Ouest Journals

Journal of Research in Applied Mathematics Volume 11 ~ Issue 8 (August 2025) pp: 01-09

ISSN (Online): 2394-0743 ISSN (Print): 2394-0735

www.questjournals.org

Research Paper

A Step on $(2 - \epsilon)$ -Bergman Kernel for Bounded Domains in \mathbb{C}^n

Mohammed Abdallah (1) and ShawgyHussein (2)

- (1) Sudan University of Science and Technology, College of Education, Department of Mathematics, Sudan.
 - (2) Sudan University of Science and Technology, College of Science, Department of Mathematics, Sudan.

Abstract

Following the way of J. Ning, H. Zhang, and X. Zhou [23], we show some properties of the $(2 - \epsilon)$ -Bergman kernels by applying $L^{2-\epsilon}$ extension theorem. We also show that for any bounded domain in \mathbb{C}^n , it is pseudoconvex if and only if its $(2 - \epsilon)$ -Bergman kernel is an exhaustion function, for any $0 < \epsilon < 2$. As an application, we give a negative answer to a conjecture of Tsuji.

Keywords:

Received 01 Aug., 2025; Revised 09 Aug., 2025; Accepted 11 Aug., 2025 © The author(s) 2025. Published with open access at www.questjournas.org

I. Introduction

The authors in [16] proved the Ohsawa-Takegoshi L^2 extension theorem, which turns out to be useful in several complex variables and complex geometry. [2] proved the $L^{2/m}$ version of Ohsawa-Takegoshi theorem for $m \in \mathbb{N}$. Recently, [9] obtained optimal estimate for $L^{2-\epsilon}$ ($0 \le \epsilon < 2$) extension as an application of their solution of a sharp L^2 extension problem.

Here, we study the $(2 - \epsilon)$ -Bergman kernels for bounded domains in \mathbb{C}^n , and apply $L^{2-\epsilon}$ extension theorem to give some properties of $(2 - \epsilon)$ -Bergman kernels (see [23]).

We can introduced a(2 $-\epsilon$)-Bergman kernel as follows:

Definition 1.1. For a domain $\Omega \subseteq \mathbb{C}^n$ and $0 \le \epsilon < 2$, the $(2 - \epsilon)$ -Bergmann kernel $K_{\Omega, 2 - \epsilon}$ is denoted by

$$K_{\Omega,2-\epsilon}(z^2-1) = \sup_{f_j \in A^{2-\epsilon}(\Omega)} \sum_j \frac{|f_j(z^2-1)|^{2-\epsilon}}{\int_{\Omega} |f_j|^{2-\epsilon}}$$

where

$$A^{2-\epsilon}(\Omega) = \left\{ f_j \in \mathcal{O}(\Omega) : \int_{\Omega} \sum_j |f_j|^{2-\epsilon} < +\infty \right\}$$

Where the integral on Lebesgue measure.

According to the extreme property, the usual Bergman kernel is just 2-Bergman kernel for the case $\epsilon = 0$ and j = 1 in the above definition, which has been studied for years.

Let S be a closed complex subvariety of a domain $U \subset \mathbb{C}^n$. It's known that one has the same Bergman kernels on U and $U \setminus S$, since for any $f_j \in A^2(U \setminus S)$, one can holomorphically extend the sequence of functions f_j to U. That is to say, one can not distinguish U and $U \setminus S$ by the Bergman kernel.

However, the $(2 - \epsilon)$ -Bergman kernel may give some distinction. We will show that for a bounded domain, it is pseudoconvex if and only if its $(2 - \epsilon)$ -Bergman kernel is an exhaustion function for any $0 < \epsilon < 2$. Besides, the $(2 - \epsilon)$ -Bergman kernel is interesting per se. We'll also give estimate about the boundary behavior of the $(2 - \epsilon)$ -Bergman kernel for a bounded pseudoconvex domain. Lastly, we'll answer negatively a conjecture of [20].

II. The $(2 - \epsilon)$ -Bergman kernel

Note that when $\epsilon=0$ and j=1, the $(2-\epsilon)$ -Bergmann kernel is just the usual Bergman kennel. For simplicity, we write K_{Ω} for $K_{\Omega,2}$. The $(2-\epsilon)$ -Bergmann kernel has some properties similar to the usual Bergman kernel, for example, it is easy to see that $K_{\Omega_1,2-\epsilon}(z^2-1) \geq K_{\Omega_2,2-\epsilon}(z^2-1)$ for $(z^2-1) \in \Omega_1$ and two domains $\Omega_1 \subseteq \Omega_2$, and the $(2-\epsilon)$ -Bergmann kernels are plurisubharmonic.

We will study some more properties of $K_{0,2-\epsilon}$.

Proposition 2.1 (see [23]). Let $\Omega_1 \subset \mathbb{C}^n$ be simply connected domain and $\Omega_2 \subset \mathbb{C}^n$ be a domain. Then for any $\phi_j \colon \Omega_1 \to \Omega_2$ biholomorphism, we have $K_{\Omega_1, 2-\epsilon}(z^2-1) = K_{\Omega_2, 2-\epsilon}(\phi_j(z^2-1)) |J\phi_j(z^2-1)|^2$, where $J\phi_j$ is the determinant of Jacobian of ϕ_j . In particular, if $(2-\epsilon) = \frac{2}{m}$, where $m \in \mathbb{N}$, there is no need for the condition that Ω_1 is simply connected.

