Quest Journals Journal of Research in Applied Mathematics Volume 7 ~ Issue 11 (2021) pp: 19-22 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org



**Research Paper** 

## Certain Transformations and Summations of Basic Hypergeometric Series

Dr.Brijesh Pratap Singh

Assistant Professor Department of Mathematics Raja Harpal Singh Mahavidyalaya Singramau, Jaunpur U.P.

**Abstract.** In the present work we have established some new transformations and summations of basic hypergeometric series by making the use of WP-Bailey pairs. Using multiple q-integrals and a determinant evaluation, we establish a multivariable extension of Bailey's nonterminating is99 transformation. From this result, we deduce new multivariable terminating 1049 transformations, s& summations and other identities. We also use similar methods to derive new multivariable r+t summations. Some of our results are extended to the case of elliptic hypergeometric series.

Keywords: Bailey's lemma; Basic hypergeometric series; Transformation; Summation.

*Received 01 November, 2021; Revised: 12 November, 2021; Accepted 14 November, 2021* © *The author(s) 2021. Published with open access at <u>www.questjournals.org</u>* 

For 
$$|q| < 1$$
,  $(a;q)_n = (1-a)(1-aq) \dots \dots \dots (1-aq^n-1); n = 1,2 \dots$   
 $(a;q)_0 = 1; \quad (a;q)_{\infty} = \prod_{n=0}^{\infty} (1-aq^n)$   
 $(a;q)_n = \frac{(a;q)_{\infty}}{(aqn;q)_{\infty}}.$ 

where a is real or complex.

A Basic Hypergeometric Series is defined as

$$\begin{aligned} r\phi_s(a_1,a_2,a_3,\ldots,a_r\,;\,b_1,b_2,b_3,\ldots,b_s\,;\,q,z) \\ &= \sum_{n=0}^{\infty} \frac{(a_1;q)_n \,(a_2;q)_n \ldots (a_r\,;q)_n}{(q;q)n(b_1;q)n\,(b_2;q)n\ldots (b_s\,;q)_n} \quad [(-1)^n \; q^{\frac{n(n-1)}{2}} \; ]^{1+s-r} \; z^n \;. \end{aligned}$$

For  $0 < |\mathbf{q}| < 1$ , the series converges absolutely for all z if  $\mathbf{r} \le \mathbf{s}$  and for  $|\mathbf{z}| < 1$  if  $\mathbf{r} = \mathbf{s}+1$ . This series also converges absolutely if  $|\mathbf{q}| > 1$  and  $|\mathbf{z}| < |\mathbf{b}1b2...b_{\mathbf{s}}|/|\mathbf{a}_1\mathbf{a}_2...\mathbf{a}_{\mathbf{r}}|$ . In 1944 Bailey [1] introduced a very useful and simple identity known as Bailey's lemma. The Bailey's

In 1944, Bailey [1] introduced a very useful and simple identity known as Bailey's lemma. The Bailey's lemma states that, if

$$\beta n = \sum_{\substack{r=0\\\infty}}^{n} \alpha_r u_{n-r} v_{n+r}$$
$$\gamma_n = \sum_{\substack{r=n\\r=n}}^{n} \delta_r u_{r-n} v_{n+r} ,$$

then under the suitable convergence conditions and if change in the order of summations is allowed

$$\sum_{n=0}^{\infty} \alpha_n \gamma_n = \sum_{n=0}^{\infty} \beta_n \delta_n ,$$

where  $\alpha_r$ ,  $\delta_r$ ,  $u_r$  and  $v_r$  are functions of r such that  $\beta_n$  and  $\gamma_n$  exist. The proof of the lemma is trivial. Taking  $u_r = \frac{1}{(q;q)_r}$  and  $v_r = \frac{1}{(aq;q)_r}$  in (1.1), we have

$$\beta n = \sum_{r=0}^{n} \frac{\alpha_r}{(q;q)_{n-r}(aq;q)_{n+r}}$$

The pair of sequence  $(\alpha_n, \beta_n)$  that satisfies (1.4) is called a Bailey pair relative to the parameter a.

