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Abstract

Following the way of J. Ning, H. Zhang, and X. Zhou [23], we show some properties of the (2 — €)-Bergman
kernels by applying L?>~€ extension theorem. We also show that for any bounded domain in C", it is
pseudoconvex if and only if its (2 — €)-Bergman kernel is an exhaustion function, for any 0 < € < 2. As an
application, we give a negative answer to a conjecture of Tsuji.
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I.  Introduction

The authors in [16] proved the Ohsawa-Takegoshil? extension theorem, which turns out to be useful in
several complex variables and complex geometry. [2] proved the L?™ version of Ohsawa-Takegoshi theorem
for m € N. Recently, [9] obtained optimal estimate for L*7¢(0 < € < 2) extension as an application of their
solution of a sharp L? extension problem.

Here, we study the (2 — €)-Bergman kernels for bounded domains in C", and apply L?~¢ extension
theorem to give some properties of (2 — €)-Bergman kernels (see [23]).

We can introduced a(2 — €)-Bergman kernel as follows:
Definition 1.1. For a domain € C" and 0 < € < 2, the (2 — €)-Bergmann kernel K, , . is denoted by

Kn,z—e(Zz — 1) = sup Z M

fieare@) & Jo 1£i127¢
where

ATE(Q) =1f € O(Q):LZ Ifi]>7€ < +o0

Where the integral on Lebesgue measure.

According to the extreme property, the usual Bergman kernel is just 2-Bergman kernel for the case € =
0 and j = 1 in the above definition, which has been studied for years.

Let S be a closed complex subvariety of a domain U < C". It's known that one has the same Bergman
kernels on U and U\ S, since for any f; € A%2(U\ S), one can holomorphically extend the sequence of
functionsf; to U. That is to say, one can not distinguish U and U \ S by the Bergman kernel.

However, the (2 — €)-Bergman kernel may give some distinction. We will show that for a bounded
domain, it is pseudoconvex if and only if its (2 — €)-Bergman kernel is an exhaustion function for any 0 < € <
2. Besides, the (2 — €)-Bergman kernel is interesting per se. We'll also give estimate about the boundary
behavior of the (2 — €)-Bergman kernel for a bounded pseudoconvex domain. Lastly, we'll answer negatively a
conjecture of [20].
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II. The (2 — €)-Bergman kernel

Note that when € = 0 and j = 1, the (2 — €)-Bergmann kernel is just the usual Bergman kennel. For
simplicity, we write K for Kg,. The (2 — €)-Bergmann kernel has some properties similar to the usual
Bergman kernel, for example, it is easy to see that Ko ,_(2z* — 1) = Kg, ,_(2* — 1) for (z* — 1) € Q; and
two domains ; € (),, and the (2 — €)-Bergmann kernels are plurisubharmonic.

We will study some more properties of K ,_.
Proposition 2.1 (see [23]). Let Q; © C" be simply connected domain and Q, € C" be a domain. Then for any
$;: Q1 = Q, biholomorphism, we have Kq ,_(2> — 1) = Kq, ,_(¢;(z* = D)|J$;(z* — 1)|?, where [, is
the determinant of Jacobian of ¢;. In particular, if (2 —€) = %, where m € N, there is no need for the condition
that , is simply connected.
Proof. As (), is simply connected and J¢; is nonvanishing, we can choose a single valued holomorphic function
of log J¢;.

Then

P: A2 (Qy) > APE(Qy)
fio fio ¢jeﬁlog Ue)

is isometric, since

LZ 1 = fQZ 1fy o $i12 Uy 1” = fﬂ Z [ 0 oo 0o|

When (2 —€) = %,m € N, we take
P: A€ (Q,)—> A*E(Qy)

fiw fio ¢iUé™,
in this case, the simply connected condition is not needed any more.
By definition,
Ifi(¢;(z* — 1))I>*
Koo el =)= sup > RS
Feaz=e(@;) & Jo, 1fi]
~ sup Ifj(¢;(z* — 1)I>*
fjEA27E(Q,) - fﬂl Ifj o djl>cld;1?
2 2—€
5 1 |fi (2% = Derelog (p;(z* — 1))
= ——————  sup
|]¢j(22 - 1)|2ijA2—€(92)