Proof. As Ω_1 is simply connected and $J\phi_j$ is nonvanishing, we can choose a single valued holomorphic function of log $J\phi_i$.

Then

$$\Phi: A^{2-\epsilon}(\Omega_2) \to A^{2-\epsilon}(\Omega_1)$$
$$f_i \mapsto f_i \circ \phi_i e^{\frac{2}{2-\epsilon} \log (J\phi_j)}$$

is isometric, since

$$\int_{\Omega_2} \sum_j |f_j|^{2-\epsilon} = \int_{\Omega_1} \sum_j |f_j \circ \phi_j|^{2-\epsilon} |J\phi_j|^2 = \int_{\Omega_1} \sum_j |f_j \circ \phi_j e^{\frac{2}{2-\epsilon} \log{(J\phi_j)}}|^{2-\epsilon}.$$

When $(2 - \epsilon) = \frac{2}{m}$, $m \in \mathbb{N}$, we take

$$\begin{split} \Phi \colon & A^{2-\epsilon}(\Omega_2) \! \to A^{2-\epsilon}(\Omega_1) \\ & f_j \mapsto f_j \circ \phi_j (J\phi_j)^m, \end{split}$$

in this case, the simply connected condition is not needed any more.

By definition,

$$\begin{split} K_{\Omega_{2},2-\epsilon}(\phi_{j}(z^{2}-1)) &= \sup_{f_{j}\in A^{2-\epsilon}(\Omega_{2})} \sum_{j} \frac{|f_{j}(\phi_{j}(z^{2}-1))|^{2-\epsilon}}{\int_{\Omega_{2}} |f_{j}|^{2-\epsilon}} \\ &= \sup_{f_{j}\in A^{2-\epsilon}(\Omega_{2})} \sum_{j} \frac{|f_{j}(\phi_{j}(z^{2}-1))|^{2-\epsilon}}{\int_{\Omega_{1}} |f_{j}\circ\phi_{j}|^{2-\epsilon} |J\phi_{j}|^{2}} \\ &= \sum_{j} \frac{1}{|J\phi_{j}(z^{2}-1)|^{2}} \sup_{f_{j}\in A^{2-\epsilon}(\Omega_{2})} \frac{\left|f_{j}\circ\phi_{j}(z^{2}-1)e^{\frac{2}{2-\epsilon}}\log(J\phi_{j}(z^{2}-1))\right|^{2-\epsilon}}{\int_{\Omega_{1}} |f_{j}\circ\phi_{j}e^{\frac{2}{2-\epsilon}}\log(J\phi_{j})|^{2-\epsilon}} \\ &= \sum_{j} \frac{K_{\Omega_{1},2-\epsilon}(z^{2}-1)}{|J\phi_{j}(z^{2}-1)|^{2}} \end{split}$$

It's easy to see that, if $J\phi_j$ is constant, then the above proposition is still true without the assumption that Ω_1 is simply connected. For example, if the domain Ω is a *G*-invariant domain w.r.t. a linear action of a semisimple Lie group *G*, then the $(2 - \epsilon)$ -Bergmann kernel is *G*-invariant.

The condition that Ω_1 is simply connected is necessary for some $0 < \epsilon < 2$ (see Remark 2.3).

Similar to the usual Bergman kernel, the following proposition holds for the $(2 - \epsilon)$ -Bergman kernel. **Proposition 2.2 (see [23]).** Suppose that $\Omega_j \subset \mathbb{C}^n$ are bounded domains and $\Omega_j \subset \Omega_{j+1}$ for $j \geq 1, \bigcup_{j=1}^{\infty} \Omega_j = \Omega$, where Ω is a bounded domain in \mathbb{C}^n . Then for $0 \leq \epsilon < 2$,

$$\lim_{j \to \infty} K_{\Omega_j, 2-\epsilon}(z^2 - 1) = K_{\Omega, 2-\epsilon}(z^2 - 1)$$

and the convergence is uniform on compact subsets of Ω .

Proof. As $K_{\Omega_i,2-\epsilon}(z^2-1)$ is decreasing,

$$\lim_{j\to\infty} K_{\Omega_j,2-\epsilon}(z^2-1)$$

exists and $\geq K_{\Omega,2-\epsilon}(z^2-1)$.

For fixed $(z^2 - 1) \in \Omega$, we may assume $(z^2 - 1) \in \Omega_{j_0}$. There is $f_{j_0} \in \mathcal{O}(\Omega_{j_0})$ such that

$$\int_{\Omega_i} \left| f_{j_0} \right|^{2 - \epsilon} = 1$$

and

$$|f_{j_0}(z^2-1)|^{2-\epsilon} = K_{\Omega_{j_0}2-\epsilon}(z^2-1)$$

for each $j \ge j_0$.

By the Montel theorem, there is a subsequence of $(j_0)_k$ such that

$$\lim_{k\to\infty} f_{(j_0)_k}$$

is uniformly convergent to $f_i \in \mathcal{O}(\Omega)$.

