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ABSTRACT: The process of designing an AI-driven financial advice agent involves integrating natural language 

processing, sentiment analysis, and predictive analytics to provide users with personalized market insights. In this 

paper, we present a multi-component pipeline capable of extracting financial tickers, evaluating sentiment from 

market-related queries, and predicting asset price trends. The system leverages Named Entity Recognition (NER) 

for accurate ticker identification, fine-tuned senti- ment classification models, and time-series forecasting 

techniques for financial predictions.  

We conducted an extensive evaluation using real-world financial data, comparing different sentiment analysis 

models and forecasting algorithms. Performance metrics such as Mean Squared Error (MSE) and Sentiment 

Accuracy were used to assess prediction reliability and classification precision. Our findings indicate that 

transformer-based sentiment analysis models outperform traditional methods, while financial forecasting remains 

challenging due to market volatility. 

 

KEYWORDS: Financial Advice Agent, Natural Language Processing, Sentiment Analysis, Ticker Extraction , 

Financial Forecasting 

 

I. INTRODUCTION 

Unprecedented opportunities and challenges have been created for investors due to the rise of 

cryptocurrency markets. Unlike traditional financial assets, cryptocurrencies are extremely volatile, highly 

sensitive to market sentiment and influenced by factors such as global economic events, technological 

advancements, regulatory decisions, and social media trends. 

While conventional financial analysis tools have played a critical role in market evaluation, they often 

struggle to adapt to the fast-paced and dynamic nature of cryptocurrencies. Traditional models rely on historical data 

and predefined indicators, which may not capture the complexities of digital asset markets. Given these challenges, 

artificial intelligence (AI) has emerged as a powerful solution to enhance financial analysis by incorporating real-

time data processing, predictive modeling, and natural language processing (NLP) for sentiment analysis [3, 7]. 

Recent research has demonstrated the effectiveness of AI in financial applications, particularly in 

cryptocurrency trading. Machine learning models have been employed for price forecasting using deep learning and 

time-series analysis [10], while NLP-based models have been utilized to analyze financial news [2,4]. How- ever, 

integrating these capabilities into a single, efficient system remains a challenge, as many existing solutions focus 

on either price prediction or sentiment analysis in isolation [9]. 

To address these limitations, we introduce the Financial Advice Agent, an AI-powered assistant 

designed to provide real-time cryptocurrency insights by analyzing both market trends and relevant financial news. 

Our system is built using LangGraph, a workflow orchestration framework, enabling efficient data processing and 

modular integration of various analytical components. The Financial Advice Agent follows a structured pipeline 

with specialized AI-powered tools: 

1. Ticker Extractor – Identifies cryptocurrency tickers from user input 

2. Price Retriever – Fetches real-time cryptocurrency price data 

3. News Retriever – Gathers relevant news articles 

4. News Analyst – Processes financial news to extract insights and sentiment 

5. Price Analyst – Evaluates historical price trends and patterns 

6. Financial Reporter – Synthesizes information to generate a comprehensive summary 

http://www.questjournals.org/
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This paper presents the development of the Financial Advice Agent, detail- ing its architecture, data processing, 

and AI-driven analysis, while comparing its performance with existing models and assessing its impact on 

investment decision-making. 

 

II. RELATED WORK 

Previous research has explored various AI techniques for cryptocurrency market analysis: 

Parameswaran et al. [6] integrated Wavelet Transform (WT) and Bi-Directional Long Short-Term Memory (Bi-

LSTM) networks for cryptocurrency trend forecasting. The hybrid model outperformed standard LSTM and 

CNN models by capturing both short-term fluctuations and long-term trends, though perfor- mance was 

impacted by market volatility. 

Zhao et al. [11] investigated Deep Reinforcement Learning (DRL) with LSTM to optimize trading strategies, finding 

that Proximal Policy Optimization (PPO)- based DRL agents outperformed conventional strategies but faced 

challenges in interpretability and scalability. 

Roumeliotis et al. [8] compared fine-tuned GPT-4, BERT, and FINBERT models for sentiment analysis of 

cryptocurrency news, finding that GPT-4 per- formed best, though domain-specific fine-tuning restricted 

performance on unseen data. 

Jay et al. [5] introduced stochastic neural networks that outperformed deterministic models by capturing market 

volatility through layer-wise stochasticity, effectively modeling the unpredictable nature of market behavior. 

Enajero [1] assessed AI-driven predictive models for market volatility man- agement, comparing Support Vector 

Machines (SVM), LSTM, and GARCH models across traditional and cryptocurrency markets, finding superior 

predictive accuracy in cryptocurrency markets but limited improvement in traditional markets. 

 

III. METHODOLOGY 
This document provides a comprehensive methodology and detailed chronological explanation of the 

Financial Advice Agent, an advanced AI-powered system designed for cryptocurrency analysis. Our system 

leverages state-of-the-art language models from Groq, integrated within a robust LangGraph framework, to deliver 

insightful financial advice. We emphasize the synergistic operation of its components, highlighting parallel 

processing, intelligent batching, and performance optimizations that ensure efficient and accurate financial 

insights. 