2 2-€
f |f] o ¢j62_—€]0g(]¢j)|
Q

_ Z Kﬂl,z—e(zz -1

- - Uej(z? — DI?
It's easy to see that, if J¢; is constant, then the above proposition is still true without the assumption that €, is
simply connected. For example, if the domain () is a G-invariant domain w.r.t. a linear action of a semisimple
Lie group G, then the (2 — €)-Bergmann kernel is G-invariant.
The condition that (), is simply connected is necessary for some 0 < € < 2 (see Remark 2.3).

Similar to the usual Bergman kernel, the following proposition holds for the (2 — €)-Bergman kernel.
Proposition 2.2 (see [23]). Suppose that ; c C" are bounded domains and Q; © Q;4 for j > 1,U2; Q; = Q,
where Q is a bounded domain in C"*. Then for 0 < € < 2,

}L%Knj,z—e(zz —1) =Kgp-e(z* — 1)
and the convergence is uniform on compact subsets of ().
Proof. As 1('91.,2_6(22 — 1) is decreasing,
}L%Knj,z—e(zz -1

exists and = Kq 5 (2% — 1).
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For fixed (z° — 1) € Q, we may assume (z° — 1) € Q;,. There is fj, € 0(%;,) such that

2_
| 1l =
Qj

2-€
fio(@ = DI =Kqp-e(z2 - 1)

and

for each j = j.
By the Montel theorem, there is a subsequence of (j,), such that
Hm fijo),

k—oo

[3 s
e
By the definition, we have

Kope@? =1)2 ) 1fi(z% = DI = lim Kn o (22 = 1)
- Jo—©

j
As Kq;_c(z% — 1) is continuous and KQ].,Z_E(ZZ — 1) is decreasing, it follows that KQJ.JZ_E (z% — 1) converges

is uniformly convergent to f; € 0(Q).
It is easy to check that

uniformly to K _¢(z% — 1) on compact subsets of (.
Theorem 2.3 (see [23]). Let (L be one of the classical domains (see [11], [12], [13]):

R:={Z%-1) € M(m,n): 1™ — (22 — 1)(Z22 - 1)’ > 0}

Ry:={(Z2-1) eMnn):I™ - (Z2-1)(Z2-1) >0,(Z2-1) = (Z* - 1)},

Ry={Z? -1 EMmn):I™—-(Z2-1)(Z2-1) >0,(Z22-1) =—-(2?-1)'},

Rye={(Z -1 eMAn):|(Z?-DZ*-1)|+1-2(Z2-1)(Z*-1) >0,|(Z? - D(Z* - 1)'| < 1}.
Then

KQ,1+e(Z2 -1)= Kn,z(Zz -1
for (Z? —1) € Qfore = 0.
Proof. For (Z? — 1) € Qand |t] < 1, we have t(Z? — 1) € Q.
For any f; € O(Q), we have
2 1
2T o)=Y o

j
Then by the Fubini Theorem,

[rremge[TLY In(er@ o) v
J

- L dV(Zz_l)%foznZ I (%22 - )| a0 > Z I, (0)["*<Vol(2)
J

j
we have

Koise 0) = Vol(Q)

As Q is homogenous, it is well known that Q is also simply connected, combining with the above proposition,
we have Ko 1,4c(Z* — 1) = Ko ,(Z* — 1) for (Z2 - 1) € Q.
Remark 2.1. The above result is true for any complete circular and bounded homogeneous domain. It's known
that any bounded symmetric domain is such a domain.