It is easy to check that

$$\int_{\Omega} \sum_{j} |f_{j}|^{2-\epsilon} \le 1$$

By the definition, we have

$$K_{\Omega,2-\epsilon}(z^2-1) \ge \sum_{j} |f_j(z^2-1)|^{2-\epsilon} = \lim_{j_0 \to \infty} K_{\Omega_j,2-\epsilon}(z^2-1)$$

As $K_{\Omega,2-\epsilon}(z^2-1)$ is continuous and $K_{\Omega_{j},2-\epsilon}(z^2-1)$ is decreasing, it follows that $K_{\Omega_{j},2-\epsilon}(z^2-1)$ converges uniformly to $K_{\Omega,2-\epsilon}(z^2-1)$ on compact subsets of Ω .

Theorem 2.3 (see [23]). Let Ω be one of the classical domains (see [11], [12], [13]):

$$\mathfrak{R}_1 := \left\{ (Z^2 - 1) \in M(m,n) \colon I^{(m)} - (Z^2 - 1)(Z^2 - 1)' > 0 \right\}$$

$$\mathfrak{R}_2 := \big\{ (Z^2 - 1) \in M(n, n) : I^{(n)} - (Z^2 - 1)(Z^2 - 1)' > 0, (Z^2 - 1) = (Z^2 - 1)' \big\},$$

$$\Re_3$$
: = $\{(Z^2 - 1) \in M(n, n): I^{(n)} - (Z^2 - 1)(Z^2 - 1)' > 0, (Z^2 - 1) = -(Z^2 - 1)'\}$

$$\Re_4 := \{ (Z^2 - 1) \in M(1, n) : |(Z^2 - 1)(Z^2 - 1)'| + 1 - 2(Z^2 - 1)(Z^2 - 1)' > 0, |(Z^2 - 1)(Z^2 - 1)'| < 1 \}.$$

Then

$$K_{\Omega,1+\epsilon}(Z^2-1) = K_{\Omega,2}(Z^2-1)$$

for $(Z^2 - 1) \in \Omega$ for $\epsilon \ge 0$.

Proof. For $(Z^2 - 1) \in \Omega$ and $|t| \le 1$, we have $t(Z^2 - 1) \in \Omega$.

For any $f_i \in \mathcal{O}(\Omega)$, we have

$$\frac{1}{2\pi} \int_0^{2\pi} \sum_i \left| f_j \left(e^{i\theta} (Z^2 - 1) \right) \right|^{1+\epsilon} d\theta \ge \sum_i \left| f_j(0) \right|^{1+\epsilon}$$

Then by the Fubini Theorem,

$$\begin{split} \int_{\Omega} |f_{j}|^{1+\epsilon} &= \frac{1}{2\pi} \int_{0}^{2\pi} \int_{\Omega} \sum_{j} \left| f_{j} \left(e^{i\theta} (Z^{2} - 1) \right) \right|^{1+\epsilon} dV_{(Z^{2} - 1)} d\theta \\ &= \int_{\Omega} dV_{(Z^{2} - 1)} \frac{1}{2\pi} \int_{0}^{2\pi} \sum_{j} \left| f_{j} \left(e^{i\theta} (Z^{2} - 1) \right) \right|^{1+\epsilon} d\theta \geq \sum_{j} |f_{j}(0)|^{1+\epsilon} \text{Vol}(\Omega) \end{split}$$

we have

$$K_{\Omega,1+\epsilon}(0) = \frac{1}{\operatorname{Vol}(\Omega)}$$

As Ω is homogenous, it is well known that Ω is also simply connected, combining with the above proposition, we have $K_{\Omega,1+\epsilon}(Z^2-1)=K_{\Omega,2}(Z^2-1)$ for $(Z^2-1)\in\Omega$.

Remark 2.1. The above result is true for any complete circular and bounded homogeneous domain. It's known that any bounded symmetric domain is such a domain.

For a general bounded homogenous domain Ω , we have $K_{\Omega,1+\epsilon}(z^2-1) \geq K_{\Omega,2}(z^2-1)$. It is well known that $K_{\Omega}(z^2-1,w)$ is zero free and Ω is simply connected, we can define a holomorphic function $\log K_{\Omega}(z^2-1,w)$ for $(z^2-1) \in \Omega$ and fixed $w \in \Omega$. Then $e^{\frac{2}{1+\epsilon}\log K_{\Omega}(z^2-1,w)} \in A^{1+\epsilon}(\Omega)$, and it is easy to get $K_{\Omega,1+\epsilon}(z^2-1) \geq K_{\Omega,2}(z^2-1)$.

It seems to be strange that the $(1 + \epsilon)$ -Bergmann kernel may be independent of $(1 + \epsilon)$ for some domains. From the following theorem, we can deduce that, in general, $K_{\Omega,1+\epsilon}$ is dependent on $(1 + \epsilon)$.

Lemma 2.4 (see [23]). For $\Omega \subset \mathbb{C}^n$, we have

$$K_{\Omega,\frac{2-\epsilon}{m}}(z^2-1) \ge K_{\Omega,2-\epsilon}(z^2-1)$$

for any $0 < \epsilon < 2$ and $m \in \mathbb{N}$.

