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Abstract

The objective of this paper is to elaborate analytical solutions of fractional Boussinesq and Saint-Venant
shallow water equations based on the Adomian decomposition method. The Caputo fractional time deriva-
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I.  INTRODUCTION

The classical Boussinesq equation was derived from incompressible Navier-Stokes equations neglecting
density dependence in all terms except one involving gravity by Boussinesq|l] in 1872. It was firstly a model
for describing shallow water waves, and presently found in many geophysical applications |2]. It is also used

s to deseribe nonlinear string oscillations and irrotational flows of a non-viscous liquid in a uniform rectangular
channel see [3] 4] [5]. Because of its many real-world applications, the Cauchy problem corresponding to the
Boussinesq equation has attracted the attention of many researchers see [6] [7] (8] [9] [10].

The used derivatives have long time been limited to integers. However, some phenomena reveal the integra-
tion of a half order in the heat equations for example. Since then, there has been a lot of research and work
1w on partial differential equations with fractional derivatives. These derivatives are also used in the mechanical
modelling of various mechanical phenomina such as rubbers and all kinds of materials that retain the memory

of past deformations. This is because in the discretization of fractional equations to find the nth value, it is
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necessary to know all the values before 0 to (n-1)[11] and this reflects the memory effect. The transition to
fractional equations begins with the replacement of integer derivatives by fractional ones and then solutions
of the original natural equations become a special case of the solution of fractional equations.

In recent years, there has been a particular interest in fractional differential equations that are used to model
and stimulate new applications in fluid mechanies, viscoelasticity,...etc. For example, the nonlinear oscilla-
tion of an earthquake can be modelled with fractional derivatives[12], the fluidodynamic model of traffic
as well as in new advances in composite materials[14]. An approximate solution for a fractional diffusion
wave equation using the decomposition method has been presented in[15], and analytical and approximate
solutions of space-time telegraph equations in[16], as well as the diffusion and advection-dispersion problem
in|I7|, Hamzah et al used the variable fractional derivative for a pulsatile blood flow in constricted tapered
artery problem in [18].

In general, there is no procedure for obtaining exact solutions of all nonlinear partial differential equations.
The Adomian Decomposition Method (ADM)[19] is an efficient alternative that allows
finding analytical solutions for several linear or nonlinear, deterministic or stochastic models, as well as ap-
proximate numerical solutions. This method solves the problems of initial values and limit values|25] and
the approximate analytical solutions obtained can be verified by direct substitution. By implementing the
method ADM | it also allows obtaining an efficient algorithm to get approximate analytical solutions without
discretization or rounding, easy to implement as a program in different languages. These programs do not

consume much memory as in the case of finite elements or volume methods that require even computing

centers to program parallel codes for large and complex domains.

Our concern in this work is the investigation of analytical solutions of nonlinear fractional partial differential

equations of Boussinesq and Saint-Venant types as well as the coupling of these equations. The Adomian

decomposition terms are explicitly given for each nonlinear equation. The solution is obtained in the form of

series and the convergence of the solutions are demonstrated. Various Boussinesq and Saint-Venant shallow

water models are considered. The elaborated solution are well compared to available and elaborated solutions

based on the Kudryashov algorithm.

As the considered PDEs are fractional ones some properties of the used fractional derivative are firstly

recalled.

2. Basic definitions

a. Definition
A real function f(x), = > 0, is said to be in the space C,, p € R if there exists a real number p (p > p),
such that f(x) = zP.fi(x), where f,(x) € C[0,00), and it is said to be in the space C,, if fmeC, ,meHM.
b. Definition
The Riemann-Liouville fractional integral operator of order 5 > 0, of a function f € C,,, p > —1 is defined

I8 f(z) = ﬁf:(m—t)sflm)dt, B>0,2>0,

I°f(z) = f(2), =0,
where I'(.) is the well-known Gamma function. Properties of the operator I” can be found in [27] 28] and
here we mention only the followings :

For feCup=—-1,v F=0andv> -1

o IPD f(z) = IH8 f(z)

o I8 f(z) = I°D f(x)
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c. Definition

The fractional derivative D? of f(x) in the Caputo sense is defined as |29, [30]
1 x
3 _ n—Bnn _ _ yn—B—1¢n !
DPf(z)=1"""D"f(x) 71_,(11 5 /J (z—1) fr(e)dt (1)

wheren—1l<f<n,neN >0, feC",.

The basic properties of the operator D? are given by the following lemma.

o d. Lemma

fm-1<pf<m meNand feC,p>—1then

o DAIPf(x) = f(z)

« PDPf(z) = f(2) - TP FP(07).27, 2> 0

a5

3. Fractional Boussinesq equation
Let us consider the following time fractional Boussinesq equation with general initial conditions.

D?(D?U(-T t)) - ﬁ'Uxm(I~ t) - b(Uz(mt))mm - ED':Z:I‘:I‘I(‘T‘I) = f(I!,I)
(FB)ew = (2)
Ui(2,0) = g1(z), U(z,0) = ga(x),

The classical Boussinesq equation is obtained as a paticular case (a = 1).

(B)aw = {U““C‘” — aUa (2, 8) = b.(U2(2, )2z — Unaaa(,1) = f(2,1)

Ui(z,0) = gi(z), U(x,0) = ga(z),

where a, b and ¢ are constant coefficients and f(x,t), gi(z) and ga(z) are arbitrary given functions.

3.1. Uniqueness of the solution and convergence of the decomposition
Firstly, the uniqueness of the solution of the Boussinesq equation (2) is considered. For that aim we
d'U(z,t)

assume that F(U) = (U?)y,, DU = i i = 2,4 are Lipschitz continuous functions with
L

IEU) = F(U)|loo < Li||lU = U"|oo,
ID*U — D*U*||c < La||U = U*||ox, (4)
ID'U — D*U* || < Ls||U = U*||ox,

We also assume that z(z,t) = U(z,0) 4 tU(z,0) is bounded for all =, t € [0,T] and |t — 5| < M,

Y0 <s<t<T, MecR".
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We denote by «; the following constant :

'l[cxl
['(2a)

T(lalLy + [bLy + [¢|Ls) (5)

Theorem 3.1. Let 0 < ey < 1, then the fractional Boussinesq equation (2) has a unique solution.

70

Proof. Let U, U™ be two solutions of fractional Boussinesq equation (2).

U(:r,t):z(l',t)JrF(;a) fot(tfs)ﬁﬂ*D?U(x s)derF(ga) ft(rfs)ﬁﬂflp(v( ))ds+r(2a) /t(tfs)g'**iD‘lU(m,s)ds.

U — U*|—|r(2&) / (t — $)** Y(D?U(x, s) — D*U*(x, s))ds
+mfo (t— )2 YF(U(x,s)) — F(U*(z,35)))ds
+ F(;a) /t(z — 8)2 Y (D*U(z, s) — D*u*(x, s))ds|
|1"(2 )|[ [t — s|?*~Y DU (x, s) — D*U*(z, s)|ds
+ Imlf |t — s F(U(x,8) — F(U*(2,5))|ds
|r(2 |/ [t — 5|22 DU (2, 5) — DU (x, s)\ds
| —U*| < |r(2 )|A-"'.ir2“_ltLgﬂJa$0\<‘t\<‘T|U—U*|
|r(2 )|w?a—1tL1Maxo$<T|U —U"|
IF(2 )|J.I2°‘ YLaMazroci<r|U — U”|

R -
IV~ U*llow < gy (@ (lalLa + [bLL1 + [elLa) [V~ U”

U= Uloe < aa||lU =U" |
So (1 —ayq)||U =U*||s £0. Since 0 < oy < 1, then |[U -U"||,,=0 =U=U". |

Based on the Adomiam decomposition method the unknown function U(x,t), the solution of (2), is given

by the following decomposition series.

Ulz,t) = i Ui(z,t) (6)

DU(x,t) = i DUy (x,t), (7)
=

D'U(x,t) = i D'Ui(z,1), (8)

(U*)az (2, 1) ZA z,1). 9)

Theorem 3.2. The series solution U(z,t) = Y2 Ui(z,t) of the fractional Boussinesq equation (2) using
ADM is convergent when

0<ay <1, |Up(zt) < oo.
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Proof. Denote as (C([0,T7]),||.||) the Banach space of all continuous functions on [0,T] with the norm || f|| =

maxo<i<7T | f(t)]. sn =31 o Ui(z,t) Is sequence of partial sums. We prove that (sy), is a Cauchy sequence
in this Banach space.

For n,m € N* such that n > m.

