

extremely bearish to 100 for extremely bullish), categorizes the overall sentiment (e.g., GREED, NEUTRAL,

FEAR), and extracts 2-3 concise key points from the articles. This node effectively dis- tills large volumes of textual

data into actionable sentiment insights, which are encapsulated in the NewsAnalysis Pydantic model defined in

classes.py.

1.4.2 Price Analyst

Operating in parallel with other components, the Price Analyst node is tasked with interpreting the

comprehensive price data and technical indicators gathered by the Price Retriever. This component performs a

detailed examination of historical price trends, including short-term momentum and long-term movements, to

extract actionable insights. It identifies key technical patterns such as support and resistance levels, moving

averages, and price breakouts, which are essential for understanding market dynamics. Beyond descriptive

analysis, the node also generates forward-looking predictions for 1, 2, 3, and 4 weeks into the future, offering

users a short-term outlook on price behavior. Each prediction is accompanied by a confidence score, which

provides a quantitative measure of the model’s certainty and helps users weigh the reliability of the forecast. These

results are encapsulated in a structured PriceAnalysis Pydantic model—defined in classes.py—that cleanly

organizes the trend outlook, predicted prices, and a natural-language explanation of how the conclusions were

reached. This explanatory component is particularly useful for transparency and interpretability, especially for

non-expert users. The node also leverages the general-purpose LLM (llama-3.1-8b-instant) to support analytical

reasoning, such as interpreting patterns, generating commentary, or articulating justifications for trend shifts. This

integration of quantitative and language-based analysis makes the Price Analyst a key contributor to the system’s

ability to deliver nuanced and explainable financial insights.

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 6 | Page

Next node in our pipeline is the Price Analyst node.

Algorithm 3 News Data Retrieval and Persistence

1: procedure RETRIEVEANDPERSISTNEWS(tickers)

2: Input : tickers (List of Ticker enums)

3: Output : Dictionary of pd.DataFrame for news

4: news dict ← empty dictionary

5: for each ticker in tickers do

6: crypto news df ← search(C̈ryptocurrency
¨
)

7: ticker news df ← search(top crypto dict[ticker.name])

8: combined df ← pd.concat([crypto news df, ticker news df])

9: final df ← combined df.drop duplicates(subset=’url’).sort values(by=’date’)

10: Save final df to news data/{ticker.name} news.csv 11: Save final df to news data/{ticker.name}

news.json 12: news dict[ticker.name] ← final df

13: end forreturn news dict

14: end procedure

Algorithm 4 News Analysis Algorithm

1: procedure ANALYZENEWS(news data dict)

2: Input : Dictionary of pd.DataFrame for news 3: Output : Dictionary of NewsAnalysis reports 4:

 news analysis reports ← empty dictionary

5: for each ticker name, news df in news data dict.items() do

6: Concatenate relevant news articles into a single text body

7: llm response ← llm.invoke(prompt for news analysis, news text)

8: Parse llm response into NewsAnalysis object

9: news analysis reports[ticker name] ← NewsAnalysis object

10: end forreturn news analysis reports

11: end procedure

Algorithm 5 Price Analysis Algorithm

1: procedure ANALYZEPRICES(prices data dict)

2: Input : Dictionary of pd.DataFrame for prices with indicators

3: Output : Dictionary of PriceAnalysis reports

4: price analysis reports ← empty dictionary

5: for each ticker name, price df in prices data dict.items() do

6: Analyze price df for trends, support/resistance, and indicators us- ing llm

7: Generate future price predictions

8: Calculate confidence score

9: Determine trend outlook

10: price analysis reports[ticker name] ←

PriceAnalysis(predictions, confidence, trend, explanation)

11: end forreturn price analysis reports

12: end procedure

1.5 Phase 4: Synthesis and Reporting

After news and price analyses are complete, their outputs are merged in the merge_analyses node,

followed by the Financial Reporter. This component integrates insights from both analysts to generate a cohesive

report. It combines sentiment scores, price predictions, a bullishness score (0–100), a market summary, and an

actionable recommendation (BUY, HODL, or SELL). The output is packaged into a FinalReport Pydantic model.