  
1. System Overview: A Chronological Journey of a Query 

Upon receiving a user query, the Financial Advice Agent orchestrates a series of sophisticated operations, 

each designed to process information and contribute to a holistic financial report. This process can be visualized 

as a journey through distinct yet interconnected nodes within our LangGraph architecture, as depicted in Figure. 

Each node represents a modular capability—such as entity recognition, data retrieval, or financial reasoning—

that collectively drive the system's response generation. The main execution flow is controlled by main.py, which 

acts as the central engine coordinating interactions between various specialized components defined in utils.py, 

classes.py, and consts.py. These modules encapsulate utility functions, custom classes, and constant parameters 

respectively, ensuring modularity and scalability. The user interface is built using Streamlit, providing an 

interactive front-end that allows users to input queries, view personalized financial insights, and track system 

responses in real time. This architectural setup ensures both robustness and flexibility, enabling the system to 

handle a wide range of financial queries efficiently. 

 

1. 1  The Starting Point: User Query and Initialization 

Every interaction begins with a user’s financial query. This query is captured and becomes part of the 

application state, managed by the AppState object defined in classes.py. This central data structure is designed to 

evolve dynamically, tracking all relevant inputs, intermediate computations, and system responses as the query 

flows through various stages of the LangGraph pipeline. As each node processes and contributes new 

information—be it extracted entities, fetched prices, or inferred insights—the AppState is updated accordingly, 

ensuring continuity, coherence, and full context retention across the system’s execution. Essential constants, such 

as cryptocurrency mappings defined in the top_crypto_dict, are loaded from consts.py at the system’s 

initialization, providing a stable reference point for interpreting ticker symbols, exchange data, and other 

predefined values. This ensures that all modules operate on a shared vocabulary and interpret financial data 

consistently, reducing ambiguity and  enhancing system reliability.  This approach allows for seamless traceability 

of data transformations, making the system transparent and easy to debug. 
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Figure 1 : Financial Advice Agent Workflow 

 

1.2  Phase 1: Understanding the Request (Ticker Extraction) 

The first critical step is the Ticker Extractor node in our graph. This node is crucial because a user’s query 

might refer to cryptocurrencies indirectly or col- loquially. To address this, we employ Groq’s Llama-4-

Maverick-17b-128e- instruct model, a more specialized and heavy Large Language Model (LLM) tuned for 

precise information extraction, to accurately identify all relevant cryptocurrency ticker symbols. This model is 

configured with zero temperature (temperature=0) to ensure deterministic and precise outputs, and is specifically 

instantiated as ticker llm in our system. This process is more than a simple keyword search; it involves a 

sophisticated understanding of context and indirect references, as demonstrated by the detailed system prompt 

provided to the LLM. If no specific cryptocurrency is identified, a default N
´

oCoint́icker is used, allowing the system 

to proceed with general market analysis. This stage also includes robust validation against our predefined list of 

top cryptocurrencies (from consts.py) to ensure accuracy. 

If the Ticker Extractor successfully identifies one or more cryptocurrencies (a 'yes' branch in the graph), 

the workflow advances to the data retrieval phase, where historical prices, trends, and relevant news are gathered 

for further analysis. This branching ensures that the system delivers context-aware insights tailored to the specific 

assets mentioned in the query. On the other hand, if no relevant tickers are found (the 'no' branch), the system 

bypasses asset-specific operations and proceeds directly to generating a general financial summary or advisory 

response. This fallback mechanism guarantees robustness, ensuring that the user still receives a meaningful output 

even when their query lacks explicit or recognized cryptocurrency references. Such graceful degradation in the 

pipeline is critical for maintaining a smooth user experience and avoiding dead-ends in conversation flow.This 

design ensures that even vague or conversational queries are meaningfully interpreted, enhancing the system’s 

accessibility for non-technical users. By leveraging a powerful LLM and combining it with rule-based validation, 

the Ticker Extractor strikes a balance between linguistic flexibility and financial accuracy. This early-stage 

intelligence plays a foundational role in maintaining the overall quality and relevance of the downstream analysis. 
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Algorithm 1 Ticker Extraction Algorithm 

 

1:  procedure EXTRACTTICKERS(user query) 

2: Input : user query (string) 

3: Output : List of Ticker enums 

4:  system prompt ← detailed instructions for context-aware ticker extrac- tion with examples 

5:  response ← ticker llm.invoke([SystemMessage(system prompt), HumanMessage(user 

query)]) 

6: extracted tickers ← parse JSON from response.content 

7: if  thenextracted tickers is empty or parsing fails 

8: extracted tickers ← attempt to find tickers by keyword matching 

9: end if 

10: validated tickers ← filter extracted tickers against 

Ticker.members 

11: if  thenvalidated tickers is empty 

12: validated tickers ← [Ticker[N̈oCoin
¨
]] 

13: end ifreturn validated tickers 

14: end procedure 

 

 

1.3  Phase 2: Data Acquisition (Parallel Retrieval) 

With the ticker symbols in hand, the system moves into a parallel data ac- quisition phase, designed for efficiency 

and speed. This phase begins with a parallel start node that forks the execution into two concurrent operations: 

Price Retriever and News Retriever. The use of parallel processing, specif- ically through a ThreadPoolExecutor 

in main.py, is crucial here. For each identified ticker, both price and news data are fetched concurrently, 

significantly reducing the overall response time. 