Hgn_ ‘m||_ qu' Z Ui(:r:t”

0<t<T
i=m-+1

0<t<T|r(2a) /( t—s)’” 1(2 D?Uy(x,5))d
n—1

bt o
+m/0(r—s)9 ' Aids

i=m

- + n—1
£ 201 Arr
+—F(20)/0{t s) (;lp Ui(z, s))ds|
We have
n—1
ZDQU DQ(SH 1) — (Sm 1)
n—1
Z 4. = 5'11_ F(5n1—1)1
n—1
Z D4Ui = D4(Sn—1) - D4(Sm—1)1

We make
a t n—1
_ ' _ o)2a-1 211 " g
B(O) = g [ (=9 (3 Do)
n—1
o Qc\ l 4 d
Qa)/ 2 i)ds
n—1
20;)/ —sgﬂlZ:DJ x,s))ds|
So, for t € [0.T]
t
a .
B(t) < |m|/O [t — s|2“_1\D23n_1 — Dgsm_l\ds
b ! 200—1
+ \ml_/o [t — s[* 7 |F(sn—1) — F(sm—1)|ds
t
€ 21|yt 1
_— t—s D — D5 d
+ gy [ = s D sy = D lds
< l9—'l||3n,—1 - 3m—1||;
50, ||3n - SmH < a’len—l - 3n1—1||-
Forn=m+1
||Sm+1 - Sm” < OZ]_HSm - Sm—l” < a%”‘gnl—l - Sm.”

[$m41 = sml| < af*[[s1 — sol|
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Recurrently one gets :

Hsn - SmH g ||5m+l - Sm” + H5m+2 - 5m—1|| + ...+ ||3n - Sn—lH
<ol + o 4+ ol st — sol

<af'[l+ai+..+af ™ |ls1 — s
1—a]™™

< ot | ——]||Uy (z, ¢

<af [l 0l

Since0<ay <1, n>m l—af™™ <1

a]ﬂ. -
5o = sl < T s ) (10)
[|Uq(z,t)|| < oo, so, as n — oo, then ||s,, — s,,|| — 0.
(8n)n is a Cauchy sequence in C([0,T7]), and then (sy), is convergent. O

Theorem 3.3. If ||U(z,t)|| € K then the mazimum error of the series (6) of the problem (FB) is :

m m
af .
||U(m.t)—ZUi(mjt)H§1 K (11)
i=0 ™
Proof. From Theorem 3.2 and the inequality (10) we have :
a]n -
I8 = 8onll € FE— Va0

Asn — 00 s, — Uz, t) and ||Uy(z,t)|| < K the maximum absolute truncation error is finally :

[U(z.t) = > Uiz, 1)]| <
i=0

af’ -
LK
1-— [a'5)

32.2. Fractional Boussinesq decomposition

The main part of this subsection is the elaboration of explicite decomposition for the fractional Boussinesq
nonlinear differential equation (2). For this aim, we apply the inverse operator I in both parts of the equation

partial (2) :

k
(F'B)sw : DEU(2,t) = zg;;,lvm(x,oﬂ.% +I%(aly,) + b1 (U)as) + eI (Uszaa) + I°(f) (12)

By reapplying the inverse operator I in both parts of the first equation and using integral’s propriety one

gets :

k
(FB)sw : U(z,t) = EstlU(“(sc.Oﬂ.% + 1% (aUo) + b1 (UP)ag) + 217 (Upawa) + 122(f)  (13)

Inserting of the decompositions (6)(9) in (2) and using some mathematical developments and identifications,

= the following sequences are obtained :
s Ag=U3
o Ay =204
o Ay =2.0pUs + U?

L] A3 = 2.UOU3 + Q.UlUQ
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o A, =X Uil s

Using the previous decompositions and inversed formulation (13), one gets :

I ko
(FB)sw : 532 Un = BP0 (2,014 + 2 (520 (@(Un)ws + €(Un)awes) + b1 (E520(An)az) + 17(f)
' (14)
To lighten the writing we omit (x,t). The identification of these decompositions leads to :
FB): m_1770) 5 4y I 15
(FB)o: Uy = X0t U (2,0 ) (15)
(FB)l : Ul = IQQ(G(DVO)II + E(UD):r:r:ra:) + bIQa((AO)a:a:) + Iga(f) (16)
The recursivity leads to :
(FB)'R+1 : Un+1 = IQQ (Q(Un)xx + E(UR)IIII) + bI2a (Aﬂ):c:c + Iga(f) (17)
This recurrent relation can be rewritten as
(FB)?’I+1 : Drn+1 = Izﬂ(a([-’rn)z:r + E(UIL)CE:I‘II) + bIQﬂ(E?ZOLrabrn—i)xz + 120 (f) (18)

Finally, the presented recurrent relationships allow one to get analytical solution of the fractional nonlinear
equation (2) with an arbitrary value of the fractional order o. Higher orders can be computed in the presented
o straithforward maner specifying the coefficients, the source and initial conditions.
3.3. Application
For the sake of validation, the obtained formulations are tested in the following fractional Boussinesq

equation.

(B {D? (DEU(2,6)) — alpa(z. 1) — B(U2(2,))aw + U (2,8) = O o)
Ui(z,0) = g1(z), U(z,0) = ga(x).

with the following initial conditions :

go(z) =1+ K sec hQ(\/gcr) (20)

gi(z) = \/gfﬁ’%csec R2(4/ %z)tanh( %z) (21)

K is a constant that can represent the amplitude of the pulse.

(FB)o: Uy =1+ K sech?( %I) (22)
(FB)I U = tgl(x) + Iga((UO):r:r + E(Lro)a:xx:r + (AD)II) (23)

(FB)y: Uy =tgi(z) + éKQ sec h?( %r){SOKsec R2(y/ %r)mnhg(ﬂ %T)

K K K K 12
- 4 e et 2 [ - 2, [ 20 |8 -
+ 30K tanh®( ?:c) 6K sec h=( 5 z) — 30K tanh*( 5 T) + 2Ttanh*( 5 T) 4 4K Q}F(Qa Y
(24)
(FB)H+1 : L'rﬂJrl = Iga((Un)TT + E(L'rﬂ)x:r:r:r + (AH.):I‘T) (25)
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To test the accuracy of the presented decomposition exact solution of equation (19) is elaborated here for
« = 1 based on the Kurdyashov algorithm. Mathematical details of the associated exact solution is given in

the appendix here in. The obtained solution is :

. o 2K K, K In(A) .
L(r,t)—:(co—g—l—?&.ech (*‘!E(r—ct)— 2 ) (26)
with :
[o.a =K .3k
c= 2(54-?).!&—7
If a=b=1, =0, A=1, £ = £1 the exact solution elaborated by (Manoranjan et al. |31] is :
. B a ¢ 200K o [K .
D(f.t)—€(£+§—g+?bech( F(l—cf))) (21)

U(x,t)==¢ (3 + % + K sec hz(\/g(:c - cf)))

(c) (d)

Figure 1: Exact and approached solutions for K=0.369, ¢=1.116432, 0 < ¢ < 2 :(a) exact (b) approached solution for @ = 1, (¢)

approached solution for e = 0.5,(d) approached solution for ov = 0.1
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with : 8 = 4, ¢ = £/2e(f+ %) the velocity and K is the amplitude of the pulse, £ is an arbitrary
parameter, xq is the initial position of the pulse, where ¢ = —1 gives the Good Boussinesq (GB) and ¢ = 1
gives the Bad Boussinesq.
o For numerical representation we take ¢ = 1, § = 0.5, K=0.369, ¢=1.116243701
Figure 1 presents the exacte solution in Fig 1-a and approached solution at order 1 in Fig 1-b for o« = 1.
The accuracy is observed and the approached solution can be improved by higher orders. For e # 0, there is
no available exact solution. Thus, the presented analytical approximate solution can be used to analyse the
corresponding solutions behaviour. For @ = 0.5 and a = 0.1, the approached solutions are presented in Fig
w 1-c and Fig 1-d.
Absolut error in (x,t) for @ = 1 is presented in figure 2-a and in («, z) in figure 2-b for t=0.5. These figures

show clearly the accuracy of the approached solution The presented solution can be used for parameters

t=0.5

.05 L]

0.025

0.000
0.00

(errl) (err2)

Figure 2: Absolut error in (x,t) for &« = 1 in (errl) and in (e, x) for t=0.5 (err2)
effects analysis on the Boussinesq shallow water system. The effects of parameters a, b and £ are presented

in figures-3-a-b-c.