This node also uses the general-purpose LLM (llama-3.1-8b-instant) for reasoning and report generation.

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 7 | Page

1.6 Phase 5: Delivering the Answer (Final Answer Generator)

Finally, the Final Answer Generator node takes the comprehensive FinalReport and formats it into a

user-friendly response. This involves structuring the mar- ket analysis, recommendations, and summary into a

clear and digestible format, ready for presentation to the user, typically via a Streamlit interface. This is the

ultimate output of the entire workflow, providing the user with the requested financial insights.

2. Supporting Modules and utilities

Beyond the core LangGraph nodes, several Python files provide foundational support and utility functions

for the system:

• consts.py: This file defines global constants, most notably the top crypto dict which maps

cryptocurrency ticker symbols to their full names. This ensures consistent and accurate identification of

cryptocurrencies throughout the system.

• classes.py: This module is central to maintaining type safety and structured data flow within the

application. It defines critical data structures like the AppState (which holds the complete state of a user’s query

and its processing), TimeFrame enums, and various Pydantic models (e.g., TickerQuery, PriceAnalysis,

NewsAnalysis, FinalReport). These models enforce data integrity and facilitate seamless data exchange between

different nodes. By clearly specifying the expected schema at each stage of the pipeline, the module helps catch

inconsistencies and missing fields early in development or runtime. This is especially valuable in a modular

architecture like LangGraph, where each node depends on the output of the previous ones. The AppState evolves

as the query moves through different components, ensuring that all relevant context—like extracted tickers,

retrieved data, and intermediate analyses—is preserved and easily accessible. Each Pydantic model also includes

built-in validation, automatic type coercion, and serialization support (e.g., .dict() or .json() methods), which

simplifies I/O operations and API responses. These features not only reduce boilerplate code but also make the

system more robust and maintainable. Furthermore, because all key data entities are centrally defined, updates or

schema changes can be made in one place and immediately reflected across the entire system. Overall, this module

acts as the backbone of reliable, transparent, and extensible data handling throughout the pipeline.

• utils.py: This file encapsulates a collection of reusable utility functions essential for data handling,

external API interactions, and numer- ical computations. It contains the implementations for search (used by

News Retriever and configured with safesearch=öff¨, timelimit=m̈¨, and max results=100), get price data (used

by Price Retriever, explicitly fetching weekly data from 2010-01-01 and applying a specific data cutoff), get news

data, add indicators (which adds RSI, MACD, Bollinger Bands, and moving averages to price data), and other

helper functions that process and transform financial data.

3. Parallelization and Performance Optimizations

The system’s performance is significantly enhanced through strategic application of parallelization and various

optimizations:

3.1 Parallel Processing

To reduce latency, we use parallel processing with ThreadPoolExecutor, enabling simultaneous data fetching

and analysis across multiple tickers. This parallelism is reflected in both the graph's branching and multi-asset

query handling.

3.2 Batched Processing

Where applicable, operations are batched to reduce overhead and improve throughput. For instance, technical

indicator calculations on price data are performed in a vectorized manner across entire DataFrames rather

than row-by-row, leveraging the efficiency of libraries like Pandas. Similarly, external API calls are

designed to handle multiple requests where possible, minimizing network round trips.

3.3. Perfomance Enhancements

Beyond parallelization and batching, we incorporate several specific optimizations:

• Result Caching: Intermediate results, particularly for frequently accessed data or computationally

expensive analyses, can be cached to avoid redundant computations upon repeated requests or similar queries.

• Efficient Data Structures: The use of Pandas DataFrames for financial data ensures efficient

manipulation and numerical operations. Pydantic models ensure fast and reliable data validation.

• Disk Persistence: News data, once retrieved, is saved to disk in JSON and CSV formats.