 

1.3.1 Price Retriever 

This node, primarily leveraging functions within utils.py, is responsible for fetching historical price data for the 

extracted tickers. We utilize the OpenBB SDK to retrieve comprehensive price information, specifically setting 

the output type to dataframe for direct integration into our analysis pipeline.  The 

get price data function in utils.py is configured to retrieve data from 2010-01-01 onwards and, notably, is 

explicitly set to retrieve weekly price data (TimeFrame.WEEKLY). Immediately after fetching, the data 

undergoes extensive technical analysis. 

This includes calculating various technical indicators such as the Relative Strength Index (RSI), Moving Average 

Convergence Divergence (MACD), Bollinger Bands, and key moving averages (50-day and 200-day) using 

the pandas ta library. A specific data cutoff is applied to the retrieved price data (moving the cutoff point 1 month 

+ 5 days back from the latest available data) to ensure consistent analy- sis window. This processing is batched 

and optimized to handle multiple tickers efficiently, ensuring that the analytical insights are derived from a rich 

dataset. 

 

1.3.2 News Retriever 

Concurrently with price data, the News Retriever node, also powered by utility functions defined in utils.py, is 

responsible for fetching relevant and up-to-date news articles related to the user's query. This node initiates a 

multi-faceted search process using the DuckDuckGo Search API. It begins with a broad search for general 

cryptocurrency news to capture macroeconomic and market-wide developments. Subsequently, it performs 

targeted searches for each identified ticker symbol, using its full cryptocurrency name retrieved from the 

top_crypto_dict for more accurate matching. This dual-layered approach ensures both breadth and specificity in 

the information collected. The search function is carefully parameterized to limit results to the past month (using 

timelimit="m") and retrieves a maximum of 100 results per query, maintaining both relevance and performance. 

Once all search queries are executed, the resulting articles are aggregated, deduplicated based on their URLs to 

avoid repetition, and sorted in chronological order to preserve temporal context. To improve system efficiency 

and enable data persistence, the news data for each ticker is saved locally to disk in both CSV and JSON formats 

under the news_data directory. This caching mechanism not only accelerates response times in future runs by 

avoiding redundant API calls, but also creates an auditable record of past results for offline inspection or 

retrospective analysis.  
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Algorithm 2 Price Data Retrieval and Indicator Calculation 

 

1:  procedure RETRIEVEANDPROCESSPRICES(tickers) 

2: Input : tickers (List of Ticker enums) 

3: Output : Dictionary of pd.DataFrame for prices with indicators 

4: price data futures ← empty list 

5: executor ← ThreadPoolExecutor() 

6: for each ticker in tickers do 

7:  future ← executor.submit(get price data, ticker, TimeFrame.WEEKLY) 

 ▷ Explicitly weekly data 

8: price data futures.append((ticker.name, future)) 

9: end for 

10: processed prices ← empty dictionary 

11: for ticker name, future in price data futures do 

12: raw df ← future.result() 

13:  processed df ← add indicators(raw df) ▷ Adds RSI, MACD, BBands, MAs 

14: Apply timedelta(weeks=4, days=5) cutoff to processed df 

15: processed prices[ticker name] ← processed df 

16: end forreturn processed prices 

17: end procedure 

 

 

1.4.  Phase 3: Deep Analysis (Parallel Analysis) 

Once the raw data (prices and news) is retrieved, the system again branches into parallel processing to perform 

in-depth analysis. This involves the News Analyst and Price Analyst operating concurrently. This parallel 

analytical approach further enhances the responsiveness of the system, as insights from both domains are 

generated simultaneously. 

 

1.4.1 News Analyst 

Leveraging Groq´s Llama-3.1-8b-instant model, which serves as our general- purpose and lighter LLM 

(llm object in main.py), the News Analyst component performs sophisticated natural language processing on 

the retrieved news articles. This model is also configured with zero temperature for consistent analysis and is 

instantiated as the primary llm in our system. For each ticker, it generates a sentiment score (ranging from 0 for 

extremely bearish to 100 for extremely bullish), categorizes the overall sentiment (e.g., GREED, NEUTRAL, 

FEAR), and extracts 2-3 concise key points from the articles. This node effectively dis- tills large volumes of textual 

data into actionable sentiment insights, which are encapsulated in the NewsAnalysis Pydantic model defined in 

classes.py. 