ws 4. Saint-Venant shallow water system

In this subsection, the following nonlinear fractional Saint-Venant system is considered.
DfH(z,t)+ (HU)z(z,t) =0
(FSV)ow = { DRU + (3U% + g.H), + g.Fd, = 0 (28)
U(z,0) = ga2(z), H(z,0) = g3(z)

where the velocity U(x,t)and heigh H(x,t) of the wave are the unknowns. The acceleration g and the initial
conditions go and g3 are given functions as well as the bed topography function Fd. The following classical

Saint-Venant partial differential system is widely used

Hy(z,t) + (HU)y(z,8) =0

gH?(z,1)

(SV)ew = { (HU)o(z,t) + (HU?)(2,t) + )o + gH (z,t)(Fd(z))s = 0 (29)

U(z,0) = ga(z), H(z,0) = ga(z)
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a=1 — b=0.5
a=5 —— b=1
60 — a=10 b=5
T a=15 a F b=10
b=epsilon=1 a=epsilon=1.
3F 13
40 40
__,./f\__‘— 2 2
20 20
1 1
4_,..—"'—"‘-\—..,_‘—
0 S 0
S0 25 ) X 25 50 50 25 0 I 25 50
(a) (b)
-50 -25 '] 25 50
125 [ T T J1s
——epzilon=0.5
—cpsilon=1
t —epsilon=0.7
100 a=h=1. H 100

(c)
Figure 3: Variation of U(x,t) for different values of a, b and € at t=0.5, K=0.369

This equation can be rearanged as

H,(z,0) + (HU),(2,t) =0= H, = —H,U — HU,
gl (z,t)
2

U(—H,U — HU,) + H.U, + (H.U%), + gH.H, + gHFd, —
H(U, —UU,) — H,.U? + H,.U* + H.(U?), + gH.H, + gHFd, = 0

(HU) (2, t) + (HU?)(z,t) + )+ gH (z,t)(Fd(z)), =0

H(U, —UU,) +2H.UU, + gH . H, + gHFd, =0
H{U+UU, +gHy +9g.Fdy) =0
U+ UU; +9.He + 9. Fdy =0

A
U, +(§Dg+g.H)r+g.Fo§I =0
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Thus,the following compact system is resulted
Hi(z, )+ (HU) (2, t) =0
(SV)sw = U + (%UQ +g.H)y +g.Fd, =0 (30)
U(z,0) = ga(z), H(z,0) = ga(z)

This equation is a particular case of (26) for @ = 1 and widely used for shallow water analysis

4.1. Uniqueness of the solution and comuvergence of the decomposition

For the uniqueness of the solution of the considered fractional Saint-Venant system (26), let us assume

that :
F(U) = 4(U?),, G(H)= (H.U), are Lipschitz continuous functions with
|F(U) = F(U")||loo € Li[lU = U], (31)
|G(H) = G(H")||oc < Lo||H — H" ||, (32)
(33)

U(x,0) and H(z,0) are bounded for all 2, t € [0,T] and [t —s| <M, Y0<s<t<T, MeR".

We denote by ag the following constant :
- [Ty
oy =M 1T|m|.-"l{ax(L1,Lg) (34)

Theorem 4.1. Let 0 < ag < 1, then the fractional Saint- Venant system (26) has a unique couple of solution
(U, H).
110
Proof. Assuming that H is unique, let us demonstrate that U is unique too.

Let U, U™ be two solutions of fractional Saint-Venant equation (26). Thus,

U(z,t) = U(z,0) + mﬁ (t — s)* LF(U)ds — ﬁ/ﬂ (t—s)* ' H,ds — ﬁ A (t — s)* LFd,ds.

U-U* = Iﬁ [o (t—8)* " H(F(U) = F(U")(z, 5))ds|

< |ﬁ% |t = s|*~F(U) — F(U*)(z,5))|ds

T T ]- o— y *
;’l’fﬂ-iogtéT|L‘ —U | < |m|lf 1TL-111{QT0§:§T|U -U |

U =Uoc < aa|U =U"||oo

So (1 —a)||U—-U*|ee €0. Since 0 < ap < 1, then | U —U*|.o =0 =U=U".
Let H, H* be two solutions second equation of fractional Saint-Venant system.

Assuming that U is unique, let us demonstrate that H is unique too.

1

H(x,t) = H(x,0) + ﬁ /0 (t — s)* ' G(H)ds.
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*| __ 1 ' a— *
|H - H I—\m_/o (t— )1 (G(H) — G(H")(z,s))ds|

Mazogecr|H — H*| < ‘ﬁ|ﬂf{a_1TL2ﬂi{aTUg‘th|H — 07
|H - H*|| <as|H—-H"||«
So, (1 —ag)||H — H*||oo <0. Since 0 < g < 1, then |H -H"||,, =0 =H=H". O

The Adomiam decomposition of the solution of (26) is given by the series

Ulz,t) =Y Ui(z.1) (35)
i=0
Y AEX) (36)
i=0
Theorem 4.2. The series solution of U(x,t) =3 i Ui(x,t), =Y Hi(z,t) of fractional Saint-

Venant system (26) using ADM is convergent when
0<ag <, [Hy(z,t)|<ooand |Up(xt)| <o

Proof. s,, = Y; o Ui(z,t) is a sequence of partial sums. We prove that (s,), is a Cauchy sequence in the

Banach space.(C[0,T],].]|)

For n,m € N* such that n > m.

[18n = sml| = max| Z Hi(z,1)]

<t<T

i=m+1
n—1
2o—1
F— 8 E B;
D<t<T a)/ ) ( |
i=m

We have

n—1
D Bi=Glsu1) = Glsm 1),

i=m

We take .
€)= Igga [ (=97 (3 Boas
So, for t € [0,T
1 ! .
Clt) < i) [ 1= 511G s00) = Gl

+ | Ly \/t|t—q|9“_l|q { — Sm_1|ds
Lla) /o

< C‘CQHSH—J - Sm—le

S0, Hsn_SmH SQQHSH—I _5111—1”-

Forn=m+1

Hsm+l - Sm” S O‘:QHSm - Sm71|| S tlg|‘sn171 - sm—QH

[[$m+1 — sml| < ag'[|s1 — so]|
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Recurrently, one gets :

Hgn - SmH < Hgm+l - Sm” + H3m+2 - Sm—lH + ...+ ||511 _Sn—IH
< [of! + o™+ af ! ||s1 — sol |

<ofl4+aa+..+al ™ ls) — sl

n—m
1—ay

< ap [Ty, 1)|
Since0<ag <, n>m 1-a;j ™<1
al’
1sn = smll < 7= M1H1 (= 1) (37)
[|Hy(z,t)|| < o0, so, as n — o0, then ||s, — &, || — 0.
(8n)n is a Cauchy sequence in C([0,T7]), so (sp)n is convergent. O

Theorem 4.3. If ||H(z,t)|| € K then the mazimum error of the series (34) of the problem (FSV) is :

as .
- K (38)

|| H (z,t) _Z‘;Hi(if.t)“ <35

Proof. From Theorem 4.2 and the inequality (35) we have :

m
ay

[[$n — 8m|| <

< Tl )

Asn — 0o 8, — H(z,t) and ||H(z,t)|| < K, the maximum absolute truncation error is finally :

°F g
— ag '

HH(sc,t)—;Hi(w.tm <3

115 D

4.2, FPractional Saint-Venant decomposition

This subsection focusses on the elaboration of the decomposition method for Saint-Venant nonlinear
fractional differential system (26). Applying the inverse operator I in both parts of the equations (26) leads

to :

k
Hir,t) = Sp HO (2,00).5 — [*(H.U),
(FSV),u = L (39)
Ula,t) = Spgf U@ @,0). 35 = 51U, — oI (H, + Fd,)

The following decompositions are used :

U? = 5% (An (2. 1), (40)

HU =¥, Bp(z, 1), (41)
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The insertion of these series decomposition in (26) and using some mathematical developments and identifi-

cations, the following sequences are resulted
o Ag=1U3
120 o A =2.Uyl4
o Ay =200, + U?

o Ay =2.UgUs +2.U,Us

125 . ‘4‘” = E;LDL‘Y-;UH_‘L'

Sequence of B,

e By = Hy.Ug
« By =HyU, + H Uy
120 o By =HyUs + HU; + HalUy

L] Bg = HDL'Yg + HlU;J + HQ(/Tl + Hgbrg

. Bﬂ_ = E?:OH]:LTR_{

Assume that g is constant ( gravity) and that Fd(.) does not depend on time, the previous decompositions

and inversed equation (37), lead to :

h
B3 (€)= S HO (2,00 — 1783 (B,
(FSV)ew = - (42)
Yo—oUn(z,t) = EET:D[U(H(I:DJr)'F - EIQ neo(An)e — g1 (X710 (Hn )z + Fdg)
The identification of these decompositions leads to :
1k
Ho(z.t) = T2 HM (2,07). 5 = g5(2)
(FSV)o = b (43)
Us(x,t) = B UM (2,0%). 15 = gs(x)
Hi=—-1%By):
(FSV), = 1 (44)
U, = —I"‘(E.AD +g.Hy+ gFd),
The recursivity leads to :
) Hn+l = _IQ(Bn)x
(F*Sllr)n«l»l = 1 (45)
Un+1 = _Iﬂ(i-f‘ln + an + ng)I
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135 The presented recurrent relationships allow one to get analytical solution of the fractional Saint-Venant sys-
tem. The higher orders can be computed in the presented straithforward maner by specifying the coefficients
and the source and initial conditions. The use of symbolic softwares such as Maple or Mathematica can be

very helpful to get easily higher orders.