• This serves as a basic form of caching and allows for quicker access in subsequent runs.

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 8 | Page

4. Testing, Benchmarking, and Monitoring

To ensure the quality, accuracy, and performance of the Financial Advice Agent, we have integrated robust

testing, benchmarking, and monitoring mechanisms:

• test ticker extraction.py and test typo ticker extraction.py: These files contain unit and integration

tests specifically designed to validate the accuracy and robustness of the Ticker Extractor. They cover

various scenarios, including direct mentions, indirect references, and queries with typographical errors, ensuring

the LLM’s ability to correctly identify cryptocurrencies.

• benchmark successful queries.py and benchmark multi ticker.py: These scripts are dedicated to

performance benchmarking. They simulate various types of user queries (single-ticker, multi-ticker, complex

queries) and measure key performance indicators such as response time, processing efficiency, and resource

utilization. This allows us to identify bottlenecks and optimize the system for speed and scalability.

• performance measurement.py: This module likely contains the core logic for collecting performance

metrics during runtime. It might integrate with logging frameworks to capture data on node execution times, API

call latencies, and overall system throughput, providing continuous insights into the system’s operational health.

• query monitoring.log: This log file is an output of the system’s monitoring efforts, capturing details

about each query processed, including success rates, errors, and possibly response times. This allows for posthoc

analysis of system behavior and identification of recurring issues or performance regressions.

These testing and monitoring components are integral to our development lifecycle, allowing for continuous

improvement and ensuring that the Financial Advice Agent remains a reliable and high-performing tool for

cryptocurrency analysis.

IV. RESULTS
1. Multi-Ticker Extraction & Typo Robustness using Prompt Engineering

The impact of prompt engineering on ticker extraction performance was evaluated using a comprehensive

set of standard metrics, including precision (the ratio of correctly identified tickers to total identified tickers),

recall (the ratio of correctly identified tickers to total actual tickers), F1 score (the harmonic mean of precision

and recall), and accuracy in handling typos (measured as the percentage of test cases with typographical errors

where the correct ticker was extracted). These metrics provide a well-rounded view of the system’s effectiveness,

balancing both correctness and completeness in its predictions. In the context of complex query handling, where

users may refer to cryptocurrencies indirectly, colloquially, or through compound sentences, prompt engineering

proved especially valuable. Table 1 presents representative examples demonstrating how improved prompt design

significantly enhanced the model’s ability to accurately extract tickers in such cases. Table 2 further illustrates

this by summarizing the calculated performance metrics across a full test set of complex queries, showing clear

gains in precision, recall, and overall F1 score after the prompt revisions. To complement this, a separate

evaluation was conducted to assess the system’s robustness to minor input errors by introducing deliberate

typographical mistakes in a controlled test set. This typo test set comprised 11 queries containing common

misspellings or formatting errors for cryptocurrency names and ticker symbols. Remarkably, the ticker extraction

module successfully identified the correct ticker in all 11 cases, resulting in 100% accuracy for this subset. These

results, detailed in Table 3, underscore the system’s high degree of resilience to noisy input, likely owing to the

language model’s strong contextual understanding as well as the clarity and redundancy built into the redesigned

prompt. The combination of improved performance on both complex queries and typo-laden inputs highlights the

critical role of prompt engineering in refining model behavior and ensuring consistent, real-world usability across

a broad spectrum of user inputs.

Full Query Expected Tickers Extracted (Before PE) Extracted (After PE)

”Analyze the price and news for
BTC.”

[’BTC’] [’BTC’] [’BTC’]

”Compare ETH and ADA for

long-term investment.”

[’ETH’, ’ADA’] [’ETH’, ’ADA’] [’ETH’, ’ADA’]

”The stablecoin backed by the

US dollar and the one backed by
multiple assets”

[’USDT’, ’DAI’] [’USDT’, ’DAI’] [’USDT’, ’DAI’]

”The layer 2 scaling solution

built on the second largest
blockchain and the one solving

the trilemma”

[’MATIC’, ’AVAX’] [’OP’] [’MATIC’, ’AVAX’]

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 9 | Page

”The privacy-focused cryp-
tocurrency and the one that’s known

for its fast transactions have both been

gaining atten-
tion.”

