Quest Journals Journal of Research in Applied Mathematics Volume 7 ~ Issue 9 (2021) pp: 05-07 ISSN(Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

Research Paper

Graphical Construction of Pi

Isamar Zhu

¹(Mira Costa High School, United States) Corresponding Author: Isamar Zhu

ABSTRACT: An approximation of π can be found using graphical construction using only a few steps. Since π is transcendental, and no straight line of transcendental length can be constructed with a compass and a straight edge alone, we must use estimates. Two simple line segments are constructed with a compass and a straight edge. The first line segment of length $\frac{22}{7}$, a non-transcendental length, has less than 10^{-1} % error. The second line segment of length $\sqrt{9.8696}$, an irrational number, is more accurate and has less than 10^{-5} % error. A third approximation, $\frac{355}{113}$, is also accurate, but is difficult to graphically implement. KEYWORDS: Graphical Construction of Pi, more accurate Pi, graphically implement Pi

Received 21 August, 2021; Revised: 03 September, 2021; Accepted 05 September, 2021 © The author(s) 2021. Published with open access at www.questjournals.org

I. **INTRODUCTION**

The ratio of a circle's circumference to its diameter, symbolized by the Greek letter π , is not only one of the most important numbers in mathematics, but is also essential to all scientific and technological areas. Due to its importance, graphical approximations of π are often necessary to serve a variety of purposes. If the number π could be expressed as a rational fraction or as the root of a first or second-degree equation, it would be possible to construct a straight line equal to the circumference of a given circle using a compass and a straight edge. Unfortunately, this is not the case. Although the exact length of π can be found by measuring the circumference of a circle with radius 0.5, this length is not a straight line segment. Due to the proof that π is transcendental and that lines of transcendental lengths cannot be constructed, it is impossible to graphically evaluate π using a straight line.

There are several numbers that are commonly used to approximate π , including $\sqrt{10}$, $\frac{22}{7}$, and $\frac{355}{113}$ [1].

Unlike π , they are non-transcendental and could theoretically be exactly constructed using a compass and a straight edge. There are two factors that can be used to compare these numbers: simplicity of construction and accuracy. The lines of length $\sqrt{10}$ and $\frac{22}{7}$ are easily constructed, but are not a very accurate approximation of π . On the other hand, $\frac{355}{113}$ is a very accurate approximation (less than 10⁻⁵% error), but is difficult to construct.

One number that excels in both of these factors, however, is the irrational number $\sqrt{9.8696}$ [2]. When graphically constructed using a simple set of steps, its length approximates π with great accuracy.

II. FORMULATION Using the graph drawn below to obtain $\frac{22}{7}$, a line segment of $\sqrt{9.8696}$ can be found.

1) Draw a line from (0, 2.0) through (2.2, 0), and ending at the line y = -0.3.

2) The length of this segment is $\sqrt{9.8696}$, found from the following calculation using the Pythagorean theorem:

To obtain the line segment, $\frac{22}{7}$, refer to the steps below.

- 1) Draw a circle with a radius of 0.5, centered at (0, 0). The circumference of the circle is equal to π .
- 2) Find the point (0, 1.0), using a segment of length 1.0 from the origin.
- 3) Find the point (1.5, 0), using a segment of length 1.0 from the intersection point of the circle and the x-axis.
- 4) Draw a line, \overline{B} , parallel to the line \overline{A} . The line crosses through the points (1.5, 0) and (0, -0.3).
- 5) Find the point (0, 0.7), using a segment of length 0.3 from the point (0, 1.0).
- 6) Find the point (2.2, 0), using a segment of length 0.3 from the point (2.5, 0).
- 7) Draw a line from (0, 0.7) through (2.2, 0), and ending at the line y = -0.3.
- 8) Draw a line from (0, -0.3) to the endpoint of the line from the previous step.
- 9) The length of this segment is $\frac{22}{7}$.

IV. ACCURACY

With $\pi = 3.1415926535...$, the accuracy of the relevant values can be determined:

$$\frac{\frac{22}{7}}{\pi} - \pi = +0.0012644892...$$
$$\frac{\frac{355}{113}}{\pi} - \pi = +0.0000002668...$$

 $\sqrt{9.8696} - \pi = -0.000007004...$ $\sqrt{9.8696}$ and $\frac{355}{113}$ are both better estimations of π than $\frac{22}{7}$, but their accuracy compared to each other are about the same. Despite having similar accuracy, $\frac{355}{113}$ is significantly more difficult to implement than $\sqrt{9.8696}$. The steps used to find $\sqrt{9.8696}$ are simple and easy to replicate, making them a more efficient method to approximate π than using $\frac{355}{113}$.

V. CONCLUSION

The common methods used to approximate π are often tedious and inaccurate. With the methods described in this paper, however, the approximation in the form of a line of length $\sqrt{9.8696}$ can be found with relative ease. The applications of $\sqrt{9.8696}$ are plentiful, and it can be used efficiently for physical graphing and estimating π in a variety of situations. There is an overarching usefulness of the described methods due to their simple replication, therefore making them accessible to everyone.

REFERENCES

- [1]. Martin Gardner, "Incidental information about the extraordinary number pi --- Mathematical Games" Scientific American, pp. 154-158, July 1960.
- [2]. F.C. Chang, Approximate to the circumference of a given circle, Alabama A&M University, School of Technology, 1996.