Proof. If $f_i \in A^{2-\epsilon}(\Omega)$, then

$$f_{\mathsf{i}}^m \in A^{\frac{2-\epsilon}{m}}(\Omega)$$

and

$$\int_{\Omega} \sum_{i} \quad |f_{j}|^{2-\epsilon} = \int_{\Omega} \sum_{i} \quad \left| f_{j}^{m} \right|^{\frac{2-\epsilon}{m}}$$

By the definition of $(2 - \epsilon)$ -Bergman kernel, we have

$$K_{\Omega,\frac{2-\epsilon}{m}}(z^2-1) \ge K_{\Omega,2-\epsilon}(z^2-1)$$

The next theorem needs the $L^{2-\epsilon}$ extension theorem. We state it in the following. For the proof, see [2] or [9].

Theorem 2.5. (see [2] or [9]) Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n , L be a complex affine line in \mathbb{C}^n , and $\Omega \cap L \neq \emptyset$. For $0 \le \epsilon < 2$, then for any $f_j \in A^{2-\epsilon}(\Omega \cap L)$, there is $F_j \in A^{2-\epsilon}(\Omega)$, such that $F_j|_{\Omega \cap L} = f_j$ and

$$\int_{\Omega} \sum_{j} \quad |F_{j}|^{2-\epsilon} \leq C \int_{\Omega \cap L} \sum_{j} \quad |f_{j}|^{2-\epsilon}$$

where C is a constant depending only on diam Ω and n.

Theorem 2.6 (see [23]). Let $\Omega \subset \mathbb{C}^n$ be a bounded pseudoconvex domain, $0 < \epsilon < 2$ and $l = \max \left\{ s \in \mathbb{N}_+ : s < \frac{2}{2-\epsilon} \right\}$. Then we have

$$K_{\Omega,2-\epsilon}(z^2-1) \ge \frac{1+\epsilon}{\delta(z^2-1)^{(2-\epsilon)l}}$$

where $\delta(z^2 - 1) = \inf_{w \in \partial \Omega} d(z^2 - 1, w)$ and $(1 + \epsilon)$ is a constant positive number.

Proof. For any complex line L, after a unitary transform, we may assume $L = \{(z^2 - 1)_2 = \dots = (z^2 - 1)_n = 0\}$.

Let
$$(z^2 - 1)^0 = ((z^2 - 1)_1^0, 0, ..., 0) \in \partial\Omega \cap L$$
, take
$$f_j = \frac{1}{((z^2 - 1)_1 - (z^2 - 1)_1^0)^l} \in A^{2-\epsilon}(\Omega \cap L)$$

From the $L^{2-\epsilon}$ extension theorem 2.5, we get $F_j \in A^{2-\epsilon}(\Omega)$ such that $F_j\big|_{\Omega \cap L} = f_j$, and

$$\int_{\Omega} \sum_{j} |F_{j}|^{2-\epsilon} \le C \int_{\Omega \cap L} \sum_{j} |f_{j}|^{2-\epsilon} \le \frac{1}{1+\epsilon}$$

for some constant $\epsilon \geq 0$, $(1 + \epsilon)$ depends only on diam Ω and n.

Then

$$K_{\Omega,2-\epsilon}(z^2-1)\Big|_{\Omega\cap L} \ge \frac{1+\epsilon}{|(z^2-1)_1-(z^2-1)_1^0|^{(2-\epsilon)l}}$$

As we can choose arbitrary complex line and boundary points, we get

$$K_{\Omega,2-\epsilon}(z^2-1) \ge \frac{1+\epsilon}{\delta(z^2-1)^{(2-\epsilon)l}}$$

According to the above theorem and the fact that the $(2 - \epsilon)$ -Bergman kernel is plurisubharmonic, we can easily get the following interesting theorem.

Theorem 2.7. For any bounded domain Ω in \mathbb{C}^n , Ω is pseudoconvex if and only if $K_{\Omega,2-\epsilon}(z^2-1)$ is an exhaustion function for $0 < \epsilon < 2$.

Remark 2.2. The condition that Ω is bounded is necessary. If we consider $\Omega = \mathbb{C} \setminus \Delta$, then $K_{\Omega,2-\epsilon}(z^2-1)$ is bounded near ∞ for $0 \le \epsilon < 2$.

Theorem 2.8 (see [23]). Let $\Delta^* = \{(z^2 - 1) \in \mathbb{C}: 0 < |z^2 - 1| < 1\}$ and $0 \le \epsilon < 2$, then we have $K_{\Delta^*, 1 + \epsilon}(z^2 - 1) = O\left(\frac{1}{|z^2 - 1|^{1 + \epsilon}}\right)$.

Proof. For any $f_j \in A^{1+\epsilon}(\Delta^*)$, we have $f_j(z^2 - 1) = \sum_{n=-\infty}^{\infty} \sum_j a_n^j (z^2 - 1)^n$, then $g_j(z^2 - 1) := \sum_{n=0}^{\infty} \sum_j a_n^j (z^2 - 1)^n$ is holomorphic on $\Delta = \{(z^2 - 1) \in \mathbb{C} : |z^2 - 1| < 1\}$.

In the present proof, we denote by $\|f_j\|_{1+\epsilon} = \left(\int_{\Delta^*} \sum_j |f_j|^{1+\epsilon}\right)^{\frac{1}{1+\epsilon}}$ for $f_j \in A^{1+\epsilon}(\Delta^*)$. Obviously, $\int_{\Delta^*_{\tau}} \sum_j |g_j(z^2-1)|^{1+\epsilon} < \infty$, where $\Delta^*_{\tau} = \{(z^2-1) \in \mathbb{C} : 0 < |z^2-1| < \tau\}$ and $0 < \infty$

 τ < 1.