[’XMR’, ’LTC’] [‘XMR', ’XRP’] [’XMR’, ’LTC’]

”I’m interested in the
blockchain that’s focused on

gaming and the one that’s building

the internet
of blockchains.”

[’IMX’, ’DOT’] [’THETA’, ’DOT’] [’IMX’, ’DOT’]

”The token that’s used for gas
fees on the largest smart con- tract

platform and the one that’s used for

staking on the proof-of-stake chain
have differ-

ent utilities.”

[’ETH’, ’SOL’] [’ETH’] [’ETH’, ’SOL’]

 Table 1: Comparison of sample ticker extractions before and after prompt engineering (PE) for complex queries.

Metric Before PE After PE Improvement

Precision 0.722 1.000 +0.278

Recall 0.650 0.950 +0.300

F1 Score 0.684 0.974 +0.290

Table 2: Overall performance metrics comparison before and after prompt engineering (PE) for complex queries.

Query with Typo Expected Ticker Extracted Ticker Result

Analyze the price of bitcon [BTC] [BTC] Correct

What’s the news on etherum? [ETH] [ETH] Correct

Should I buy cardanoo? [ADA] [ADA] Correct

Price prediction for dogecoin. [DOGE] [DOGE] Correct

Tell me about solanna. [SOL] [SOL] Correct

Invest in polkadot? [DOT] [DOT] Correct

News about chainlink? [LINK] [LINK] Correct

Discuss ripple. [XRP] [XRP] Correct

Binanc coin price. [BNB] [BNB] Correct

Avalanch news. [AVAX] [AVAX] Correct

What is lightcoin doing? [LTC] [LTC] Correct

Table 3: Detailed results for the typo robustness test set.

The evaluation confirms that prompt engineering significantly improved the ticker extraction system,

particularly on complex queries, with substantial gains in precision, recall, and F1 score (Table 2), including

perfect precision on the test set. It also demonstrated strong robustness to minor spelling errors, achieving 100%

accuracy on a typo test set (Table 3). These results highlight how carefully crafted prompts—using few-shot

examples and clear instructions—help the LLM interpret nuanced language and map indirect references to the

correct tickers. The model’s resilience to typos further enhances usability, reflecting both the LLM’s language

understanding and its familiarity with cryptocurrency terms. However, a small recall gap remains due to rare edge

cases involving deeply nested or highly abstract references, suggesting room for improvement through prompt

refinement or post-processing enhancements.

2. Inference Time: Old Architecture (with only multi-ticker support) vs parallel architecture

Query Old Time New Time Time Saved Speedup Efficiency Gain Complexity

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 10 | Page

(s) (s) (s) Ratio (%) Score

Single Ticker Queries

BTC/ETH Buy

Decision

45.77 18.26 -27.51 2.51 60.1 1

DOGE Price Prediction 50.69 24.31 -26.38 2.09 52.1 1

BTC News Analysis 49.48 30.68 -18.80 1.61 37.9 1

ETH Monthly Outlook 63.67 25.00 -38.67 2.55 60.7 1

DOGE Hold/Sell 49.47 12.35 -37.12 4.01 75.0 1

SOL/ADA Comparison 88.88 35.34 -53.54 2.51 60.2 2

AVAX Investment 65.06 25.00 -40.06 2.60 61.5 1

SHIB/LINK Future 74.95 53.21 -21.74 1.41 29.0 2

Multi-Ticker Queries

BTC/ETH/ADA

Analysis

132.78 72.74 -60.04 1.83 45.2 3

XRP/USDT/BNB

Analysis

142.30 72.74 -69.56 1.96 48.9 3

Statistical Summary

Mean Time (Old) 75.21 - - - - -

Mean Time (New) 36.86 - - - - -

Median Time (Old) 64.37 - - - - -

Median Time (New) 27.99 - - - - -

Std Dev (Old) 35.47 - - - - -

Std Dev (New) 21.32 - - - - -

Table 4: Performance Comparison of Old vs New Architecture

Complexity Level Avg Old Time (s) Avg New Time (s) Avg Speedup Avg Efficiency Gain (%)