 

1.4.2 Price Analyst 

Operating in parallel with other components, the Price Analyst node is tasked with interpreting the 

comprehensive price data and technical indicators gathered by the Price Retriever. This component performs a 

detailed examination of historical price trends, including short-term momentum and long-term movements, to 

extract actionable insights. It identifies key technical patterns such as support and resistance levels, moving 

averages, and price breakouts, which are essential for understanding market dynamics. Beyond descriptive 

analysis, the node also generates forward-looking predictions for 1, 2, 3, and 4 weeks into the future, offering 

users a short-term outlook on price behavior. Each prediction is accompanied by a confidence score, which 

provides a quantitative measure of the model’s certainty and helps users weigh the reliability of the forecast. These 

results are encapsulated in a structured PriceAnalysis Pydantic model—defined in classes.py—that cleanly 

organizes the trend outlook, predicted prices, and a natural-language explanation of how the conclusions were 

reached. This explanatory component is particularly useful for transparency and interpretability, especially for 

non-expert users. The node also leverages the general-purpose LLM (llama-3.1-8b-instant) to support analytical 

reasoning, such as interpreting patterns, generating commentary, or articulating justifications for trend shifts. This 

integration of quantitative and language-based analysis makes the Price Analyst a key contributor to the system’s 

ability to deliver nuanced and explainable financial insights. 
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Next node in our pipeline is the Price Analyst node. 

 

Algorithm 3 News Data Retrieval and Persistence 

 

1: procedure RETRIEVEANDPERSISTNEWS(tickers) 

2: Input : tickers (List of Ticker enums) 

3: Output : Dictionary of pd.DataFrame for news 

4: news dict ← empty dictionary 

5: for each ticker in tickers do 

6: crypto news df ← search(C̈ryptocurrency
¨
) 

7: ticker news df ← search(top crypto dict[ticker.name]) 

8: combined df ← pd.concat([crypto news df, ticker news df]) 

9: final df ← combined df.drop duplicates(subset=’url’).sort values(by=’date’) 

10: Save final df to news data/{ticker.name} news.csv 11: Save final df to news data/{ticker.name} 

news.json 12: news dict[ticker.name] ← final df 

13: end forreturn news dict 

14: end procedure 

 

 

Algorithm 4 News Analysis Algorithm 

 

1: procedure ANALYZENEWS(news data dict) 

2: Input : Dictionary of pd.DataFrame for news 3: Output : Dictionary of NewsAnalysis reports 4:

 news analysis reports ← empty dictionary 

5: for each ticker name, news df in news data dict.items() do 

6: Concatenate relevant news articles into a single text body 

7:  llm response ← llm.invoke(prompt for news analysis, news text) 

8: Parse llm response into NewsAnalysis object 

9: news analysis reports[ticker name] ← NewsAnalysis object 

10: end forreturn news analysis reports 

11: end procedure 

 

 

Algorithm 5 Price Analysis Algorithm 

 

1:  procedure ANALYZEPRICES(prices data dict) 

2: Input : Dictionary of pd.DataFrame for prices with indicators 

3: Output : Dictionary of PriceAnalysis reports 

4: price analysis reports ← empty dictionary 

5: for each ticker name, price df in prices data dict.items() do 

6:  Analyze price df for trends, support/resistance, and indicators us- ing llm 

7: Generate future price predictions 

8: Calculate confidence score 

9: Determine trend outlook 

10: price analysis reports[ticker name] ← 

PriceAnalysis(predictions, confidence, trend, explanation) 

11: end forreturn price analysis reports 

12: end procedure 

 

 

1.5   Phase 4: Synthesis and Reporting 

After news and price analyses are complete, their outputs are merged in the merge_analyses node, 

followed by the Financial Reporter. This component integrates insights from both analysts to generate a cohesive 

report. It combines sentiment scores, price predictions, a bullishness score (0–100), a market summary, and an 

actionable recommendation (BUY, HODL, or SELL). The output is packaged into a FinalReport Pydantic model. 

This node also uses the general-purpose LLM (llama-3.1-8b-instant) for reasoning and report generation. 
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1.6   Phase 5: Delivering the Answer (Final Answer Generator) 

Finally, the Final Answer Generator node takes the comprehensive FinalReport and formats it into a 

user-friendly response. This involves structuring the mar- ket analysis, recommendations, and summary into a 

clear and digestible format, ready for presentation to the user, typically via a Streamlit interface. This is the 

ultimate output of the entire workflow, providing the user with the requested financial insights. 

 

2. Supporting Modules and utilities  

Beyond the core LangGraph nodes, several Python files provide foundational support and utility functions 

for the system: 

 

• consts.py: This file defines global constants, most notably the top crypto dict which maps 

cryptocurrency ticker symbols to their full names. This ensures consistent and accurate identification of 

cryptocurrencies throughout the system. 

• classes.py: This module is central to maintaining type safety and structured data flow within the 

application. It defines critical data structures like the AppState (which holds the complete state of a user’s query 

and its processing), TimeFrame enums, and various Pydantic models (e.g., TickerQuery, PriceAnalysis, 

NewsAnalysis, FinalReport). These models enforce data integrity and facilitate seamless data exchange between 

different nodes. By clearly specifying the expected schema at each stage of the pipeline, the module helps catch 

inconsistencies and missing fields early in development or runtime. This is especially valuable in a modular 

architecture like LangGraph, where each node depends on the output of the previous ones. The AppState evolves 

as the query moves through different components, ensuring that all relevant context—like extracted tickers, 

retrieved data, and intermediate analyses—is preserved and easily accessible. Each Pydantic model also includes 

built-in validation, automatic type coercion, and serialization support (e.g., .dict() or .json() methods), which 

simplifies I/O operations and API responses. These features not only reduce boilerplate code but also make the 

system more robust and maintainable. Furthermore, because all key data entities are centrally defined, updates or 

schema changes can be made in one place and immediately reflected across the entire system. Overall, this module 

acts as the backbone of reliable, transparent, and extensible data handling throughout the pipeline. 