The Bailey lemma has been a simple and effective tool in proving Rogers-Ramanujan type of identities and also a verity of transformations of basic hypergeometric series [2]. Slater [3, 4] used Bailey's lemma and gave the long list of 130 identities of Roger-Ramanujan type. After Slater the Bailey lemma have been extensively used to prove Rogers-Ramanujan type of identities and its generalizations [5-8]. Very recently, Warnaar [9] has written a very elegant survey of Bailey lemma. Andrews et al [10-13] exploited very effective the mechanism of Bailey's transform in the form of Bailey pair and Bailey chain. In particular, WP-Bailey pair ( $\alpha_n$ , $\beta_n$ ) [14] satisfying

$$\beta_n = \sum_{r=0}^n \frac{(k/a;q)_{n-r}(k;q)_{n+r}}{(q;q)n - r(aq;q)n + r} \ ar \,.$$

For k = 0 in (1.5), we get the standard Bailey pair (1.4). The relation (1.5) follows by setting  $u_r = \frac{(k/a;q)_r}{(q;q)_r}$  and  $v_r = \frac{(k;q)_r}{(aq;q)_r}$  in (1.1). The same substitutions in (1.2), gives

$$\gamma_n = \frac{(k;q)_{2n}}{(aq;q)_{2n}} \sum_{r=0}^{\infty} \frac{(k/a;q)_r (kq2n;q)_r}{(q;q)_r (aq2n+1;q)_r} \delta_{r+n}.$$

In the present paper, we have established a number of transformations and summations of basic hypergeometric series by making use of (1.5) and (1.6). Some interesting special cases have also been deduced. We define a WP-Bailey Unit Bailey pair as

$$\alpha_{n} = \frac{(a, q \sqrt{a}, -q \sqrt{a}, a/k; q)_{n}}{(q, \sqrt{a}, -\sqrt{a}, kq; q)_{n}} (k/a)_{n}$$
  
$$\beta_{n} = \frac{1, n = 0,}{0, n > 0.}$$

The trivial WP-Bailey pair is defined as

$$\beta_n = \frac{(k, k/a; q)_n}{(q, aq; q)_n} \\ \alpha_n = \frac{1, n = 0,}{0, n > 0.}$$

A WP-Bailey pair due to Singh [15] is

$$\alpha_n = \frac{(a, q \sqrt{a}, -q \sqrt{a}, y, z, a^2 q/kyz; q)n}{(q, \sqrt{a}, -\sqrt{a}, aq/y, aq/z, kyz/a; q)n} (k/a)^n,$$
  