For a general bounded homogenous domain Q, we have Kq (2% — 1) = Kq,(2z? — 1). It is well
known that Ko(z2 — 1,w) is zero free and Q is simply connected, we can define a holomorphic function

2
log Ko (22 — 1,w) for (22 — 1) € Q and fixed w € Q. Then eT+e°8 K2 ~1W) ¢ s1+€(0) and it is easy to get
g Rq
Koi4e(z2 = 1) 2 Ko ,(2% = 1).
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It seems to be strange that the (1 + €)-Bergmann kernel may be independent of (1 + €) for some
domains. From the following theorem, we can deduce that, in general, Kg ;¢ is dependent on (1 + €).
Lemma 2.4 (see [23]). For Q c C", we have
Koz-e(z = 1) 2 Kap-o(2? = 1)

forany 0 <e <2andm € N.
Proof. If f; € A>~¢(Q1), then

fre A (@)

[2 = =

By the definition of (2 — €)-Bergman kernel, we have
Kq2=e(z? = 1) 2 Koo (2% — 1)

and

The next theorem needs the L?~¢ extension theorem. We state it in the following. For the proof, see [2]
or [9].
Theorem 2.5. (see [2] or [9]) Let Q be a bounded pseudoconvex domain in C*, L be a complex affine line in C™,
and QN L # @. For 0 < € < 2, then for any f; € A>~(Q N L), there is F; € A*~¢(Q), such that F}-|QnL = f; and

fz |Fj|2_ESCf Z |fj|2—e
Q 7 QnL 7

where C is a constant depending only on diam{ and n.

Theorem 2.6 (see [23]). Let Q < C™ be a bounded pseudoconvex domain, 0 < € < 2 and [ = max {s EN,:is<
2
2-€

}. Then we have

1+e€
Koz-e(z2 —1) 2 522 —Deal

where §(z% — 1) = iélafﬂd (z%2 — 1,w) and (1 + €) is a constant positive number.
w:

Proof. For any complex line L, after a unitary transform, we may assume L = {(z2 — 1), = - = (z2 - 1), =
0}.
Let (z2 —1)° = ((z%2 - 1)%,0,...,0) € 0Q N L, take

1
fi=
T2 =1, = (22 - DY)
From the L*~€ extension theorem 2.5 , we get F; € A*~¢(Q) such that Fj|QnL = f;, and

1
[ wmesc[ Y ipees
o5 anL & 1+te

for some constant € > 0, (1 + €) depends only on diam{ and n.
Then

EAT¢(QNL)

1+e€

2 _ >
KQ,Z—E(Z 1)|.QHL = |(ZZ _ 1)1 - (ZZ — 1)2'(2_5)l

As we can choose arbitrary complex line and boundary points, we get
5 1+e

Koo-e(z°—1) 2 52 = D@l
According to the above theorem and the fact that the (2 — €)-Bergman kernel is plurisubharmonic, we can
easily get the following interesting theorem.
Theorem 2.7. For any bounded domain Q in C* Q is pseudoconvex if and only if Kg, (z* —1) is an
exhaustion function for 0 < € < 2.
Remark 2.2. The condition that Q is bounded is necessary. If we consider Q = C \ A, then Kq,_(z% — 1) is
bounded near oo for 0 < € < 2.
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Theorem 2.8 (see [23]). Let A* = {(z2 — 1) € C: 0 < |z% — 1| < 1} and 0 < € < 2, then we have Kp+ 14 (2% —
_ 1

h=0 (|zz—1|1+€)'

Proof. For any f; € A™€(A"), we have fi(z?—1)=3%p__o %; aj(z2—1)", then g;(z%—1):=

Yo Xj al (z% — 1)™ is holomorphic on A = {(z2 — 1) € C: |22 — 1| < 1}.

1
In the present proof, we denote by ||fjllire = ([, X;  1fi]17€) e for f; € AT*e(A").
Obviously, [,. ¥; 1g;(z*> —1)|'*¢ < oo, where A; ={(z2—1)€C:0<|z2—1| <7} and 0 <

T<1.
It's easy to see that
1+e B 1 pq2m By B 2
fﬁ dxdy—fofo r dﬁdr—l_e
From
lg; + hillive < gjlli+e + I1hjll1+e
we get

hi(z2 — 1):= z z al (2% — )" € AT+ (D),

n=-—oo

We want to prove h; = 0.