4.3. Application 1

For the sake of validation, the obtained formulations are tested in the following fractional Saint-Venant

equations. Consider the initial condition for the depth and velocity and the gravity is unity (g=1) as follows

DH (x,t) + (H.U),(2,t) = 0

1 .
(FSV)ew = D?U—i—(EU‘?—Q—H),,;—Q—FdI =0 (46)
U(z,0) = 0, Hz,0) = — 1Qech(:r) L
T T l+e
with the bed topography function F'd = H_—_Ig This problem has been investigated in [32][33] for (o = 1)
using Adomian decomposition.
Based on the previous formulations we obtain :
Hy(z,t) = L + lsech(a‘) + e
0 4= B
(FSV)o = 10 l+e (47)
Up(z,t) =0

The MAPLE software, is used here to get the following H;, and Uj,.

H = —IQ(Bo)x = —1"(Hp.Ug)y =0
(FSV) = 1 (48)
U, = —I“( Ag+Hy+ Fd), = I"‘(Esech(m).mnh(m))

Hi=0
(FSV); = bl ] o (49)
1 = Jeeeh(@) tanh(x) 5

Hy = —I%(B1), = —I*(Ho.U1)s

FSVie=y o e e o (50)
T 0+ o) U+e)2T(at1)
with :
H, :((mseeh(:ﬂ{(1536@}1(1‘.)6—%2 + 30380?1(1)6_’:2 + 4472 4 15sech(z) + 48" + A)tanh?(x)
e
(51)
942 : . 2
+ 40:cta.nh($)e*5”2 — bsech(x)e ™ — 10860}1-(13)67332 — 222" Ssech(x) — 2e ™ — 2)_}m
(52)
(53)

H; = —IQ(Bz)x = —I%(Ho.U2):
(FSV)3 = (54)
Us = —I"‘( Ag + Hy + Fd),
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with :
e
H; W{ (S:re_h + 102e™" + 5)sech(x)tanh(z) (55)
+ (1022¢ —22% _ 1022 + 562" + 10" + 5)sech(r) (56)
s T?‘G
+ 44226727 _80x2e ™ — d4x? 4 22672 4 240 4 2}m (57)
and :
1 , (20 + 1)t3
Us =(— sech?(z)tanh(z)(2tanh?(z) — 1 58
5 (lﬂsec (x)tanh(z)(2tanh*(z) )1_,(30 PG (58)
h(r : 2
%{ (30tanh®(z) — 20tct31.712(:nc))(6_3""2 132 137" 4 1)sech(z) (59)
+ (666737 £ 1382 1 78¢~" + 6)tanh®(z) + 80ze~T (1 + e~ Jtanh?(z)+ (60)
— (4(]126_2“’2 — 4022 4 55¢% 1 135e~2" | 85¢~7 | 5)tanh(z) (61)
L, g2 t3a —QIE'_‘I-Z 1
—Aze T e AUy T T e T+ D) (62)
140 These series terms permit to get approximate solution for an arbitrary fractional parameter a.
Particular case o =1 :
Hy=0
(FSV), = " . (63)
U, = Zsech(m).tanh(m)m
Hy=—1(By), = —1"(Ho.Up),
(FSV ) = Spe (64)
TR S I
1 +e T 1+e ™ T(?)
with
_ 1 —222 —z? ) —222 y —x? J 2
Ho _((780(1 p—— sech(z){(15sech(x)e + 30sech(x)e + 44e + 15sech(x) + 48e + 4)tanh®(x)
(65)
+ 40x1‘ta11i"v,(:._'“)e""f2 — 5sec)"z.(:c)e’2°‘{2 — 1086(’?‘!(92)6712 —22e722" _ Gsech(z) — 24e™ ™ rt(3)
(67)
= —1(Bs), = —1(Hp.U3s),
(FSV)s = g g1 (68)
1 + rr?) =G = )I‘(Q)
500 2 ol =l 3 500 100 F 4 u ; 100
=5 =T
300 | - 300
[} o
200 - 200
50 - 5%
DEO 2.5 0‘0 X 25 5.0D 100 2 1 [] 1 2 160

Figure 4: Variation of velocity U(x,.) and H(x,.) for t =0.5,2,3 and e =1
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with :
2
€ 2 2
H; :m{—(t’)me—% + 10ze™" + 5)sech(x)tanh(z) (69)
+ (10222 — 1022 + 5e2" 4 10" + 5)sech(z) (70)
2 a - . 2

+ 442%e 2" _ 80r%e~" — 4g2 4 226727 | 2e~T + 2}% (71)

. 1 9 9 3
Uy =(Esech (z)tanh(z)(2tanh*(z) — 1)3 (72)
+${(30mnhg(z) — 20tanh?(z))(e=%" + 3e~2" + 3e==" + 1) (73)
+ (66&‘35"‘2 +138e72" + 78" + 6)tanh®(z) + 80:re_$2(1 + e_mg)tanhg(w)—l— (74)
— (ilt}:xcr"}efQIQ — 4022 4 55e 732" 1 1352 + 85¢ % + 5)tanh(z) (75)

2 2 3 —25{‘6_932
—40xe™™ (e7 % 1)} — ——= )t 76
re (9 + )} 6 + ((1 +€—IQ)2) ( )

The obtained approximate solution is thus

U(z,t) = Uo(z,t) + Ui(z, 1) + Up(z, £) + Us(x, )
(FSV ) = (77)
H(z,t) = Ho(z,t) + Hy(z,t) + Ho(z,t) + Ha(z, 1)

These solutions are presented in figures 4 to 8 for various fixed parameters. The time and space evolution of
U are clearly presented. At fixed time, the variations of U and H with respect to x are presented in figure 4.
The effect of the fractional derivative order o on the velocity U and height H is presented in figures 5-6 and
ws 7 for @« = 1,0 = 0.9 and o = 0.5. The variation of U(x=0,t) for various values of a is presented in figure 8.
These presentations show that the fractional derivative order may have a strong effect on the dynamic effect

of Saint-Venant system and some physical phenomena may be captured by the presented model.

-30.00

3.27
2.61
1.96
131
0.65
0.00
-0.65

-1.31
-1.96
-1.61

Figure 5: Velocity U(x,t) and height H(x,t) for &« = 1
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ENTE T

ey yereyeyeyer
Sl oM koRS

Figure 7: Velocity U(x,t) and height H(x,t) for « = 0.5

ID.DD'D ?.IS iiD 7.5 / 10.[30.0
i 1
—— alpha=1
—— alpha=0.8 HiD,t
— alpha=0.5 x=0.
15 -

5.0 -

2.5 -

0.0

I I I 0o
0.0 15 5.0 15 0.0

Figure 8: Variation of velocity U{0,t) for x=0 and e =1, o = 0.9, & = 0.5
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4.4. Application 2

For more validation tests, the obtained formulations are also tested in the following fractional Saint-Venant

o equations.