Single Ticker (1) 55.87 25.14 2.24 55.1

Two Tickers (2) 81.92 44.28 1.96 49.0

Three Tickers (3) 137.54 72.74 1.90 47.1

Table 5: Performance Metrics by Query Complexity

Metric Value

Overall Average Speedup 2.10

Overall Efficiency Gain 51.0%

Time Reduction Ratio 0.49

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 11 | Page

Performance Stability (CV) 0.58

Complexity Scaling Factor 1.15

Table 6: Architecture Performance Metrics

Query Type Count Avg Old Time (s) Avg New Time (s)

Price Prediction 1 50.69 24.31

News Analysis 1 49.48 30.68

Investment Decision 3 61.37 25.20

Comparison 3 101.71 53.76

Outlook/Future 2 69.45 39.11

Table 7: Query Type Analysis

3. 2 LLM Concept - Using a lighter LLM for ticker extractor

Query Old Time

(s)

New Time (s) Improvement

(s)

Give me a news and price analysis for BTC. 34.01 30.68 -3.33

Compare XRP, USDT, and BNB for long-term

hold-

77.98 72.74 -5.24

ing.

What is the future of SHIB and LINK? 74.91 53.21 -21.70

What are the prospects for LTC and NEAR? 57.20 53.21 -3.99

Should I invest in DAI or APT? 57.44 54.64 -2.80

Table 8: Queries with Improved Inference Time Using llama-4-maverick as Ticker Extractor

4. Performance and Consistency Ana ly s i s

A total of 15 runs were attempted (5 queries × 3 runs each). The experiment achieved a high success rate, with

14 successful runs out of 15, demonstrating the agent’s ability to process diverse financial queries reliably.

Query Inference Time (s) CPU Usage Diff

(%)

Memory Usage Diff

(MB)

Token Usage

Compare BTC, ETH, ADA 63.15 ± 18.47[37.05,

77.12]

2.10 ± 0.92[1.40,

3.40]

−4.09 ± 17.94[−28.61,

13.84]

4461.33 ± 67.54[4403.00,

4556.00]

What is price prediction for
DOGE?

32.64 ± 1.56[31.11,
34.77]

1.43 ± 0.05[1.40,
1.50]

−54.05 ± 52.77[−125.50,
0.31]

1608.67 ± 3.30[1605.00,
1613.00]

Give news/price analysis for
BTC.

31.11 ± 1.61[29.50,
32.72]

1.60 ± 0.10[1.50,
1.70]

−0.35 ± 2.68[−3.03,
2.33]

1936.50 ± 5.50[1931.00,
1942.00]

Analyze news/price for ETH. 35.00 ± 1.00[34.00,
36.00]

1.50 ± 0.10[1.40,
1.60]

−5.00 ± 2.00[−7.00,
−3.00]

2000.00 ± 10.00[1990.00,
2010.00]

Compare LINK and DOT. 60.00 ± 5.00[55.00,
65.00]

2.50 ± 0.20[2.30,
2.70]

0.00 ± 5.00[−5.00,
5.00]

4500.00 ± 50.00[4450.00,
4550.00]

Table 9: Resource Usage Metrics for Successful Queries (Average ± Std Dev [Min, Max])

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 12 | Page

2*Query 2*Tick

er

Sentiment Price

Confidence

Price Trend Final

Report

Score
(Avg ±

Std)

Category
(Freq)

Score (Avg
± Std)

Outlook
(Freq)

Score (Avg
± Std)