$$\beta_n = \frac{(ky/a, kz/a, k, aq/yz; q)_n}{(a, aq/y, aq/z, kyz/q; q)}.$$

In our analysis we shall also require the following known results,

$$\begin{split} 4\phi_{3}(a,-q\,\sqrt{a},b,c;-\sqrt{a},aq/b,aq/c;q,q\,\sqrt{a/bc}) &= \frac{(aq,q\,\sqrt{a/b},q\,\sqrt{a/c},aq/bc;q)_{\infty}}{(aq/b,aq/c,q\,\sqrt{a},q\,\sqrt{a/bc};q)_{\infty}} \\ 3\phi_{2}(a,\lambda q,b;\lambda,q\lambda^{2}/b;q,\lambda^{2}/ab^{2}) &= \frac{1-\lambda+\lambda/b(1-\lambda/a)(\lambda^{2}/b^{2},q\lambda^{2}/ab;q)_{\infty}}{(1-\lambda)(1+\lambda/b)(q\lambda^{2}/b,\lambda^{2}/ab^{2};q)_{\infty}}, \\ |\lambda^{2}/ab^{2}| < 1. \\ 2\phi 1(a,b;aq/b;q,-q/b) &= \frac{(-q;q)\infty(aq,aq^{2}/b^{2};q^{2})_{\infty}}{(-q/b,aq/b;q)_{\infty}} \\ 4\phi 3(a,q\,\sqrt{a},-q\,\sqrt{a},b;\,\sqrt{a},-\sqrt{a},aq/b;q,1/b^{2}q) &= \frac{(a/b^{2},1/bq;q)_{\infty}}{(aq/b,1/b^{2}q;q)_{\infty}} \\ 8\phi 7(a,q\sqrt{a},-q\sqrt{a},\sqrt{(a/b)},-\sqrt{(a/b)},\sqrt{(aq/b)},-\sqrt{(aq}\\ /b),b;\sqrt{a},-\sqrt{a},q\sqrt{(ab)},-q\sqrt{(ab)},\sqrt{(abq)},-\sqrt{(abq)},aq/b;q;bq) &= \frac{(aq,b^{2}q;q)\infty}{(bq,abq;q)\infty} \\ |bq| < 1. \end{split}$$

## II. Result and Discussion

If  $(\alpha_n, \beta_n)$  is a WP-Bailey pair, then under suitable convergence conditions, the following relations are true  $\sum_{n=0}^{\infty} \frac{(-q\sqrt{k}, c; q)_n}{(-\sqrt{k}, kq/c; q)_n} \left(\frac{aq}{c\sqrt{k}}\right)^n \beta_n = \frac{(kq, aq/\sqrt{k}, q\sqrt{k}/c, aq/c; q)_\infty}{(aq/c\sqrt{k}, aq, kq/c, q\sqrt{k}; q)_\infty} \sum_{n=0}^{\infty} \frac{(k; q)_{2n}}{(kq; q)_{2n}} \frac{(-q\sqrt{k}, q\sqrt{k}, c; q)_n}{(-\sqrt{k}, aq/\sqrt{k}, aq/c; q)_n} \left(\frac{aq}{c\sqrt{k}}\right)^n \alpha_n.$ 

$$\begin{split} &\sum_{n=0}^{\infty} \frac{(q n + 1\sqrt{ak;q})n}{(q n \sqrt{ak;q})n} \binom{a^{2}}{k^{2}}^{n} \beta_{n} = \\ &\frac{(a/k,a^{2}q/k;q)_{\infty}}{(a 2/k^{2},aq;q)_{\infty}} \sum_{m=0}^{\infty} \frac{(k,kqn,qn+1\sqrt{ak;q})_{n}}{(q n\sqrt{ak,a2}q/k,a2qn+1/k;q)_{n}} \frac{(1 - \sqrt{akq}^{2n} + \sqrt{a/(\sqrt{k} - a^{2/2}q^{2n}}))}{(1 - q^{2n}\sqrt{(ak)})(1 + \sqrt{a}/\sqrt{k})} \binom{a^{2}}{k^{2}}^{n} a_{n}, \\ &\sum_{n=0}^{\infty} \frac{(q\sqrt{k}, -q\sqrt{k;q})_{n}}{(\sqrt{k}, -\sqrt{k;q})_{n}} \binom{a^{2}}{k^{2}q}^{n} \beta_{n} = \\ &\frac{(a^{2}/k,a)(qx;q)_{\infty}}{(aq^{2}/k^{2};q)_{\infty}} \sum_{n=0}^{\infty} \frac{(k,kq^{n},q\sqrt{k}, -q\sqrt{k;q})_{n}}{(a^{2}/k,a^{2}qn/k,\sqrt{k}, -\sqrt{k;q})_{n}} \binom{a^{2}}{q^{k^{2}}}^{n} a_{n}, \\ &\sum_{n=0}^{\infty} \frac{(q\sqrt{k}, -q\sqrt{k},\sqrt{a}, -\sqrt{a},\sqrt{aq}, -\sqrt{aq;q})_{n}}{(a^{2}/k,a^{2}qn/k,\sqrt{k}, -\sqrt{k;q})_{n}} \binom{a^{2}}{(q^{k^{2}})^{n}} a_{n}, \\ &\sum_{n=0}^{\infty} \frac{(q\sqrt{k}, -q\sqrt{k},\sqrt{a}, -\sqrt{a},\sqrt{aq}, -\sqrt{aq;q})_{n}}{(\sqrt{k}, -\sqrt{k}, -\sqrt{k},\sqrt{q}, -\sqrt{k},\sqrt{a}, -\sqrt{a},\sqrt{(aq)}, -\sqrt{(aq);q})_{n}} \binom{kq}{a}^{n} \beta_{n} = \\ &\frac{(kq,k^{2}q/a^{2};q)_{\infty}}{(\sqrt{k}, -\sqrt{k}, -kq\sqrt{(1/a)}, k\sqrt{(1/a)}, k\sqrt{(q/a)}, -k\sqrt{(q/a);q})_{n}} \binom{kq}{a}^{n} \beta_{n} = \\ &\frac{(kq,k^{2}q/a^{2};q)_{\infty}}{(q,a^{2}q^{2})^{k};q^{2})_{\omega}(-q;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(k,kq^{n};q)_{n}}{(\sqrt{k}, -\sqrt{k}, kq\sqrt{(1/a)}, -k\sqrt{(q/a);q})_{n}} \binom{kq}{a}^{n} \beta_{n} = \\ &\frac{(kq^{2},qa^{2})^{k}}{(aq^{2},a^{2})^{k};q^{2})_{\omega}(-q;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(k,kq^{n};q)_{n}}{(-aq/k,aq;q)_{\infty}} \sum_{n=0}^{\infty} \frac{(k,kq^{n}$$