DEH (2,t) + (H.U )y (x.1) = 0

(FSV)u = { DU + (%UQ 4 H),+ Fd, =0 (78)
U(z,0)=0, H(z,0) = zP.
with the bed topography plate. The previous formulations lead to :
Hy(z,t) = 2P
(FSV)o = (79)
Ug(z,t) =0
oy = —-I%(Hy.Uy), = 0.
(FSV);, = g u oyt (80)
1= (5-*40+ 0)r = —DT INCES)
\ t?e:k
Ho = —T°(B1)y — —T°(HoUy + .U . = p(2p — Da?P 2=
(F5V)a = L ['(2a+1) (81)
Uy = 717&(5.‘41 +H1)I = 0.
Hy=—I"(B3). =0
(F'SV)s = 1 (82)
Us = *Iﬂ(a-f‘lQ + Ha)s
. (Plp—1)  p@p—1Ep—2)\ s, alRa+ 1)
LS__(FQ(O+1) T T ar D T G@a D (83)
The resulting approximate solution is
. 9p 2 tQQ
H(x,t)=2F +p(2p— 1)z FEasD) o
_ _ytn PPe—1)  pp—1)(2p—2)\ 5, 3T (20 + 1)
Ui t) =—p" gy + - (Fg(a )T T@atD ) @D
Particular case :a = 1
Ho(z,t) = 2P
(FSV)g = (85)
rD(:[:.I) =0
Hy=0.
(FSV) = (86)
Uy = —pzPt
2
Ho = —I%(By), = p(2p — )22
(FSV)2 = 2 (87)
U, = 0.
Hsy =—-1%(B3), =0
(FSV)s = | s (88)
Us=—(p*(p—1) +pEr—1p-1) ">
And the resulting approximate solution is
o t?
Hiz,t) =2 +p(2p — D2 25
. (89)
Ula,t) = —p* 't + = (P*(p— 1) +p(2p - Y(p— 1) 2*~* 3
Obviously, these presented solutions can be easly used for parametric analysis of the solution.
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s 5. Coupled Boussinesq Saint-Venant system

For a more general purpose, two types of coupled Boussinesq Saint-Venant systems are considered. Ap-

proximate solution of the considered coupled fractional nonlinear PDS are elaborated based on the ADM.

5.1. Coupled Boussinesq Saint- Venant system 1
Let us consider the following coupled Boussinesq Saint-Venant system.
D?(D?U(I: t)) - aUII($5 f) - b(LrQ(I' t))&":r: - E{]1':7::7::31:($' t) = f(I' t)

DYH(z,1) + (HU)(2,1))y = 0

25 (90)
D), 4 o (2, )(Fd(@)). =0

Ui(z,0) = g1(x), U(z,0) = ga(z), H(z,0) = gs(x)

(FBSV)e =
DE((HU)(z,t) + (HU*(z,t) +

\

By substitution one gets the following nonlinear fractional partial differential equation.

D?(D?U(ﬁ.f}) - O‘UII(T: t) - b(brg(x' t)):m: - EUxmmI(x:t) = f(i:* t)

gH*(z,1)
2

(FBSV)aw = { DD H(z,1) — (HU (2.1) + )z — o(H (2, 8)(Fd(2)),). = 0 (91)

Ui(z.0) = g1(z), U(z,0) = g2(z), H(z,0) = gs(x)
where U = Ul(x,t), H = H(z,t), are the unknowns, that are to be considered the velocity and the height of
the wave respectively. f is a source term and gy, go and g3 are initial conditions and g is the acceleration due
to the gravity. Fd(z) is the shape of the bottom, a, b are model parameters.

It should be noted that an integer derivative Boussinesq Saint-Venant shallow water system is defined in
[L34] -
Ue(2,t) — alsz(z,t) — b(UQ(x,t))rx — elsarz(z,t) = f(2,1)

Hy(z,t)+ (HU)z(z,t) =0

(BSV)ew = (92)

gH?(z,1)
2

Uy(x,0) = g1(x), U(z,0) = go(z), H(x,0) = ga(z)

(HU)u(z,t) + (HU?)(z,t) + )z + gH(z,t)(Fd(z)). =0

The fractional nonlinear PDE is a general formulation that contains the Boussinesq equation and the
wo  effet of the Boussinesq solution on the Saint-Venant height. This nonlinear fractional PDE will be investigated

here and the associated analytical solution will be elaborated based on the decomposition method.

5.1.1. FBSYV decomposition
This subsection aims to develop the decomposition method for the coupled Boussinesq Saint-Venant non-

linear fractional differential system . Similarly, the inverse operator I in both parts of the equations
. (91)) is applied :

tk
DU (x,t) = XU ® (2, 0+)E + 1%(aUs) + b1 (U?)a2) + I%(Usnia) + 1°(f)
(FBSI/)sw = L

o m—1 k + tk o 2 QHQ(I:t) o
DY H(x,t) = X35 H®) (2,0 )gg HIMHU(2,) + ——F—)za + gI*(H (2, )(Fd(7))z)=
' (93)
By reapplying the inverse operator I in both parts of the first equation and using integral’s propriety

one gets:
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k
Ula,t) = S UM (2,07) 5 + 122(@U0) + 1% (U2)10) + P (V) + I2()

(FBSV) = N -
H(z,t) = E}f;Dle*J(Lo+)% L (HU2(2,t) + S‘W'T(“))m 4 gl (H(x, t)(Fd(7))s)a
" (94)
The following decompositions are used:
Uz, t) = 202 gUsn(z, t) (95)
Uz, t) = 02 gUpnlx,t) (96)
H(zx,t) =X H,(z, 1), (97)
For nonlinear terms we use
U? = T3 4 An(z,0), (08)
HQ = E;?’:DB]'L(Iz f): (99)
HU?=%>,D,(z,t), (100)

The insertion of these series in (94) and using some mathematical developments and identifications, the

m following sequences are obtained

o A =203,
o Ay =200 + Uf‘

. ‘43 = ZLTOUg + ZLHUQ

L) ‘4,—, = E?:DLQU“_@

Sequence of B,

180 e By = Hﬁj‘

L]

By =2HyH,

L]

By =2HyHy —i—HlQ

- Bg = 2HOH3 + QH:LHQ
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185
. n — E:‘;DHI'Hn—i

Sequence of D,

Dy = Hy.Ag

Dy = HoAy + HiAp

L ]

160
L] DQ = Hgf’lg + Hlf'll + Hg;—lo

o D3y =HgAz+ H{Ay + HoAy + H3Ag

105 o D, =X%" HiA,_; = Z?:OHi(EE;é e Un—i_k)

We assume that g is constant ( gravity) and that Fd(.) does not depend on time.

Using the previous decompositions and inversed equation (94, one gets :

tk o .
52 Up = B UM (2, 0)7 + (5% 0 (a(Un)ae + £(Un)waan)) 4+ 01255 0 (An)aa) + 12°(f)
(FBSV),, = :

(o) m— v tk doe o0 g {83 o0 {a) o0
SnLoHn = S H Y (2,01) 5 + 12 (E720 (D)) + 512 (5720 (Br)e) + g(Fd(2))ed ** (23 )

n=0

(101)
The identification of these decompositions leads to:

tk
Up =X\ UM (z,0F )

(FBSV), = . (102)
m— 13
Hy = Ekzole(x,D““)E

Ul = Igﬂ.(a(l’rﬂ)zm + E(UD)IJ:ICE) + b((‘40)z1 + f)

(FBSV), = g ) (103)
Hy = *((Do)zz) + 5T ((Bo)za) + g1* (Fd(x)2 Ho)o
The recursivity leads to:
LrnJrl = IQG(G(Lrn)mm + E(UT'L):I‘:I‘II) + b(*’:lﬂ)v”ﬂﬂ! + f)
(FBSV )1 = (104)

Huet = P((Da)ax) + 517 (Br)aa) + 1 (Fd(2)2Ho)e
This recurrent relation can be rewritten as

Un = IQQ a Lrn zx + € Un zzze) T b E?: Uibrn—i zz + f
vy, = | Ut = PO+ Un)ares) + U )es + 1) o)
Hpi1 = =TS Uiy 1 i)e
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The presented recurrent relationships allow one to get analytical solution of the considered coupled nonlinear
system. Again, the higher orders can be computed in the presented straithforward maner by specifying the

coefficients the source and initial conditions using a symbolic software.