It's easy to see that

$$\int_{\Lambda^*} \left| \frac{1}{z^2 - 1} \right|^{1 + \epsilon} dx dy = \int_0^1 \int_0^{2\pi} r^{-\epsilon} d\theta dr = \frac{2\pi}{1 - \epsilon}$$

From

$$\|g_j+h_j\|_{1+\epsilon}\leq \|g_j\|_{1+\epsilon}+\|h_j\|_{1+\epsilon}$$

we get

$$h_j(z^2-1):=\sum_{n=-\infty}^{-2}\sum_j \quad a_n^j(z^2-1)^n \in A^{1+\epsilon}(\Delta_{\tau}^*).$$

We want to prove $h_i = 0$.

$$\int_{\Delta_{\tau}^{*}} \sum_{j} |h_{j}(z^{2} - 1)|^{1+\epsilon} dx dy = \int_{\mathbb{C} \setminus \Delta_{\frac{1}{\tau}}} \sum_{j} \left| h_{j} \left(\frac{1}{z^{2} - 1} \right) \right|^{1+\epsilon} \frac{dx dy}{|z^{2} - 1|^{4}}$$

$$= \int_{\frac{1}{\tau}}^{\infty} \frac{1}{r^{3}} dr \int_{0}^{2\pi} \sum_{j} \left| h_{j} \left(\frac{e^{i\theta}}{r} \right) \right|^{1+\epsilon} d\theta$$

Let $\tilde{h}_j(z^2-1)=h_j\left(\frac{1}{z^2-1}\right)$, then \tilde{h}_j is holomorphic on $\mathbb{C}\setminus\Delta_{\frac{1}{2}}$ and

$$\tilde{h}_{j}(z^{2}-1) = \sum_{n=2}^{\infty} \sum_{j} a_{-n}^{j} (z^{2}-1)^{n}$$

If \tilde{h}_j is not 0, then there is $n_0 > 1$ such that $a^j_{-n_0} \neq 0$ and $a^j_{-n} = 0$ for $1 < n < n_0$. Write $\tilde{h}_j(z^2 - 1) = (z^2 - 1)^{n_0} (f_j)_1 (z^2 - 1)$, where $\left(f_j\right)_1 (z^2 - 1) = \sum_{n=n_0}^{\infty} \sum_j a^j_{-n} (z^2 - 1)^{n-n_0}$.

By the submean property

$$\int_0^{2\pi} \sum_i \left| (f_j)_1 \left(\frac{e^{i\theta}}{r} \right) \right|^{1+\epsilon} d\theta \ge 2\pi \sum_i \left| a_{-n_0}^j \right|^{1+\epsilon}$$

and $n_0(1+\epsilon)-3>-1$, it follows that

$$\int_{\Delta_{\tau}^*} \sum_j |h_j(z^2-1)|^{1+\epsilon} dx dy \ge 2\pi \sum_j |a_{-n_0}^j|^{1+\epsilon} \int_{\frac{1}{\tau}}^{\infty} r^{n_0(1+\epsilon)-3} dr = \infty.$$

Therefore, $h_j=0$. That is to say, for any $f_j\in A^{1+\epsilon}(\Delta^*)$, we have $f_j(z^2-1)=\sum_{n=-1}^{\infty}\sum_j a_n^j(z^2-1)^n$. Note that

$$K_{\Delta^*,1+\epsilon}(z^2-1) \ge \frac{\frac{1}{|(z^2-1)(z^2-1)^{(1+\epsilon)}}}{\int_{\Delta^*} \left|\frac{1}{z^2-1}\right|^{1+\epsilon}} \ge \frac{1-\epsilon}{2\pi|z^2-1|^{1+\epsilon}}$$
(1)

Since

$$|z^{2}-1|^{1+\epsilon}K_{\Delta^{*},1+\epsilon}(z^{2}-1) = |z^{2}-1|^{1+\epsilon}\sup_{f_{j}\in A^{1+\epsilon}(\Delta)}\sum_{j}\frac{\left|\frac{a^{j}}{z^{2}-1}+f_{j}(z^{2}-1)\right|^{1+\epsilon}}{\int_{\Delta^{*}}\left|\frac{a^{j}}{z^{2}-1}+f_{j}(z^{2}-1)\right|^{1+\epsilon}dxdy}$$

$$=\sup_{f_{j}\in A^{1+\epsilon}(\Delta)}\sum_{j}\frac{\left|a^{j}+(z^{2}-1)f_{j}(z^{2}-1)\right|^{1+\epsilon}}{\int_{\Delta^{*}}\left|\frac{a^{j}}{z^{2}-1}+f_{j}(z^{2}-1)\right|^{1+\epsilon}dxdy}.$$

$$(2)$$

From (1), for $(z^2 - 1)$ near 0, we may take $a^j = 1$. For $f_i \in A^{1+\epsilon}(\Delta)$