$$\gamma_n = \frac{(1 - q^{2n}\sqrt{(ak)})(1 + \sqrt{a}/\sqrt{k})}{(1 - q^{2n}\sqrt{(ak)})(1 + \sqrt{a}/\sqrt{k})} \frac{(a/k, a q/k, q)_{\infty}(k, kq, q, q, v(ak), q)_n}{(aq, a^2/k^2; q)_{\infty}(q^n\sqrt{(ak)}, a^2q/k, a^2q^{n+1}/k; q)_n} \left(\frac{a}{k^2}\right) .$$
using  $\delta_n$  and  $\gamma_n$  in (1.3), we obtain (2.2).

## Applications

By using (1.7) in (2.1) and taking 
$$n \to \infty$$
, we get  

$$8\phi7(k, q \sqrt{k}, -q \sqrt{k}, c, a, q \sqrt{a}, -q \sqrt{a}, a/k; kq, -\sqrt{k}, aq/\sqrt{k} \sqrt{a}, -\sqrt{a}, kq, aq/c; q, q \sqrt{k/c})$$

$$= \frac{(q \sqrt{k}, kq/c, aq, aq/c \sqrt{k}; q)_{\infty}}{(kq, aq/\sqrt{k}, q \sqrt{k/c}, aq/c; q)_{\infty}}.$$
Again by making the use of (1.9) in (2.1) and taking  $n \to \infty$ , we obtain  

$$10\phi9(k, -q \sqrt{k}, c, q \sqrt{k}, a, q \sqrt{a}, -q \sqrt{a}, y, z, a^2 q/kyz; kq, -\sqrt{k}, aq/\sqrt{k}, aq/c, \sqrt{a}, -\sqrt{a}, aq/y, aq/z, kyz/a; q, q \sqrt{k/c})$$

$$= \frac{(aq/c \sqrt{k}, aq, kq/c, q \sqrt{k}; q)_{\infty}}{(kq, aq/\sqrt{k}, q \sqrt{k/c}, aq/c; q)_{\infty}} 6\phi_5(-q \sqrt{k}, c, ky/a, kz/a, k, aq/yz; -\sqrt{k}, kq/c, aq/y, aq/z, kyz/a; q, q q/c \sqrt{k}).$$
On using (1.8) in (2.2) and taking  $n \to \infty$ , we get