5.1.2. Application
The presented formulations are tested in the following coupled Boussinesq Saint-Venant equations with

specified terms and initial conditions.
1 .
DEDF(U) = 5.(U%)ss = Usazs = 22° — 150t

DeH + (HU), =0

o (106)
DE(HU) + (HU? + 250, + gH(Fd(2), =0
Uz, 0)=0, U(x,0) =0, H(x,0) = 2P
At order 0, the presented formulations lead to :
Up = Ulz,07) + Uy(z,07).t + I?%(f)
(107)
Hg = f(?p
200 Thus,
2 15.4! ;
Uy = xStQa _ T4t2ct+4
" T TRa+1) I'(2a +5) (108)
Hy=zx?
Compactly, one uses
Uy = azr’t?® + ggrte2e+? (109)
with
Lo =80 2
T T2a+5) % T(Ra+1)
Uy and Hy are given by:
o 1 o
L‘l = I2 ((Uﬂ)rrxx) + EIQ ((‘40)1‘1)
. (110)
Hy = P**((HoUg )az) + 512&((H§)u)
Thus,
_ 60.I'(4da + 1) 1 .6 1540 5 I'da+9) 4 cass
U= tGazrr@asn" Y "5 0ars) Teaz9)® L
B 30240F(4ﬂ{ + 5) 3:5 [ 8640 t40+4
I(2a+1)T(2a+5T(6a+5)" ° Tda+5) (111)
T(da + 1) _ TBA+9) . 5
— 2 . p+4 4Bo 2 _ p—2 68
Hi =a3(6+p)5 +p)7ma iy S ag.p(p 1)71"(6& T9) ety
PAa+5) 1o 6ara 1 W2 20
Equivalently,
UJ _ b4.$4f6a n bGIGtGa+8 4 5515.t6ﬁ+4 + th-‘ch—d (112)
Hi =cpia gt 6o 4 cp_g:cpfg.tr’“*g + cp+g:cp+2.tﬁﬂ+4 + n:fgp_g:rgpfg.tgﬂ (113)
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fith
. , 8640
" Tda+5)
, __ G0I(dat1)
YT T6a+ DI22a+ 1) (114)
. —30240.(4a + 5)
* T TRa+1)I(2a+5I(6a+5)
, _ _3628800.T(da +9)
T T22a+5)I(6a+9)
[(4a + 1)
epra=a3(6+p)(5+ P)m«
T'(5a0+9
Cp—2 = a%(p)(p - 1)%;
(115)
T'da +5
cp2 = 2agap(p + 3)%
1
cap 2= ¢q.(p)(2p — I)W
Similarly, Us and Hs are given by :
Us = I**((U1) eaze + (UoU1)zz) (116)
Hy = I**((2HoUgUy + H1U3 + gHoH1) 1)
6o+ 1) (6 +9) _ ['(6a+5)
2o 07T wwwm) = 24by 7 Sa 50be. = ) 2_t80+8 120hs —— /. _f.8a+4
P U amna) = 24ba gyt + 36006 5, 5g) " + T(8a15)"
. I(Ba+1) . B IRa+9) .
20 T.TT — y 5,100 . , {_t100+8
I (( 0{/1)11) 42.54&37F(10a+1)r i + 72 beﬂgir(10a+9) +
T'(8a+5) 4 1004 T(6a+5)  gaia
56'55&371"(10&4»5)1. it +6.bga371_,(8&+5)1.t
P(Ba+5) 5 10044 P8 +13) 4 10a-12 P8 +9) 3 10a4s
. L T . A A 20.bsag—— 7 ttVoT
R VT e Ll v T R L v Timor T
(117)
Mathematical developments lead to:
r P +1) g L6 +9) 5 sats P(6a+5)  sava
Iy = 24.by.—— 1% by ——— 1 177 120.bs ———— g 3+
Lg 24b4 F(Ba—i-l)t +360E}6 F(Sa—i—g)T + _JF(8Q+5)I
FBa+1) 540 FBa+9) 7 10ats
42.bja3 —— 2"t £ T2 bgaz——— 7 VT
T M0a+ )" L S0 1 0) " * (118)
P(8a+5) g .100s T(6a +5)
56.b5a3—— 2 o0 100+t L g poga " =2 g gBatd
S T (100 +5) " TR )"
PSa+5) 5 100 (8a + 13) , (8 +9)
12.baag—— "7 424 o4 20.h e e et 4.t100+12 20b5 S\ 3_t10&+3
Y0 (100 +5)" R VT Ty + 00 g, o) "

And
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H; = azbi(p + 7)(p + 6)xP*®
+ azbs(p + 8)(p + T)xPTE
+ apbs(p +5)(p + 4)2F 2

+ apbs(p + 5)(p + 4)xP3

l; y -2p+2
g-Cpya(2p+4)(2p + 3)x T(Sa+

+ g-cpi2(2p + 2)(2p + 1)z?F

I(8a + 1)
T(10a + 1)
I'(8a +5) 1004
T(10a + 5

T'(8a +5)

T(10a + 5

(8 +9) £10a-+8
I'(10a +9)

F(6a+5) fSa+a
T(8a+5)

I'(8a +9)
I'(10a + 9)
I'(6a +5) (Sata
I'(8a + 5)

T'(8x +13)
1an+4 P+47
) + apbg(p +6)(p+ 5)x F(10a+13)

(6 + 9)
. . p—2 -\ T Y Ba+8
+ agba(p)(p — 1)z T(3a g)t

thlnf + ﬂ-:jbc(p + g)(p + 8):1‘.p+? 1Dnr+8

3 + asbo(p + 3)(p+2)

1) T(8a +9)

+ g.e2p—2(3p — 2)(3p — 3)2P*

10ax+12

I2a+1) ..
T(4a + 1)

ajcp+a(p+10)(p+ Q)Q‘P*'S%tu“ +aze,_2(p+4)(p+ 3):‘9P+2% faets

4 a2epi2(p + B)(p + T)aP o %tlqu + a2eap_2(2p+4)(2p + 3)$2p+2%t80

o+ aBepra(p+ 4) (0 + 32" o e, a(p = (- Ba” et

+aBepra(p+2)(p+ 1):*0"?8337113312”” + aeap—2(2p — 2)(2p — 3J3‘2p_4%t30+8

+ 2agaze, p4(p+ T)(p + 6)mp+”% 120+ 4 2a0asc, 4 (p + 1)(p)2P ’% greaiz

+ 2056, 12(p + 5)(p + 4)*”“% 98 + 2a0a302p—2(2p + U(?p):"”_l%fhﬂ
Mtﬁa +g.cp_a(2p—2)(2p — 3)z2P—1 T'(6a + 9) gBa+s

(119)

For the particular case, a = 1, these formulations lead to the following explicite formula of Uy, Uy, and Us.

1
Uplz,t) = 2%t — §$J‘t

6

3. 1 7 1
Up(z,t) = —t% 4 Za*® — P04 — o514
4 2 30 26
. (120)
Us(z,t) = —t% + 36 _ Loy Tospoy 2 sy
D=1 Tt 33" 30 221

14 6 414 3 12 3 2 414 15 22 7 3 ;18
B L AL B A iy o R
~ 195" 308" 1827 572" 018"

It is stated that similar results than those presented in |35|for the considered imecoupled Boussinesq equation

are obtained.

On the otherhand, the following functions Hy,H,,Hs are also obtained for o = 1.

Hy(z,t) = 2P

Hi(2,t) = cpeaxPT a5 pop oaP 281 4oop paP 2410 ooy, 2?72 42

1
10 ’ p+7 18
t + azbs(p + 9)(p+ 8)x 18.17t
12

A1
Ha(x,t) = azbs(p + 7)(p + 6):1‘?""'”@

1
+ azbs(p+8)(p+ TP —— T t" 4+ azbo(p + 3)(p+ 2)

4.13 12.11
1 22
22.21

1
tlS b -1 p—2 th
+aobo(p)(p — )2 " 1¢

1
12 2 . AY(; p+2 20
t° 4 aze, o(p+4)(p+3)x QD.IQt

+ apbs(p +5)(p+ 4)aP ™2 t'"* 4+ agbg(p + 6)(p + 5)xP

14.13
1
p+3 L
+ aobs(p + 5)(p + 4)2P T 1o

1
aZcpia(p+10)(p + 9)xPt® SERT
2 pr6_ 1 16, 2 optz 1 s (121)
+azepia(p+8)(p+ T ﬁt 4+ azeop 2(2p+4)(2p 4+ 3)x Et
+ade,a(p+)(p+3)2P 2 ——12° £ ade,_a(p — 2)(p — 3)2P* 3857 28

1 16
16.15

—— 1'% 4+ 2apazcp—_a(p+ 1)(p)z?P !

20.19

24 4+ a%czp,g(Qp —2)(2p — 3)x?P

1
+adepio(p+2)(p+ 1)2P 5493

24
24. 23f

20 4 2apaszcap—2(2p + 1)(2p)x -2p—1

+ 2apascpra(p + 7)(p + 6)2P P —— e

1 1
+ 2agazepa(p + 5)(p +4)aPH —— 5o — 2

19 12.11

1
2+ g. ep_2(2p—2)(2p — 3)p?P i 416

16.15
1
12+ g. cop_2(3p — 2)(3p — S)IJP 4 5

1
g-cpia(2p+4)(2p + 3)2?P 2 _ =

+ g.cpia(2p + 2)(2p+1)12?’ 511 —tt
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Based on these analytical solutions the effect of the fractional parameter v as well as the power coefficient p

s can be analysed.