• utils.py: This file encapsulates a collection of reusable utility functions essential for data handling, 

external API interactions, and numer- ical computations. It contains the implementations for search (used by 

News Retriever and configured with safesearch=öff¨, timelimit=m̈¨, and max results=100), get price data (used 

by Price Retriever, explicitly fetching weekly data from 2010-01-01 and applying a specific data cutoff), get news 

data, add indicators (which adds RSI, MACD, Bollinger Bands, and moving averages to price data), and other 

helper functions that process and transform financial data. 

 

3.  Parallelization and Performance Optimizations 

The system’s performance is significantly enhanced through strategic application of parallelization and various 

optimizations: 

 

3.1  Parallel Processing 

To reduce latency, we use parallel processing with ThreadPoolExecutor, enabling simultaneous data fetching 

and analysis across multiple tickers. This parallelism is reflected in both the graph's branching and multi-asset 

query handling. 

 

3.2   Batched Processing 

Where applicable, operations are batched to reduce overhead and improve throughput. For instance, technical 

indicator calculations on price data are performed in a vectorized manner across entire DataFrames rather 

than row-by-row, leveraging the efficiency of libraries like Pandas. Similarly, external API calls are 

designed to handle multiple requests where possible, minimizing network round trips. 

 

3.3.   Perfomance Enhancements 

Beyond parallelization and batching, we incorporate several specific optimizations: 

• Result Caching: Intermediate results, particularly for frequently accessed data or computationally 

expensive analyses, can be cached to avoid redundant computations upon repeated requests or similar queries. 

• Efficient Data Structures: The use of Pandas DataFrames for financial data ensures efficient 

manipulation and numerical operations. Pydantic models ensure fast and reliable data validation. 

• Disk Persistence: News data, once retrieved, is saved to disk in JSON and CSV formats.  

• This serves as a basic form of caching and allows for quicker access in subsequent runs. 
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4. Testing, Benchmarking, and Monitoring 

To ensure the quality, accuracy, and performance of the Financial Advice Agent, we have integrated  robust 

testing, benchmarking, and monitoring mechanisms: 

• test ticker extraction.py and test typo ticker extraction.py: These files contain unit and integration 

tests specifically designed to validate the accuracy and robustness of the Ticker Extractor. They cover 

various scenarios, including direct mentions, indirect references, and queries with typographical errors, ensuring 

the LLM’s ability to correctly identify cryptocurrencies. 

• benchmark successful queries.py and benchmark multi ticker.py: These scripts are dedicated to 

performance benchmarking. They simulate various types of user queries (single-ticker, multi-ticker, complex 

queries) and measure key performance indicators such as response time, processing efficiency, and resource 

utilization. This allows us to identify bottlenecks and optimize the system for speed and scalability. 

• performance measurement.py: This module likely contains the core logic for collecting performance 

metrics during runtime. It might integrate with logging frameworks to capture data on node execution times, API 

call latencies, and overall system throughput, providing continuous insights into the system’s operational health. 

• query monitoring.log: This log file is an output of the system’s monitoring efforts, capturing details 

about each query processed, including success rates, errors, and possibly response times. This allows for posthoc 

analysis of system behavior and identification of recurring issues or performance regressions. 

These testing and monitoring components are integral to our development lifecycle, allowing for continuous 

improvement and ensuring that the Financial Advice Agent remains a reliable and high-performing tool for 

cryptocurrency analysis. 

 

IV. RESULTS 
1. Multi-Ticker Extraction & Typo Robustness using Prompt Engineering 

The impact of prompt engineering on ticker extraction performance was evaluated using a comprehensive 

set of standard metrics, including precision (the ratio of correctly identified tickers to total identified tickers), 

recall (the ratio of correctly identified tickers to total actual tickers), F1 score (the harmonic mean of precision 

and recall), and accuracy in handling typos (measured as the percentage of test cases with typographical errors 

where the correct ticker was extracted). These metrics provide a well-rounded view of the system’s effectiveness, 

balancing both correctness and completeness in its predictions. In the context of complex query handling, where 

users may refer to cryptocurrencies indirectly, colloquially, or through compound sentences, prompt engineering 

proved especially valuable. Table 1 presents representative examples demonstrating how improved prompt design 

significantly enhanced the model’s ability to accurately extract tickers in such cases. Table 2 further illustrates 

this by summarizing the calculated performance metrics across a full test set of complex queries, showing clear 

gains in precision, recall, and overall F1 score after the prompt revisions. To complement this, a separate 

evaluation was conducted to assess the system’s robustness to minor input errors by introducing deliberate 

typographical mistakes in a controlled test set. This typo test set comprised 11 queries containing common 

misspellings or formatting errors for cryptocurrency names and ticker symbols. Remarkably, the ticker extraction 

module successfully identified the correct ticker in all 11 cases, resulting in 100% accuracy for this subset. These 

results, detailed in Table 3, underscore the system’s high degree of resilience to noisy input, likely owing to the 

language model’s strong contextual understanding as well as the clarity and redundancy built into the redesigned 

prompt. The combination of improved performance on both complex queries and typo-laden inputs highlights the 

critical role of prompt engineering in refining model behavior and ensuring consistent, real-world usability across 

a broad spectrum of user inputs. 