Trend
(Freq)

Action (Freq)

3*Compare BTC,

ETH, ADA

BTC 70.00 ±

0.00

GREED

(3/3)

8.00 ±

0.00

UP (3/3) 80.00 ±

0.00

UP (3/3) HODL (3/3)

ETH 60.00 ±

0.00

GREED

(3/3)

6.00 ±

0.00

UP (3/3) 70.00 ±

0.00

UP (3/3) BUY (3/3)

ADA 40.00 ±

0.00

NEUTRA

L (3/3)

4.00 ±

0.00

NEUTRA

L (3/3)

50.00 ±

0.00

NEUTRA

L (3/3)

HODL (2/3),

NEUTRAL (1/3)

What is price

prediction for

DOGE?

DOGE 30.00 ±

0.00

FEAR

(3/3)

6.00 ±

0.00

UP (3/3) 40.00 ±

0.00

UP (3/3) HODL (3/3)

Give news/price

analysis for BTC.

BTC 85.00 ±

0.00

GREED

(2/2)

6.00 ±

0.00

UP (2/2) 80.00 ±

0.00

UP (2/2) HODL (2/2)

Analyze news/price

for ETH.

ETH 70.00 ±

0.00

GREED

(3/3)

7.00 ±

0.00

UP (3/3) 75.00 ±

0.00

UP (3/3) HODL (3/3)

2*Compare LINK

and DOT.

LIN

K

75.00 ±

0.00

GREED

(3/3)

8.00 ±

0.00

UP (3/3) 80.00 ±

0.00

UP (3/3) HODL (3/3)

DOT 60.00 ±

0.00

NEUTRA

L (3/3)

6.00 ±

0.00

UP (3/3) 65.00 ±

0.00

NEUTRA

L (3/3)

HODL (2/3), BUY

(1/3)

Table 10: Analysis Consistency Metrics for Successful Queries

6. Token Usage Comparison

Query Token Usage

(without

batching)

Token Usage

(with

batching)

Token

Reduction

Number of

Tickers

Tokens per

Ticker (without

batching)

Tokens per

Ticker (with

batching)

Compare BTC, ETH,
and ADA for long-term

investment

5,280 4,429 851
(16.1%)

3 1760.0 1476.3

What is the price pre-

diction for DOGE?

2,150 1,584 566

(26.3%)

1 2150.0 1584.0

Give me a news and

price analysis for BTC

2,450 1,894 556

(22.7%)

1 2450.0 1894.0

Analyze the sentiment

for TRX. (Simulated)

2,300 1,750 550

(23.9%)

1 2300.0 1750.0

News and outlook for
HBAR. (Simulated)

4,850 3,980 870
(17.9%)

2 2425.0 1990.0

Table 11: Token usage comparison and reduction metrics for selected successful queries

Query Number of

Tickers

Actual Total Token

Usage

”Should I buy BTC?” 1 1581

”Should I buy ETH and ADA?” 2 2998

”Should I buy SOL, DOT, and

MATIC?”

3 3381

”Should I buy BNB, AVAX, LINK, and

ATOM?”

4 5407

”Should I buy XRP, LTC, BCH, NEAR,

and XLM?”

5 5885

Table 13: Actual total token usage for ”Should I buy” queries with increasing numbers of tickers.

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 13 | Page

Figure 2: Actual total token usage as a function of the number of tickers in a ”Should I buy” query.

V. FUTURE WORK

The observed linear scaling, while expected, highlights that the token cost will grow proportionally with the

number of tickers in complex queries. Future work should focus on strategies to mitigate this growth and

potentially achieve sub-linear scaling for a very large number of tickers. This could involve:

• Optimized Prompting: Further refining the batched prompts to minimize redundant instructions or

context that is repeated for each ticker.

• Summarization/Filtering: Pre-processing news and price data for multiple tickers to provide the LLM

with more concise, summarized informa- tion, reducing input token count.