5.2, Coupled Boussinesq Saint- Venant system 2

The following coupled Boussinesq Saint-Venant system is considered.

Dg(DU(z,t)) — aUpe(2,8) — B(U?(2,8))an — Uspre(2, 1) = f(z,1)

DaH(z,t) + (HU)(2,))y = 0

(FBSV ).y = (122)

DeU + (%U2 +gH), +gFd, =0

U(2,0) = g1(x), Ux(.0) = g2(x) ,Us(2,0) = ga(e), H(,0) = ga(x)
Eliminating the nonlinear term (U?),, from the first equation and using substitution one gets the following
fractional partial differential system.
DYH(z,t)+ (HU)(2,1))e =0
(FBSV )sw = D (DU (x,t)) + 20D7U, (2, t)) + 2bg(H 4+ Fd) oy = aUsp(z,t) + eUppan(z,t) + f2,1)

U(z,0) = g1(2),U(z,0) = go(z) ,Up(z,0) = g3(z), H(x,0) = gu(z)
(123)

where U=U(x,t), H= H(x,t), are the unknowns, f is a source term and g,, g; and gz, g4 are initial conditions
and g is the acceleration due to the gravity. Fd(x) is the shape of the bottom, a, b are model parameters.
For o« = 1, this equation is reduced to :
Hy(z.t)+ (HU) (z,t) =0
(BSV)ew = Uz, 1)) + 2bU, o (2,1)) + 2bg(H + Fd)pr = a.Usp (2, 1) + sUprae(2,1) + f(2.1)
Us(z,0) = g1(2),Us(,0) = go() , Uz(2,0) = ga(z), H(z,0) = ga(z)
(124)

5.2.1. Adomian decomposition
Similarly, the inverse operator I in both parts of the equations (123)) is applied :

210

m— tk (a3
H = Sj O (2,0%). — I°(HU),

(FBSV s =
DFU =U(z,0) + 20U, (2,0) — 20U, + 1™ (a.Usy + eUppre — 2bgH e — 2bgFdyy + f
(125)
By reapplying the inverse operator 1® in both parts of the seconde equation and using integral’s propriety
one gets:
p— th -
) H=Y"3'H )(:r.D"').E — [*(HU),
(FBSV)gw = ; i
U =2bU,(z,0)t + B} U(“(r:(}*').% — 261U, + I** (a.U,p + U — 2bgH . — 2bgFd . + f)
' (126)
The following decompositions are used :
U=ZX7"oUn(z,1), (127)
H =Y H,(z,t), (128)
HU =322 (B,(z,1), (129)
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The insertion of these series decomposition in (123]) and using some mathematical developments and identi-
fications, the following sequences are resulted

Sequence of B,

215 L BCI = HD.DTD
L] Bl == HDDY]_ +H1I}()
L] Bz :HDU-Q-FHJU-'L +H2IUD

B; = HyUs + H U + HyU, + Hy Uy

220
e B, =% HU,_;
Assume that g is constant ( gravity) and that Fd(.) does not depend on time, the previous decompositions

and inversed equation, lead to :

ke
Ho= Z:":‘DIH(’*‘)(:E,OJf}.%
(FBSV),, = - (130)
. Trrtk tk
Uy = 26U, (z,0) + ZP U )(3:,0+).H

Hn =-I" Bn T
= I%(B) .

(FBSV)., =
rn+l = _QbIG([fﬂ}I + IZQ (a-([)rn).m: + S(Lrn}sm:a:z' - ng(Hn)a:z - 2bng.1:.1: + f)

5.2.2. Application
DyH+ (HU), =0
(CFBSV)sw = D (DU (2,1)) + 26D5 Uy (2. 8)) + 20(H + Fd) e = 0.Upi(2,1) + U (2. 1)  (132)
U(z,0)=0, Ugz,0)=Us(z,0) =0, H(z,0) ==z

with the bed topography plat, f=0, g=1.

H(} =P
(CFBSV)y = (133)
Uy=0

225

Hy = —-I%(Ho.Us) = 0.

(CFBSV), = o (134)
T 911 2c T T _ ¢ - _ _ p—2
Us = =21°(U0)s + I**(Uo)es + (Vo) = 2AHo)ww) = =200 = 1 g

t3a

Hy = —I%(B1). = 2p(p—1)(2p — ﬁfrﬁm (135)

Uy = —2bI%(U,), + I2*((al))ap + (U1 )ar — 2b(H) )gz)

(CFBSV), =
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with :
Sax
Us = 4bp(p —1)(p— Q)J‘.P_am (136)
dox e
~2ap(p = 1(p =20 = 3" o= 20— D= D= - -9 s (137
(138)
o (Hy=-1°(By),
(CFBSV); = (139)
Uy = =201 (Us). + e (a(Ua)ze + (Us)ae — 20(H2) 2z
with :
Ao Sox
Hs = —4bp(p = 1)(p = 2)(2p = 3)2* ) gy + 2ap(0 = D0 = 2)(p —3)(2p 4)@’”’*)@
(140)
+2etp(p = D=2~ — =5~ 0% g (141)
(142)
U = =Sl(p = 1)(p =2 (p - o> g (193
+ {4ap(p—1)(p—2)(p—3)(p— 4)2" ) + edp(p— 1) (p— 2)(p - 3)(p — 4) (p — 5)2" ") (144)
— bp(2p = 1)(2p = 2)(2p = a7~} e o (145)

Remark : This model generalizes the model of Saint-Venant by taking into account the factors of Saint-
Venant and Boussinesq’s one in particular, the shape of the bottom and the previous wave which is not true
for Boussinesq when the wave has no initial speed and remains. By taking a = ¢ = f = 0 and b=1 under the

condition that the constant of integration is null we find the second equation of Saint-Venant as follow with

a=1
Ulz,t)se + 20U (2, 1)) + 2bg(H + Fd)ze = a.Ue(2,t) + eUspaa(2, 1) (146)
Ul t)e + 22U (2,t)) +29(H + Fd) e =0 (147)
Upe = 0.Upe(2,1) + 1(U2(2,1))op + OU g (2, 1) = L(UP(2,8)) 2 (148)

By substitution and integration :

(U(@,1))ax + Wea (2, 1)) + 29(H + Fd)o =0 (149)

(U?(2,1))z + 2Us(z, 1)) + 29(H + Fd)z =0 (150)
For this particular case, the following terms are obtained.

H{) = :cp
(CFBSV), = (151)
U{) =0
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H,=0.
(CFBSV); = (152)
Uy =—-plp— 1):13“"232

3
Hy=p(p—1)(2p— 2):1??33‘“%

CFBSV)y = 153
£
Uz =2p(p—1)(p - 2):1?”‘35
4
Hy = —p(p—1)(p— 2)(2p - 3)2
4
(CFBSV)s = Uy = —8p(p—1)(p - 2)(p — 3)3@—4)% (154)
41.¢°
— (2 - 1(2p—2)(2p -3 ) o
6. Conclusion
30 Analytical solutions are investigated for fractional Boussinesq, Saint-Venant and coupled Boussinesq Saint-

Venant partial differential equations based on the Adomian decomposition. Existence of the solution and the
convergence of the decomosition procedure are also demonstrated. Explicit formulations are developed for
each case in general frameworks as well as for several particular exemples.
Based on the presented recurrent relationships, higher orders can be computed by a symbolic software when
235 parameters, excitation and initial conditions are specified. The obtained solutions are explicite and can be
used as references for numerical methods. The applicability and effectivens of the elaborated methodological

approach are demonstrated and comparaison are made with available results.

a0 7. Acknowledgments

The authors would like to acknowledge the financial support for the cost of stay visit for Pr. Slimane
Azoug in The ENSAM-Rabat as well as the CNRST and the research project PPR2/6/16.

References

[1] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizon-
25 tal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface

au fond., Journal de mathématiques pures et appliquées (1872) 55-108.
[2] J. Pedlosky, Geophysical fluid dynamics, second springer-verlag, New York.

[3] J. L. Bona, R. Smith, A model for the two-way propagation of water waves in a channel, in: Mathematical
Proceedings of the Cambridge Philosophical Society, Vol. 79, Cambridge University Press, 1976, pp. 167—
250 182.

[4] J. L. Bona, R. L. Sachs, Global existence of smooth solutions and stability of solitary waves for a

generalized boussinesq equation, Communications in Mathematical Physics 118 (1) (1988) 15-29.

[5] F. Linares, Global existence of small solutions for a generalized boussinesq equation, Journal of differ-

ential equations (Print) 106 (2) (1993) 257 293.