(a) If
$$||f_j||_{1+\epsilon}^{1+\epsilon} > 2^{(1+\epsilon)} \frac{2\pi}{1-\epsilon}$$
, then $||f_j(z^2-1) + \frac{1}{z^2-1}||_{1+\epsilon} \ge ||f_j(z^2-1)||_{1+\epsilon} - ||\frac{1}{z^2-1}||_{1+\epsilon} > \frac{1}{2} ||f_j(z^2-1)||_{1+\epsilon}$, so

$$\sum_{j} \frac{|1 + (z^{2} - 1)f_{j}(z^{2} - 1)|^{1+\epsilon}}{\int_{\Delta^{*}} \left| \frac{1}{z^{2} - 1} + f_{j}(z^{2} - 1) \right|^{1+\epsilon} dx dy} < \sum_{j} \frac{2^{(1+\epsilon)} \left(1 + |(z^{2} - 1)f_{j}(z^{2} - 1)|^{1+\epsilon} \right)}{(1/2^{(1+\epsilon)}) \int_{\Delta^{*}} |f_{j}|^{1+\epsilon}} < 2^{2(1+\epsilon)} \left(\frac{1-\epsilon}{2^{(2+\epsilon)}\pi} + |z^{2} - 1|^{1+\epsilon} K_{\Delta,1+\epsilon}(z^{2} - 1) \right).$$

(b) If $||f_j||_{1+\epsilon}^{1+\epsilon} \le 2^{(1+\epsilon)} \frac{2\pi}{1-\epsilon}$, then $|f_j(z^2-1)| \le C$ for all (z^2-1) near 0, where C is a positive constant independent on f_j .

Since

$$\int_{\Delta^*} \sum_{j} \left| \frac{1}{z^2 - 1} + f_j(z^2 - 1) \right|^{1 + \epsilon} dx dy = \int_0^1 r^{-\epsilon} dr \int_0^{2\pi} \sum_{j} \left| 1 + re^{i\theta} f_j(re^{i\theta}) \right|^{1 + \epsilon} d\theta$$

$$\geq 2\pi \int_0^1 r^{-\epsilon} dr = \frac{2\pi}{1 - \epsilon}$$

then

$$\sum_{j} \frac{|1+(z^2-1)f_j(z^2-1)|^{1+\epsilon}}{\int_{\Delta^*} \left|\frac{1}{z^2-1}+f_j(z^2-1)\right|^{1+\epsilon} dx dy} < \frac{(1-\epsilon)(1+|z^2-1|C)^{1+\epsilon}}{2\pi}$$

According to (a) and (b), we get that $|z^2 - 1|^{1+\epsilon} K_{\Delta^*, 1+\epsilon}(z^2 - 1)$ is bounded near 0.

From the above theorem, we know the lower bounds of Theorem 2.6 is optimal.

Remark 2.3 (see [23]). Let $D = \{(z^2 - 1) \in \mathbb{C}: |z^2 - 1| > 1\}$, for $0 < \epsilon < 2$, there is $(1 + \epsilon) = (1 + \epsilon)^2 > 0$ such that

$$K_{D,1+\epsilon}(z^2-1) \le \frac{1+\epsilon}{|z^2-1|^{2(1+\epsilon)}}$$

for $|z^2 - 1| \gg 1$.

Let
$$\varphi: \Delta^* \to D$$
, $(z^2 - 1) \mapsto 1/(z^2 - 1)$. For $0 < \epsilon < 2$,

$$K_{\Delta^*, \frac{4}{3} + \epsilon}(z^2 - 1) \neq K_{D, \frac{4}{3} + \epsilon}(1/(z^2 - 1)) \frac{1}{|z^2 - 1|^4}$$

Proof of the Remark:

For any $f_j \in A^{\frac{4}{3}+\epsilon}(D)$, we have

$$f_j(z^2 - 1) = \sum_{n=-1}^{\infty} \sum_j a_n^j (z^2 - 1)^n + \sum_{n=2}^{\infty} \sum_j b_n^j (z^2 - 1)^{-n}$$

Let
$$(f_j)_1(z^2-1) = \sum_{n=-1}^{\infty} \sum_j a_n^j (z^2-1)^n$$
 and $(f_j)_2(z^2-1) = \sum_{n=2}^{\infty} \sum_j b_n^j (z^2-1)^{-n}$.

It is easy to check that there is $r \gg 1$ such that $\int_{\{|z^2-1|>r\}} \sum_j |(f_j)_2|^{\frac{4}{3}+\epsilon} < \infty$ holds.

Hence
$$\int_{\{|z^2-1|>r\}} \sum_j |(f_j)_1|^{\frac{4}{3}+\epsilon} < \infty$$
.

If $(f_j)_1$ is not 0, we may choose k to be the integer such that $a_n^j = 0$ for n < k, $a_k^j \neq 0$, then

$$\begin{split} \int_{\{|z^2-1|>r\}} \sum_{j} & \left| (f_j)_1 \right|^{\frac{4}{3}+\epsilon} = \int_{\{|z^2-1|>r\}} \left| \sum_{n=k}^{\infty} \sum_{j} a_n^j (z^2-1)^n \right|^{\frac{2}{3}+\epsilon} \\ & = \int_{r}^{\infty} \sum_{i} \rho_j d\rho_j \int_{0}^{2\pi} (\rho_j)^{k\left(\frac{4}{3}+\epsilon\right)} \left| \sum_{n=k}^{\infty} a_n^j (z^2-1)^{n-k} \right|^{\frac{4}{3}+\epsilon} \geq \sum_{i} 2\pi \left| a_k^j \right|^{\frac{4}{3}+\epsilon} \int_{r}^{\infty} (\rho_j)^{1+k\left(\frac{4}{3}+\epsilon\right)} = \infty. \end{split}$$

Therefore, $(f_i)_1 = 0$.