1 "¢ dxdy
Ih; (22 — 1)|"*<dxd =j z |h( )
f;Z i ) Y (C\A1 > T\z2 -1 |z —1]*
2m eif +e
—j —drj z —
1 r

Let 71]- -1 =h (ﬁ), then 71- is holomorphic on C \ A1 and

iy (22 —1)—22 al, (72 — )"

If i~1j is not 0 , then there is ny > 1 such that a_no # 0 and a_n =0 for 1 <n <ny. Write i~1]-(z2 -1 =
(2% = D)™ (fD1 (22 — 1), where (f;) (22 = 1) = Bivony %j @l (22 — D).
1+e

By the submean property
eie j 1+e€
()| do= ZnZ la, |
J

j-ZTL' Z
0
. 1 o
f Z |hj(22 _ 1)|1+dedy = Zﬂz |a]—7’l0| +EJ1 rno(1+6)—3dr = 00,
T j T

and ny(1 + €) — 3 > —1, it follows that

deo

Therefore, h; = 0. That is to say, for any f; € A**€(A*), we have f;(z2 — 1) = Yp-_; ¥; al(z* — )"

Note that
1
2 |(ZZ_1)(22_1)(1+E) 1 — €
KA*,1+E(Z - 1) = f 1 |1+5 = 27T|ZZ _ 1|1+€ (1)
*lz2-1
Since
+fi(z2—-1)
|22 — 1" Kpr 14e(22 — 1) = |22 = 1]"*¢  sup ZZ L 1|+e
. 1+€
LE W S - | dxdy
la/ + (Z2 - Dfj(z? - D™
= su Z LA )

A
fjEATTE(D) 7 f*

S+ (2 - 1) dxdy
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From (1), for (z2 — 1) near 0 , we may take a’ = 1. For f; € A**¢(A)
@ If (IfiliE> 20792 then  [|fi22- 1)+
1122 = Dllases 50
Z |1 + (22 _ 1)fj(ZZ _ 1)|1+e - Z 2(1+e)(1 + |(Zz _ 1)fj(zz _ 1)|1+e)
P st -0 Caxdy 5 /205 - 11+

=1
z2-1ll14¢

> Ifj(z* = Dllise — >

z2— 1”1+€

1
2(1+
<2 (+e) (2(2+e)

(b) If [If;llite < 2(”6) i , then |fj(z> —1)| < C for all (z2 —1) near 0 , where C is a positive

constant independent on f;.

122 = 114Ky (22 = 1))

Since

)2k

1+e€

+f](z -1

1 21
dxdyzj r‘edrj Z |1+rei9ﬁ(rei9)|l+ed9
0 0o &
j

2n
1—¢€

1
> an r édr =
0

then

Z |1+(zz—1)f-(zz—1)|1+€ < (1—e)(1+|2% —1|C) ¢

7 fy |t @ -] dxay an
According to (a) and (b), we get that |22 — 1|**Kj+ 1, (2% — 1) is bounded near 0 .
From the above theorem, we know the lower bounds of Theorem 2.6 is optimal.
Remark 2.3 (see [23]). Let D = {(z2 — 1) € C:|z2 — 1| > 1}, for 0 < e < 2, thereis (1+€) = (1 +€)? >0
such that

1+e€
Kpipe(zZ?—1) < ————
) |Z2 _ 1|2(1+e)

for |z — 1| > 1.
Let:A* > D,(z2—1)» 1/(z2 —1).For0 < e < 2,

KA*%+E(ZZ —1) % KD%+E(1/(22 -1)

|22 —1]*
Proof of the Remark:
4
For any f; € A3"¢(D), we have

NG —1)—2 PIAGESNE iz bz -
7 n=2 J

n=-1

Let (i@ —1) =%n %) an@ —Drand (f;),# -1 =%7, %, bl -D™

4
It is easy to check that there is 7 > 1 such that f{|zz—1|>r} X |(fj)2|3+6 < oo holds.

4
Zte
Hence f{|zz—1|>r} Zj |(f})1|3 <

If (fj)1 is not 0, we may choose k to be the integer such that a{; =0 forn <k, a];( # 0, then