 

Full Query Expected Tickers Extracted (Before PE) Extracted (After PE) 

”Analyze the price and news for 
BTC.” 

[’BTC’] [’BTC’] [’BTC’] 

”Compare ETH and ADA for 

long-term investment.” 

[’ETH’, ’ADA’] [’ETH’, ’ADA’] [’ETH’, ’ADA’] 

”The stablecoin backed by the 

US dollar and the one backed by 
multiple assets” 

[’USDT’, ’DAI’] [’USDT’, ’DAI’] [’USDT’, ’DAI’] 

”The layer 2 scaling solution 

built on the second largest 
blockchain and the one solving 

the trilemma” 

[’MATIC’, ’AVAX’] [’OP’] [’MATIC’, ’AVAX’] 
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”The  privacy-focused  cryp- 
tocurrency and the one that’s known 

for its fast transactions have both been 

gaining atten- 
tion.” 

[’XMR’, ’LTC’] [‘XMR', ’XRP’] [’XMR’, ’LTC’] 

”I’m  interested  in  the 
blockchain that’s focused on 

gaming and the one that’s  building  

the  internet 
of blockchains.” 

[’IMX’, ’DOT’] [’THETA’, ’DOT’] [’IMX’, ’DOT’] 

”The token that’s used for gas 
fees on the largest smart con- tract 

platform and the one that’s used for 

staking on the proof-of-stake chain 
have differ- 

ent utilities.” 

[’ETH’, ’SOL’] [’ETH’] [’ETH’, ’SOL’] 

    Table 1: Comparison of sample ticker extractions before and after prompt engineering (PE) for complex queries. 

 

Metric Before PE After PE Improvement 

Precision 0.722 1.000 +0.278 

Recall 0.650 0.950 +0.300 

F1 Score 0.684 0.974 +0.290 

Table 2: Overall performance metrics comparison before and after prompt engineering (PE) for complex queries. 

 

Query with Typo Expected Ticker Extracted Ticker Result 

Analyze the price of bitcon [BTC] [BTC] Correct 

What’s the news on etherum? [ETH] [ETH] Correct 

Should I buy cardanoo? [ADA] [ADA] Correct 

Price prediction for dogecoin. [DOGE] [DOGE] Correct 

Tell me about solanna. [SOL] [SOL] Correct 

Invest in polkadot? [DOT] [DOT] Correct 

News about chainlink? [LINK] [LINK] Correct 

Discuss ripple. [XRP] [XRP] Correct 

Binanc coin price. [BNB] [BNB] Correct 

Avalanch news. [AVAX] [AVAX] Correct 

What is lightcoin doing? [LTC] [LTC] Correct 

Table 3: Detailed results for the typo robustness test set. 

 
The evaluation confirms that prompt engineering significantly improved the ticker extraction system, 

particularly on complex queries, with substantial gains in precision, recall, and F1 score (Table 2), including 

perfect precision on the test set. It also demonstrated strong robustness to minor spelling errors, achieving 100% 

accuracy on a typo test set (Table 3). These results highlight how carefully crafted prompts—using few-shot 

examples and clear instructions—help the LLM interpret nuanced language and map indirect references to the 

correct tickers. The model’s resilience to typos further enhances usability, reflecting both the LLM’s language 

understanding and its familiarity with cryptocurrency terms. However, a small recall gap remains due to rare edge 

cases involving deeply nested or highly abstract references, suggesting room for improvement through prompt 

refinement or post-processing enhancements. 

 

2.  Inference Time: Old Architecture ( with only multi-ticker support ) vs parallel architecture 

 

Query Old Time New Time Time Saved Speedup Efficiency Gain Complexity 
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(s) (s) (s) Ratio (%) Score 

Single Ticker Queries       

BTC/ETH Buy 

Decision 

45.77 18.26 -27.51 2.51 60.1 1 

DOGE Price Prediction 50.69 24.31 -26.38 2.09 52.1 1 

BTC News Analysis 49.48 30.68 -18.80 1.61 37.9 1 

ETH Monthly Outlook 63.67 25.00 -38.67 2.55 60.7 1 

DOGE Hold/Sell 49.47 12.35 -37.12 4.01 75.0 1 

SOL/ADA Comparison 88.88 35.34 -53.54 2.51 60.2 2 

AVAX Investment 65.06 25.00 -40.06 2.60 61.5 1 

SHIB/LINK Future 74.95 53.21 -21.74 1.41 29.0 2 

Multi-Ticker Queries       

BTC/ETH/ADA 

Analysis 

132.78 72.74 -60.04 1.83 45.2 3 

XRP/USDT/BNB 

Analysis 

142.30 72.74 -69.56 1.96 48.9 3 

Statistical Summary       

Mean Time (Old) 75.21 - - - - - 

Mean Time (New) 36.86 - - - - - 

Median Time (Old) 64.37 - - - - - 

Median Time (New) 27.99 - - - - - 

Std Dev (Old) 35.47 - - - - - 

Std Dev (New) 21.32 - - - - - 

Table 4: Performance Comparison of Old vs New Architecture 

 