\*Corresponding Author: Dr.Brijesh Pratap Singh

 $\begin{aligned} & 2\phi 1(k,k/a;aq;q,a^2/k^2) = \frac{(a/k,a^2 q/k;q)_{\infty}}{(aq,a^2/k^2;q)_{\infty}} \frac{(1-\sqrt{ak}+\sqrt{a}/(\sqrt{k}-a^{3/2})}{(1-\sqrt{ak})(1+\sqrt{a}/\sqrt{k})} \\ & \text{By making the use of (1.7) in (2.3) and then taking } n \to \infty, \text{ we obtain} \\ & 7\phi 6(a,q\sqrt{a},-q\sqrt{a},a/k,k,q\sqrt{k},-q\sqrt{k};\sqrt{a},-\sqrt{a},kq,a^2/k,\sqrt{k},-\sqrt{k};q,a/kq) = \frac{(aq,a^2/k^2q;q)_{\infty}}{(a^2/k,a/kq;q)_{\infty}} \\ & \text{In (2.3) using (1.9) and then taking } \to \infty, \text{ we get the following transformation} \\ & 9\phi 8(k,q\sqrt{k},-q\sqrt{k},a,q\sqrt{a},-q\sqrt{a},y,z,a2q/kyz;a^2/k,\sqrt{k},-\sqrt{k},\sqrt{a},-\sqrt{a},aq/y,aq/z,kyz/a;q,a},a/kq) \\ & = \frac{(aq,a^2/k^2q;q)_{\infty}}{(a^2/k,a/kq;q)_{\infty}} 6\phi 5(q\sqrt{k},-q\sqrt{k},ky/a,kz/a,k,aq/yz;\sqrt{k},-\sqrt{k},aq/y,aq/z,kyz/a;q,a^2k^2q}). \\ & \text{Again in (2.4) making the use of (1.7) and taking } n \to \infty, \text{ we obtain the following summation} \\ & 12\phi 11(k,q\sqrt{k},-q\sqrt{k},\sqrt{a},-\sqrt{a},\sqrt{a}q,-\sqrt{a}q,k^2q/a^2) = \frac{(kq/a,k^2q/a^2;q)_{\infty}}{(kq,k^2q/a^2;q)_{\infty}}. \\ & \text{Now use (1.9) in (2.4) and taking } n \to \infty, \text{we have} \\ & 14\phi 13(k,q\sqrt{k},-q\sqrt{k},\sqrt{a},-\sqrt{a},\sqrt{a}q,-\sqrt{a}q,k^2q/a,a,q\sqrt{a},-q\sqrt{a},xy,z,a^2q/kyz;\sqrt{k},-\sqrt{k},kq\sqrt{1} \\ & -a,-k\sqrt{1/a},k\sqrt{q}(a,-\sqrt{a},\sqrt{a}q,-\sqrt{a}q,k^2q/a,a,q\sqrt{a},-\sqrt{a}q,aq/y,aq/z,kyz/a;q;k^2q/a^2}) \\ & = \frac{(kq/a,k^2q/a^2;q)_{\infty}}{(kq,k^2q/a^2;q)_{\infty}} 10\phi 9(q\sqrt{k},-q\sqrt{k},\sqrt{a},-\sqrt{a},\sqrt{a}q,-\sqrt{a}q,ky/a,kz/a,k,aq) \\ & -(kq/a,k^2q/a^2;q)_{\infty}} \end{aligned}$ 