We get
$$K_{D,\frac{4}{3}+\epsilon}(z^2-1) \le \frac{1+\epsilon}{|z^2-1|^2(\frac{4}{3}+\epsilon)}$$
 for $|z^2-1| \gg 1$.

By the above theorem, $K_{\Delta^{+}, \frac{4}{3} + \epsilon}(z^2 - 1) = O\left(\frac{1}{|z^2 - 1|^{\frac{4}{3} + \epsilon}}\right)$.

As

$$K_{D,\frac{4}{3}+\epsilon}(1/(z^2-1))\frac{1}{|z^2-1|^4} \le \frac{1+\epsilon}{|z^2-1|^{4-2(\frac{4}{3}+\epsilon)}}$$

for $|z^2 - 1| \ll 1$, if $\epsilon > 0$, then

$$K_{\Delta^*,\frac{4}{3}+\epsilon}(z^2-1) \neq K_{D,\frac{4}{3}+\epsilon}(z^2-1)\frac{1}{|z^2-1|^4}$$

We have finished the proof of the remark.

III. A conjecture of H. Tsuji

We first recall a definition for complex manifolds, see H. Tsuji [20].

Definition 3.1. Let M be a complex manifold with the canonical line bundle K_M , for every positive integer m, we set

$$(Z^2 - 1)_m := \left\{ \sigma_j \in \Gamma(M, \mathcal{O}_M(mK_M)) \left| \int_M \sum_j (\sigma_j \wedge \bar{\sigma_j})^{\frac{1}{m}} \right| < +\infty \right\}$$

and

$$K_{M,m} := \sup \left\{ |\sigma_j|^{\frac{2}{m}}; \sigma_j \in \Gamma(M, \mathcal{O}_M(mK_M)) \left| \int_M \sum_j (\sigma_j \wedge \bar{\sigma}_j)^{\frac{1}{m}} \right| \le 1 \right\}$$

where the sup denotes the pointwise supremum.

Then let

$$K_{M,\infty} := \limsup_{m \to \infty} K_{M,m}$$

and $(h_j)_{(1+\epsilon)a^j}$ n, M: = the lower envelope of $\frac{1}{K_{M,\infty}}$.

Lemma 3.1 (see [23]). For $\Omega \subset \mathbb{C}^n$, we have

$$\sup_{m \in \mathbb{N}} K_{\Omega, \frac{2}{m}}(z^2 - 1) = \sup_{0 \le \epsilon < 2} K_{\Omega, 2 + \epsilon}(z^2 - 1).$$

Proof. By Lemma 2.4, we have

$$\sup_{m\in\mathbb{N}} K_{\Omega,\frac{2}{m}}(z^2-1) = \sup_{0\leq\epsilon<2\cap\mathbb{Q}} K_{\Omega,2+\epsilon}(z^2-1).$$
 If $f_j\in\mathcal{O}(\Omega)$ and $\int_{\Omega}\sum_j |f_j|^{2+\epsilon}<\infty$, then

$$\lim_{q \to 2+\epsilon, q < 2+\epsilon} \int_{\Omega} \sum_j \quad |f_j|^q = \int_{\Omega} \sum_j \quad |f_j|^{2+\epsilon}$$

So

$$\sup_{0 \le \epsilon < 2 \cap \mathbb{Q}} K_{\Omega, 2+\epsilon}(z^2 - 1) = \sup_{0 \le \epsilon < 2} K_{\Omega, 2+\epsilon}(z^2 - 1)$$

and the lemma follows.

For $\Delta^* = \{(z^2 - 1) \in \mathbb{C}: 0 < |z^2 - 1| < 1\}$, since the canonical bundle K_{Δ^*} is trivial, so when we consider $K_{\Delta^*,\infty}$ and $(h_j)_{(1+\epsilon)a^j}^{-1}$, we can omit the form dt.

H. Tsuji [20] proposed the following conjecture (see Conjecture 2.16 in [20]):

$$(h_j)_{(1+\epsilon)a^j \, n, \Delta^*}^{-1} = O\left(\frac{1}{|z^2 - 1|^2 (\log |z^2 - 1|)^2}\right)$$

holds.

However, we get the following theorem:

Theorem 3.2 (see [23]). One has

$$(h_j)_{(1+\epsilon)a^j}^{-1}{}_{n,\Delta^*}(z^2-1) \ge K_{\Delta^*,\infty}(z^2-1) \ge \frac{1}{2\pi e} \frac{1}{|z^2-1|^2 |\log |z^2-1||}$$

for $0 < |z^2 - 1| < e^{-1}$.