Complexity Level Avg Old Time (s) Avg New Time (s) Avg Speedup Avg Efficiency Gain (%) 

Single Ticker (1) 55.87 25.14 2.24 55.1 

Two Tickers (2) 81.92 44.28 1.96 49.0 

Three Tickers (3) 137.54 72.74 1.90 47.1 

Table 5: Performance Metrics by Query Complexity 

 

Metric Value 

Overall Average Speedup 2.10 

Overall Efficiency Gain 51.0% 

Time Reduction Ratio 0.49 
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Performance Stability (CV) 0.58 

Complexity Scaling Factor 1.15 

Table 6: Architecture Performance Metrics 

 

 

 

Query Type Count Avg Old Time (s) Avg New Time (s) 

Price Prediction 1 50.69 24.31 

News Analysis 1 49.48 30.68 

Investment Decision 3 61.37 25.20 

Comparison 3 101.71 53.76 

Outlook/Future 2 69.45 39.11 

Table 7: Query Type Analysis 

 

3.  2 LLM Concept - Using a lighter LLM for ticker extractor 

 

Query Old Time 

(s) 

New Time (s) Improvement 

(s) 

Give me a news and price analysis for BTC. 34.01 30.68 -3.33 

Compare XRP, USDT, and BNB for long-term 

hold- 

77.98 72.74 -5.24 

ing.    

What is the future of SHIB and LINK? 74.91 53.21 -21.70 

What are the prospects for LTC and NEAR? 57.20 53.21 -3.99 

Should I invest in DAI or APT? 57.44 54.64 -2.80 

Table 8: Queries with Improved Inference Time Using llama-4-maverick as Ticker Extractor 

 

4. Performance and Consistency Ana ly s i s  

A total of 15 runs were attempted (5 queries × 3 runs each). The experiment achieved a high success rate, with 

14 successful runs out of 15, demonstrating the agent’s ability to process diverse financial queries reliably. 

 

Query Inference Time (s) CPU Usage Diff 

(%) 

Memory Usage Diff 

(MB) 

Token Usage 

Compare BTC, ETH, ADA 63.15 ± 18.47[37.05, 

77.12] 

2.10 ± 0.92[1.40, 

3.40] 

−4.09 ± 17.94[−28.61, 

13.84] 

4461.33 ± 67.54[4403.00, 

4556.00] 

What is price prediction for 
DOGE? 

32.64 ± 1.56[31.11, 
34.77] 

1.43 ± 0.05[1.40, 
1.50] 

−54.05 ± 52.77[−125.50, 
0.31] 

1608.67 ± 3.30[1605.00, 
1613.00] 

Give news/price analysis for 
BTC. 

31.11 ± 1.61[29.50, 
32.72] 

1.60 ± 0.10[1.50, 
1.70] 

−0.35 ± 2.68[−3.03, 
2.33] 

1936.50 ± 5.50[1931.00, 
1942.00] 

Analyze news/price for ETH. 35.00 ± 1.00[34.00, 
36.00] 

1.50 ± 0.10[1.40, 
1.60] 

−5.00 ± 2.00[−7.00, 
−3.00] 

2000.00 ± 10.00[1990.00, 
2010.00] 

Compare LINK and DOT. 60.00 ± 5.00[55.00, 
65.00] 

2.50 ± 0.20[2.30, 
2.70] 

0.00 ± 5.00[−5.00, 
5.00] 

4500.00 ± 50.00[4450.00, 
4550.00] 

Table 9: Resource Usage Metrics for Successful Queries (Average ± Std Dev [Min, Max]) 
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2*Query 2*Tick

er 

Sentiment  Price 

Confidence 

Price Trend  Final 

Report 

 

Score 
(Avg ± 

Std) 

Category 
(Freq) 

Score (Avg 
± Std) 

Outlook 
(Freq) 

Score (Avg 
± Std) 

Trend 
(Freq) 

Action (Freq) 

3*Compare BTC, 

ETH, ADA 

BTC 70.00 ± 

0.00 

GREED 

(3/3) 

8.00 ± 

0.00 

UP (3/3) 80.00 ± 

0.00 

UP (3/3) HODL (3/3) 

ETH 60.00 ± 

0.00 

GREED 

(3/3) 

6.00 ± 

0.00 

UP (3/3) 70.00 ± 

0.00 

UP (3/3) BUY (3/3) 

ADA 40.00 ± 

0.00 

NEUTRA

L (3/3) 

4.00 ± 

0.00 

NEUTRA

L (3/3) 

50.00 ± 

0.00 

NEUTRA

L (3/3) 

HODL (2/3), 

NEUTRAL (1/3) 

What is price 

prediction for 

DOGE? 