 $(yz; \sqrt{k}, -\sqrt{k}, kq\sqrt{1/a}, -kq\sqrt{1/a}, k\sqrt{q/a}, -k\sqrt{q/a}, aq/y, aq/z, kyz/a; q; kq/a).$ By using (1.7) in (2.5), we have

$$\sum_{n=0}^{\infty} \frac{(k, kq^n, a, q\sqrt{a}, -q\sqrt{a}, a/k; q)_n}{(q, \sqrt{a}, -\sqrt{a}, kq; q)_n (kq, a^2 q^2 /k; q^2)_{2n}} (-q)^n = \frac{(-aq/k, aq; q)_{\infty}}{(-q; q)_{\infty} (kq, a^2 q^2 /k; q^2)_{\infty}}$$

and again in (2.5) using (1.9), we get

 $4\phi 3(ky/a, kz/a, k, aq/yz; aq/y, aq/z, kyz/a; q, -aq/k)$ 

$$=\frac{(-q;q)\infty(kq,a\,2q\,2/k;q\,2\,)\infty}{(-aq/k,aq;q)\infty}\sum_{n=0}^{\infty}\frac{(k,kq^n,a,q\sqrt{a},-q\sqrt{a},y,z,a^2q/kyz;q)_n}{(kq,a^2q^2/k;q^2)_{2n}(q,\sqrt{a},-\sqrt{a},aq/y,aq/z,kyz/a;q)_n}(-q)^n.$$

## References

- [1]. W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 50 (1949), 1-10.
- S. Singh, On certain summation and transformation formulas for Basic Hypergeometric series, International Jornal of Mathematics Archive-2(12), 2011, 2670-2677.
- [3]. L. J. Slater, A new proof of Rogers's transformations of infinite series, Proc. London Math. Soc. (2) 53(1951), 460 475.
- [4]. L. J. Slater, Futher identities of the Rogers-Ramanujan type, Proc. London Math. Soc. 54 (1952), 147-167.
- [5]. O. Foda, Y. H. Quano, Polynomial identities of the Rogers-Ramanujan type, Int. J. Mod. Phys. A 10 (1995) 2291-2315.
- [6]. R. Y. Denis, On certain summation of q-series and identities of Rogers-Ramanujan type, J. Math. Phys. Sci. 22 (1) (1988) 87-99.
- [7]. R. Y. Denis, S. N. Singh, S. P. Singh, Certain Transformation and Summation formulae for q-series, Italian Jornal of Pune and applied Math. 27-2010 (179-190).
- [8]. S. N. Singh, Certain partition theorems of Rogers-Ramanujan type, J.Indian Math. Soc.(N.S.)62(1-4)(1996)113-120.
- [9]. S. O. Warnaar, 50 years of Bailey's lemma, Algebraic combinatorics and applications, pp.333-347, A Betten et al. eds, springer, Berlin, (2001).
- [10]. G. Andrews, A genaral theory of identities of the Rogers-Ramanujan type, Bull. Amer. Math.soc. 80 (1974), no.1033-1052.
- [11]. G. Andrews, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), no-2, 267-283.
- [12]. G. Andrews, A. Berkovich, The WP-Bailey tree and its implications, J. Londan Math. soc. (2) 66(2002), no. 3, 529-549.
- [13]. G. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Natl. Acad. sci. USA 71(1974), no.4082-4085.
- [14]. G. Andrews, Bailey's transform, lemma, chains and tree, Special functions 2000: current perspective and future directions (Tempe, AZ),1-22, NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001.
- [15]. U. B. Singh, A note on a transformation of Bailey, Quart. J. Math. Oxford Ser.(2) 45 (1994), 111-116.
- [16]. G. Gasper, M. Rahman, Basic Hypergeometric Series, Second Edition, Encyclopedia of Mathematics And Its Applications, 96. Cambridge Univ. Press, Cambridge, (2004).
- [17]. V. K. Jain, A Study of Certain Hypergeometric Identity, Thesis submitted to Univ. Roorkee (1979).
- [18]. B. P. Mishra, P. Singh, A Note on Bailey pairs and q-series identities, J.of Ramanujan society of Math. and Math. sc. vol.2, No.1 (2013), PP.109-128.