5 [6] Y. Cho, T. Ozawa, On small amplitude solutions to the generalized boussinesq equations, Discrete &

Continnous Dynamical Systems-A 17 (4) (2007) 691.

*Corresponding Author: Slimane Azoug 66 | Page



Analytical Solutions of Fractional Boussinesq Saint-Venant Shallow Water Equations Based ..

[7] L. G. Farah, Local solutions in sobolev spaces and unconditional well-posedness for the generalized

boussinesq equation, Communications on Pure & Applied Analysis 8 (5) (2009) 1521.

[8] L. C. Ferreira, Existence and scattering theory for boussinesq type equations with singular data, Journal

260 of Differential Equations 250 (5) (2011) 2372-2388.

[9] Z. Ye, Global well-posedness for a model of 2d temperature-dependent boussinesq equations without

diffusivity, Journal of Differential Equations 271 (2020) 107-127.

[10] S. Wang, Y. Wang, J. Liu, Regularity criteria to the incompressible axisymmetric boussinesq equations,

Applied Mathematics Letters 112 106800.

s [11] S. Azoug, H. Bakhti, L. Azrar, T. Ali-Ziane, Stability and convergence analysis of a semi-implicit frac-
tional fem-scheme for non-newtonian fluid flows of polymer aqueous solutions with fractional time-

derivative, Computational and Applied Mathematics 39 (2) (2020) 1-32.

[12] J. He, Nonlinear oscillation with fractional derivative and its applications, in: International conference

on vibrating engineering, Vol. 98, Dalian, China, 1998, pp. 288-291.

a0 [13] J. He, Some applications of nonlinear fractional differential equations and their approximations, Bull.
Sei. Technol 15 (2) (1999) 86-90.

[14] A. Krasnobrizha, P. Rozycki, P. Cosson, L. Gornet, Modélisation des mécanismes d’hystérésis des com-

posites tissés a I'aide d’un modéle collaboratif élasto-plastique endommageable & dérivées fractionnaires,

Matériaux & Techniques 104 (4) (2016) 407.

2 [15] K. Al-Khaled, S. Momani, An approximate solution for a fractional diffusion-wave equation using the

decomposition method, Applied Mathematics and Computation 165 (2) (2005) 473 483.

[16] S. Momani, Analytic and approximate solutions of the space-and time-fractional telegraph equations,

Applied Mathematics and Computation 170 (2) (2005) 1126-1134.

[17] F. Huang, F. Liu, The time fractional diffusion equation and the advection-dispersion equation, The
200 ANZIAM Journal 46 (3) (2005) 317-330.

[18] H. Bakhti, L. Azrar, B. Dumitru, Pulsatile blood flow in constricted tapered artery using a variable-order
fractional oldroyd-b model, Thermal Science 21 (1 Part A) (2017) 29-40.

[19] D. Baleanu, S. M. Aydogn, H. Mohammadi, S. Rezapour, On modelling of epidemic childhood diseases
with the caputo-fabrizio derivative by using the laplace adomian decomposition method, Alexandria

285 Engineering Journal 59 (5) (2020) 3029-3039.

[20] J. Saelao, N. Yokchoo, The solution of klein gordon equation by using modified adomian decomposition

method, Mathematics and Computers in Simulation 171 (2020) 94-102.

[21] G. Adomian, R. Rach, Inversion of nonlinear stochastic operators, Journal of Mathematical Analysis

and Applications 91 (1) (1983) 39-46.

20 [22] G. Adomian, A new approach to the heat equation—an application of the decomposition method, Journal

of mathematical analysis and applications 113 (1) (1986) 202-209.
[23] G. Adomian, Nonlinear stochastic operator equations: Acad. press, Can Diego, CA.

[24] G. Adomian, Nonlinear stochastis system theory and applications to physics kluwer academic publishers

(1939).

*Corresponding Author: Slimane Azoug 67 | Page



Analytical Solutions of Fractional Boussinesq Saint-Venant Shallow Water Equations Based ..

2 [25] G. Adomian, Solving frontier problems decomposition method (1994).

[26] 1. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differ-

ential equations, to methods of their solution and some of their applications, Elsevier, 1998,

[27] Y. Luchko, R. Gorenflo, The initial value problem for some fractional differential equations with the

caputo derivatives.

w0 [28] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations,
Wiley, 1993.
[29] M. Caputo, Linear models of dissipation whose q is almost frequeney independent—ii, Geophysical

Journal International 13 (5) (1967) 529-539.

[30] M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism, Pure and Applied

205 Geophysics 91 (1) (1971) 134-147.

[31] V. Manoranjan, A. Mitchell, J. L. Morris, Numerical solutions of the good boussinesq equation, STAM
journal on scientific and statistical computing 5 (4) (1984) 946-957.

[32] K. Al-Khaled, F. Allan, Construction of solutions for the shallow water equations by the decomposition

method, Mathematics and computers in simulation 66 (6) (2004) 479-486.

zo  [33] M. Dispini, S. Mungkasi, Adomian decomposition method used to solve the shallow water equations, in:

AIP Conference Proceedings, Vol. 1746, AIP Publishing LLC, 2016, p. 020055.

[34] A. J.-C. de Saint-Venant, et al., Théorie du mouvement non-permanent des eaux, avec application aux

crues des rivieres eta l'introduction des marées dans leur lit, CR Acad. Sci. Paris 73 (147-154) (1871) 5.

[35] D. Kaya, Explicit solutions of generalized nonlinear houssinesq equations, Journal of Applied Mathe-

315 matics 1.

[36] S. T. Demiray, H. Bulut, Generalized kudryashov method for nonlinear fractional double sinh-poisson
equation, J. Nonlinear Sci. Appl 9 (2016) 1349-1355.

[37] M. Kaplan, A. Bekir, A. Akbulut, A generalized kudryashov method to some nonlinear evolution equa-
tions in mathematical physics, Nonlinear Dynamics 85 (4) (2016) 2843-2850.

w0 annexes A. Exacte solution of Boussinesq equation

In order to investigate the exact solutions for the Boussinesq equation a general Kudryashov algorithm
|36} [(37]is nsed.
The methodological approach is elaborated here and mathematical steps are :
Step 1:
This traveling wave transformation is defined by : U(z,t) = U(£), and £ = kx — of, with :

TN ja; Q€Y
Dr(.f) _ jn._fD J‘Q(&)
LiLobiQ(€)*
where the coefficients a;, b; are constants to be determined and also the positive integer N and M by
considering the homogeneous balance between the highest order derivatives and nonlinear term in (153).

Using traveling wave Eqs. transform is applied to following partial differential equation.

. Utt = abrxr + b(Drz):t:n + EU4$
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e Using the derivative transformation lead to the following nonlinear differential equation :

C2brn — ﬂ-k’-g T +bk2(b‘-2)n + Ekeibrm! (Al)

e By integration and taking constant of integration null we get :
AU = ak®U + bk (U?) + ck*U” (A.2)

kU + bE*U? 4+ (ak? — AU = 0. (A.3)
Step 2 :
Using the Kudryashov algorithm we put :

d
dée

where N, M are integer to be determined.

D(UP.(

))=(N—M)p+s(N —M+q) (A1)

Now, balancing the highest order derivative U" and nonlinear term U?, we get :

AN-—M)=N—-M+2 & N=M+?2

Setting M = 0, we obtain N = 2. Therefore

U€) =a+AQ++Q? (A.5)
where e, 3 and -y are unknown coefficients and () is a function of £
Step 3 :
Substituting Eq. (155) into Eq. (153), we get a polynomial of Q,( k=0, 1, 2, . . . ). Equating the

coefficients of this polynomial of the same powers of ) to zero. The following nonlinear algebraic system is

resulted.
6vek* + by kP =0

ck*(28 — 107) + 2b3vk* =0
P) ck* (=38 4 4v) + bk* (20 + B%) + (ak® — #) =0

ek*B+2Ba + Blak* — ) =0

bk2a® + (ak? — ?)a =10
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By simplification we get :

Skz = —b":.f
8= —~
(Py=¢ __7
6
ka"f
2 _ 1.2 !
o =ak* + 6
by substitution :
U() = a+pQ+1Q? (A.6)
Ug) = E’ -1Q+17Q’ (A7)

and knowing that Q(¢) = tg2m—e leads to :

1 1

y 1 i
VO =G~ 1oaee—= " (1 :I:A.e’“—c‘)?) (A-8)

using

1
sech?(2) = -
2 (54
it gets :
Tlr $) — 2K K, K In(A)
Ulz,t)=¢ (C(}—E-I-?b{fh ({5 le—at——) (A.9)
with :

and ¢ is an integration constant,
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