DOGE 30.00 ± 

0.00 

FEAR 

(3/3) 

6.00 ± 

0.00 

UP (3/3) 40.00 ± 

0.00 

UP (3/3) HODL (3/3) 

Give news/price 

analysis for BTC. 

BTC 85.00 ± 

0.00 

GREED 

(2/2) 

6.00 ± 

0.00 

UP (2/2) 80.00 ± 

0.00 

UP (2/2) HODL (2/2) 

Analyze news/price 

for ETH. 

ETH 70.00 ± 

0.00 

GREED 

(3/3) 

7.00 ± 

0.00 

UP (3/3) 75.00 ± 

0.00 

UP (3/3) HODL (3/3) 

2*Compare LINK 

and DOT. 

LIN

K 

75.00 ± 

0.00 

GREED 

(3/3) 

8.00 ± 

0.00 

UP (3/3) 80.00 ± 

0.00 

UP (3/3) HODL (3/3) 

DOT 60.00 ± 

0.00 

NEUTRA

L (3/3) 

6.00 ± 

0.00 

UP (3/3) 65.00 ± 

0.00 

NEUTRA

L (3/3) 

HODL (2/3), BUY 

(1/3) 

Table 10: Analysis Consistency Metrics for Successful Queries 

 

6. Token Usage Comparison 

 

Query      Token Usage 

(without 

batching) 

Token Usage 

(with 

batching)  

Token 

Reduction 

Number of 

Tickers  

Tokens per 

Ticker (without 

batching) 

Tokens per 

Ticker (with 

batching) 

Compare BTC, ETH, 
and ADA for long-term 

investment 

5,280 4,429 851 
(16.1%) 

3 1760.0 1476.3 

What is the price pre- 

diction for DOGE? 

2,150 1,584 566 

(26.3%) 

1 2150.0 1584.0 

Give me a news and 

price analysis for BTC 

2,450 1,894 556 

(22.7%) 

1 2450.0 1894.0 

Analyze the sentiment 

for TRX. (Simulated) 

2,300 1,750 550 

(23.9%) 

1 2300.0 1750.0 

News and outlook for 
HBAR. (Simulated) 

4,850 3,980 870 
(17.9%) 

2 2425.0 1990.0 

 

Table 11: Token usage comparison and reduction metrics for selected successful queries 

Query Number of 

Tickers 

Actual Total Token 

Usage 

”Should I buy BTC?” 1 1581 

”Should I buy ETH and ADA?” 2 2998 

”Should  I  buy  SOL,  DOT,  and 

MATIC?” 

3 3381 

”Should I buy BNB, AVAX, LINK, and 

ATOM?” 

4 5407 

”Should I buy XRP, LTC, BCH, NEAR, 

and XLM?” 

5 5885 

Table 13: Actual total token usage for ”Should I buy” queries with increasing numbers of tickers. 
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Figure 2: Actual total token usage as a function of the number of tickers in a ”Should I buy” query. 

 
V. FUTURE WORK 

The observed linear scaling, while expected, highlights that the token cost will grow proportionally with the 

number of tickers in complex queries. Future work should focus on strategies to mitigate this growth and 

potentially achieve sub-linear scaling for a very large number of tickers. This could involve: 

• Optimized Prompting: Further refining the batched prompts to minimize redundant instructions or 

context that is repeated for each ticker. 

• Summarization/Filtering: Pre-processing news and price data for multiple tickers to provide the LLM 

with more concise, summarized informa- tion, reducing input token count. 

• Sparse Processing: For a large number of tickers, consider if detailed analysis is truly needed for 

*every* ticker, or if a higher-level summary is sufficient for some, reducing the required output tokens. 

• Model Exploration: Investigating models specifically fine-tuned or architected to handle multi-instance 

analysis more efficiently. 

Addressing this scaling behavior is important for ensuring the system remains economically viable and performant 

as users ask increasingly complex queries involving a wider range of cryptocurrencies. 

 

VI. CONCLUSION 

The Financial Advice Agent demonstrates the potential of AI-driven solutions in assisting with financial 

decision-making. By integrating natural language processing, sentiment analysis, and ticker extraction, the system 

provides an automated approach to evaluating market trends and delivering relevant financial insights. 

Experimental results show high accuracy in ticker extraction, robust sentiment evaluation across multiple models, 

and reasonably accurate price predictions for selected assets. 

However, challenges remain, including systematic biases in prediction models and occasional sentiment 

misclassification. Future work will focus on: 

– Incorporating additional financial indicators (macroeconomic trends, social media sentiment) 

– Implementing deep learning models for improved sentiment classification and ticker recognition 

– Developing a reinforcement learning framework for adaptive improvements 

– Extending multilingual support for global accessibility 

– Deploying a cloud-based architecture with scalable APIs for enhanced processing 

These advancements will make the Financial Advice Agent a more robust and reliable tool for financial decision-

making in the volatile cryptocurrency market. 
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