Proof. Since

$$\int_{\Lambda^*} \left| \frac{1}{z^2 - 1} \right|^{2 + \epsilon} = \frac{2\pi}{-\epsilon}$$

by Lemma 2.4 and Lemma 3.1, we get

$$K_{\Delta^*,\infty}(z^2 - 1) = \limsup_{m \to \infty} K_{\Delta^*,m}(z^2 - 1) = \sup_{m \ge 1} K_{\Delta^*,m}(z^2 - 1)$$
$$= \sup_{0 \le \epsilon < 2} K_{\Delta^*,2+\epsilon}(z^2 - 1) \ge \sup_{0 \le \epsilon < 2} \frac{-\epsilon}{2\pi} \frac{1}{|z^2 - 1|^{2+\epsilon}}$$

For $0 < |z^2 - 1| < e^{-1}$, let

$$\epsilon = \frac{1}{\log|z^2 - 1|} \in [1, 2]$$

therefore

$$\frac{-\epsilon}{2\pi} \frac{1}{|z^2 - 1|^{2+\epsilon}} = \frac{1}{2\pi e} \frac{1}{|z^2 - 1|^2 |\log |z^2 - 1||}$$

so

$$K_{\Delta^*,\infty}(z^2-1) \ge \frac{1}{2\pi e} \frac{1}{|z^2-1|^2 |\log |z^2-1||}$$

Hence

$$(h_j)_{(1+\epsilon)a^j}^{-1}{}_{n,\Delta^*}(z^2-1) \ge K_{\Delta^*,\infty}(z^2-1) \ge \frac{1}{2\pi e} \frac{1}{|z^2-1|^2|\log|z^2-1|}$$

From the above theorem, we know that $(h_j)_{(1+\epsilon)a^j}^{-1}$ is not integrable near 0.

References

- [1] B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 4, 1083-1094.
- [2] B. Berndtsson and M. Păun, Bergman kernels and subadjunction, arXiv: 1002.4145 v 1
- [3] J.-P. Demailly, Complex analytic and differential geometry, http://www-fourier.ujf-grenoble.fr/~demailly/books.html. [4] J.-P. Demailly, Analytic Methods in Algebraic Geometry, Higher Education Press & International Press of Boston, Beijing/Boston,
- [5] F. S. Deng, H. P. Zhang, and X. Y. Zhou, Positivity of direct images of positively curved volume forms, Math. Z. 278 (2014), 347-362.
- [6] Q. A. Guan and X. Y. Zhou, Optimal constant problem in the L² extension theorem, C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, 753-756.
- [7] Q. A. Guan and X. Y. Zhou, Generalized L^2 extension theorem and a conjecture of Ohsawa. C. R. Acad. Sci. Paris. Ser. I. 351 (2013), no. 3-4, 111-114.
- [8] Q. A. Guan and X. Y. Zhou, Optimal constant in L^2 extension and a proof of a conjecture of Ohsawa, Sci. China Math. 58 (2015), no. 1, 35-59.
- [9] Q. A. Guan and X. Y. Zhou, A solution of an L^2 extension problem with optimal estimate and applications, Ann. of Math. 181 (2015), 11391208
- [10] L. Hörmander, L^2 -estimates and existence theorems for the $\bar{\partial}$ -operator, Acta Math. 113 (1965), 89-152.
- [11] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains (in Chinese), Science Press, Beijing, 1958. (English translation, AMS, 1963.)
- [12] Qikeng Lu, Classical Manifolds and Classical Domains (in Chinese), Shanghai Scientific & Technical Publishers, 1963; reprint by Science Press, Beijing, 2011.On p-Bergman kernel for bounded domains899
- [13] Qikeng Lu, New Results of Classical Manifolds and Classical Domains (in Chinese), Shanghai Scientific & Technical Publishers, 1997.
- [14] J. F. Ning, H. P. Zhang, and X. Y. Zhou: Proper holomorphic mappings between invariant domains in \mathbb{C}^n , Transaction of AMS, accepted, 2015.
- [15] T. Ohsawa, On the extension of L² holomorphic functions. III. Negligible weights, Math. Z. 219 (1995), no. 2, 215-225.
- [16] T. Ohsawa and K. Takegoshi, On the extension of L² holomorphic functions, Math. Z. 195 (1987), 197-204.
- [17] I. Ramadanov, Sur une propriete de la fonction de Bergman (French), CR Acad. Bulgare Sci. 20 (1967), 759-762.
- [18] Y.-T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry 17 (1982), 55-138.
- [19] Y.-T. Siu, The Fujita conjecture and the extension theorem of OhsawaTakegoshi, in: Geometric Complex Analysis, Hayama, World Scientific, 1996, pp. 577-592.

- [20] H. Tsuji, Canonical singular hermitian metrics on relative log canonical bundles, arXiv:1008.1466v2. [21] Xiangyu Zhou, Some results related to group actions in several complex variables, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 743-753, Higher Edu. Press, Beijing, 2002.
- [22] L.-F. Zhu, Q.-A. Guan, and X.-Y. Zhou, On the Ohsawa-TakegoshiL² extension theorem and the twisted Bochner-Kodaira identity with a nonsmooth twist factor, J. Math. Pures Appl. 97 (2012), no. 6, 579-601.
- [23] Jiafu Ning, Huiping Zhang, and Xiangyu Zhou, On p-Bergman kernel for boundeddomains in \mathbb{C}^n , Communications in Analysis and Geometry Volume 24, Number 4, 887–900, 2016.