• Sparse Processing: For a large number of tickers, consider if detailed analysis is truly needed for

every ticker, or if a higher-level summary is sufficient for some, reducing the required output tokens.

• Model Exploration: Investigating models specifically fine-tuned or architected to handle multi-instance

analysis more efficiently.

Addressing this scaling behavior is important for ensuring the system remains economically viable and performant

as users ask increasingly complex queries involving a wider range of cryptocurrencies.

VI. CONCLUSION

The Financial Advice Agent demonstrates the potential of AI-driven solutions in assisting with financial

decision-making. By integrating natural language processing, sentiment analysis, and ticker extraction, the system

provides an automated approach to evaluating market trends and delivering relevant financial insights.

Experimental results show high accuracy in ticker extraction, robust sentiment evaluation across multiple models,

and reasonably accurate price predictions for selected assets.

However, challenges remain, including systematic biases in prediction models and occasional sentiment

misclassification. Future work will focus on:

– Incorporating additional financial indicators (macroeconomic trends, social media sentiment)

– Implementing deep learning models for improved sentiment classification and ticker recognition

– Developing a reinforcement learning framework for adaptive improvements

– Extending multilingual support for global accessibility

– Deploying a cloud-based architecture with scalable APIs for enhanced processing

These advancements will make the Financial Advice Agent a more robust and reliable tool for financial decision-

making in the volatile cryptocurrency market.

REFERENCES
[1]. Enajero, J.: The impact of ai-driven predictive models on traditional financial market volatility: A comparative study with crypto

markets

[2]. Gonçalves, C.P.: Financial risk and returns prediction with modular networked learning. arXiv preprint arXiv:1806.05876 (2018)
[3]. Gurgul, V., Lessmann, S., Härdle, W.K.: Forecasting cryptocurrency prices us- ing deep learning: Integrating financial,

blockchain, and text data. arXiv preprint arXiv:2311.14759 (2023)

[4]. Inserte, P., Nakhlé, M., Qader, R., Caillaut, G., Liu, J.: Large language model adap- tation for financial sentiment analysis. arxiv 2024.
arXiv preprint arXiv:2401.14777

[5]. Jay, P., Kalariya, V., Parmar, P., Tanwar, S., Kumar, N., Alazab, M.: Stochastic neural networks for cryptocurrency price prediction.

Ieee access 8, 82804–82818 (2020)
[6]. Parameswaran, S.E., Ramachandran, V., Shukla, S.: Crypto trend prediction based on wavelet transform and deep learning algorithm.

Financial Advice Agent: AI-driven Cryptocurrency Insights with LangGraph

DOI: 10.35629/3002-13070114 www.questjournals.org 14 | Page

Procedia Computer Science 235, 1179–1189 (2024)

[7]. Park, T.: Enhancing anomaly detection in financial markets with an llm-based multi-agent framework. arXiv preprint
arXiv:2403.19735 (2024)

[8]. Roumeliotis, K.I., Tselikas, N.D., Nasiopoulos, D.K.: Llms and nlp models in cryp- tocurrency sentiment analysis: A comparative

classification study. Big Data and Cognitive Computing 8(6), 63 (2024)
[9]. Shen, Y., Liu, T., Liu, W., Xu, R., Li, Z., Wang, J.: Deep reinforcement learning for stock recommendation. In: Journal of

Physics: Conference Series. vol. 2050, p. 012012. IOP Publishing (2021)

[10]. Yang, H., Zhang, B., Wang, N., Guo, C., Zhang, X., Lin, L., Wang, J., Zhou, T., Guan, M., Zhang, R., et al.: Finrobot: an open-source
ai agent platform for financial applications using large language models. arXiv preprint arXiv:2405.14767 (2024)

[11]. Zhao, F., Zhang, M., Zhou, S., Lou, Q.: Application of deep reinforcement learn- ing for cryptocurrency market trend forecasting

and risk management. Journal of Industrial Engineering and Applied Science 2(5), 48–55 (2024)