e
4, .
[ o= | Z D, ae-o
{|z2-1|>1} 7 {|z2=1|>71}
o 2 X n * i §+€ . i+€ o Ltk "
ol B R N s D W A IR T
L] 0 n=k 7 r
Therefore, (fj); = 0.
WegetK (Z —1)<—for|z -1 >» 1.
|ZZ 1| (3+ €)
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By the above theorem, K .+, (z° —1) = 0 ( L )
’3

|z2-137¢

1+¢€

|z2 —1]* |22 — 1|4—2(§+e)

Ky, (1/(2 = 1)

for |z2 — 1] < 1,
if € > 0, then
2 2
Kypre @ =D # Kpr, @ =D sn

We have finished the proof of the remark.

III. A conjecture of H. Tsuji
We first recall a definition for complex manifolds, see H. Tsuji [20].
Definition 3.1. Let M be a complex manifold with the canonical line bundle K,,, for every positive integer m,
we set

(Z% = 1)y =40; € T(M, 0, (mKy)) f Z (o) /\6,-)% < +oo
M n
J

and
2 _ X
Ky m: = sup{ |oj|m; o; € T(M, 0y (mK,)) f E (i AG)m[ <1
M =
J

where the sup denotes the pointwise supremum.
Then let
Ky ot = lim supKy

m-— oo

and (h;) = the lower envelope of KM%

(1+e)aj n,M:
Lemma 3.1 (see [23]). For Q c C", we have

supK 2 (2 = 1) = sup Kozue(z* = D).
meN ‘m 0<e<2

Proof. By Lemma 2.4, we have
supK 2 (2> =1) = sup Kpgpe(z2 = 1).
Q

meN ‘m 0<e<2n

Iff;e0(Qand [, ¥; [fj|**€ < oo, then

e ] e[S v
q—>2+€,q<2+e_£2 - |f]| fﬂ - |f]|
J J

sup Koaie(z2 —1) = sup Kqape(z? — 1)
0<e<2NnQ 0<e<2

So

and the lemma follows.

For A* = {(z? —1) € C:0 < |z? — 1] < 1}, since the canonical bundle K,+ is trivial, so when we
-1

i .., we can omit the form dt.
(1+€e)a’ n, A

consider Ky« o, and (h;)

H. Tsuji [20] proposed the following conjecture (see Conjecture 2.16 in [20]):

-1 1
T <|z2 — 112(log |22 — 1|)2)
holds.
However, we get the following theorem:
Theorem 3.2 (see [23]). One has
1

2me |z2 — 1?|log |z% — 1]]

(R (22 — 1) = Kpr (2 — 1) 2

@a+e)al na*

for0 < |z2—1] <e™L.
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Proof. Since
1 2+€ 21_[

z2 -1 -

—€

L

by Lemma 2.4 and Lemma 3.1, we get

Kpr oo (22 — 1)=lim supKp+ , (2% — 1) = supKy+,, (2% — 1)
m21

m-oo
Ky pee(z —1) > sup o>
= su * z2=1)=2 sup ——5——>—
05552 aze 05552 2m |22 — 1|**€
For0 < |zZ—1|<e™?, let
=——>——€[12
€ log |z%2 — 1] [1.2]
therefore
—€ 1 1 1
2m |22 — 1|2*¢  2me |z2 — 1)2|log |22 — 1]]|
SO
Ky oo (22— 1) = !
a7olZ = 2me |22 — 12[log |22 — 1]|
Hence
(h) g (@ = 1) 2 Ky (22 = 1) 25— -
7 1+eyal na* = TN ~ 2me|z2 —1)|?|log |z2 — 1|
From the above theorem, we know that (hj)_1 j .. 1snot integrable near 0 .
(1+€)a’ nA
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