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Abstract 

In this paper, we prove convergence of Mann and Ishikawa iterations to the fixed points of continuous functions 
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illustrate the feasibility of the results presented. Our results extend corresponding results in literature. 

keywords: Convergence, continuous functions, iterations, Euclidean space. 

 

2010 Mathematics Subject Classification: 47H10, 26B05. 

Received 09 July, 2025; Revised 21 July, 2025; Accepted 23 July, 2025 © The author(s) 2025. 

Published with open access at www.questjournas.org 

I. Introduction 

Let 𝐸 a closed and convex subset of 𝑚 - dimensional Euclidean space ℝ𝑚 and 𝑇: 𝐸 ⟶ ℝ𝑚 a mapping. A point 

𝑝 ∈ 𝐸 is called a fixed point of 𝑇 if it remains invariant under the action of mapping 𝑇. A fixed-point problem 

(FPP, for short) for a continuous mapping 𝑇 is to find 𝑥 ∈ 𝐸 such that 

𝑇𝑥 = 𝑥 (1.1) 

Denote by 𝐹(𝑇) the solution set of FPP (1.1). 

Recall that, a mapping 𝑇 is called 𝐿-Lipschitzian if there exist a constant 𝐿 > 0 such that 

‖𝑇(𝑥) − 𝑇(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ ∀𝑥, 𝑦 ∈ 𝐸. (1.2) 

where ‖𝑥‖ = max{|𝑥𝑖|: 𝑖 = 1, ⋯ , 𝑛}. If 𝐿 < 1 and 𝑇 is a self-map, then the mapping 𝑇 is a contraction. For a 

contraction mapping the Banach Contraction Principle guarantees the existence of a fixed point of 𝑇 in 𝐸. If it is 

not possible to find a fixed point analytically, then it could be approximated with the help of a Picard iteration 

process, perhaps the simplest one. It reads as follows: 

𝑥0 ∈ 𝐸, 𝑥𝑛 = 𝑇𝑛(𝑥0) for all 𝑛 = 1,2, ⋯ 

If 𝐿 = 1 and 𝑇: 𝐸 ⟶ 𝐸, then the mapping satisfying (1.2) is called a nonexpansive mapping. 

For such mappings, the sequence of successive approximations given above may fail to converge even if the set 

of fixed points is singleton. The situation could become more complicated when 𝐿 > 1 even with a self mapping 

on 𝐸. To handle such situations, different iterative processes have been developed and used to approximate 

fixed points of nonlinear mappings on suitable domains. For example, see [2,3,8] and references mentioned 

http://www.questjournals.org/
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therein. Following are the two well-known fixed-point iteration methods, namely, the Mann iteration process 

and the Ishikawa iteration process which can be used to compute fixed points of a given map. 

Definition 1.1 (Mann Iteration Process [4]). Let {𝛼𝑛} be a real sequence with the following properties: 

(1) 0 ≤ 𝛼𝑛 ≤ 1 

(2) lim
𝑛→∞

 𝛼𝑛 = 0 

(3) ∑  ∞
𝑛=1 𝛼𝑛 = +∞. 

The Mann iteration process is defined as follows: 

𝑥1 ∈ 𝐸, 𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑓(𝑥𝑛) 

Definition 1.2 (Ishikawa Iteration Process [7]). Let {𝛼𝑛} and {𝛽𝑛} be real sequences with the following 

properties: 

(1) 0 ≤ 𝛼𝑛, 𝛽𝑛 ≤ 1 

(2) lim
𝑛→∞

 𝛼𝑛 = lim
𝑛→∞

 𝛽𝑛 = 0 

(3) ∑  ∞
𝑛=1 𝛼𝑛 = +∞. 

Ishikawa iteration process is defined by 

𝑥1 ∈ 𝐸, 𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑓(𝑦𝑛), and 

𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑓(𝑥𝑛)
 

There are several results on convergence of the Mann and the Ishikawa iteration processes to the fixed point of 

given maps. We remark that the two processes exhibit different behavior for different classes of nonlinear maps 

even though they may look similar, see Rhoades [10]. In its original form, the Ishikawa iteration process does 

not include Mann process as a special case. This is because the original condition on the real sequences {𝛼𝑛} 

and {𝛽𝑛} was 0 ≤ 𝛼𝑛 ≤ 𝛽𝑛 ≤ 1. However, in an attempt to have an Ishikawa type iteration process which does 

include the Mann process as a special case, several authors have modified the inequality condition to read 0 ≤
𝛼𝑛, 𝛽𝑛 ≤ 1. 

In 1991, Borwein and Borwein [1] proved that the Mann iteration converges to a fixed point of a continuous 

self-mapping𝑇 defined on a closed and bounded interval of ℝ. 

In 1996, Herceg and Krejic [5] proved the following convergence result for a non-self-mapping defined on a 

closed and bounded interval of ℝ. 

Theorem 1.3. Let 𝑇: [𝑎, 𝑏] ⟶ ℝ be a Lipschitz mapping with constant 𝐿 > 0. Let {𝛼𝑛} be a real sequence with 

the following properties: 

(1) 0 ≤ 𝛼𝑛 ≤ (𝐿 + 1)−1 

(2) lim
𝑛→∞

 𝛼𝑛 = 0 

(3) ∑  ∞
𝑛=1 𝛼𝑛 = +∞, 

and 𝑇𝑎 ∈ [𝑎, 𝑏], 𝑇𝑏 ∈ [𝑎, 𝑏]. Then the sequence {𝑥𝑛} defined as follows: 

𝑥1 ∈ {𝑎, 𝑏}, 𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇𝑥𝑛 

is convergent and its limit is a fixed point of 𝑇. 

In 1997, Huang [6] studied the Mann iteration process for Lipschitz functions on an 𝑚 dimensional rectangle. 

To prove their main result, they used the partial order induced by the positive cone 

ℝ+
𝑚 = {𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚)𝑇 ∈ ℝ𝑚: 𝑥𝑖 ≥ 0∀𝑖 = 1, ⋯ , 𝑚} 

and component wise limits of a sequence {𝑥𝑛} in ℝ𝑚 defined as follows: 

lim
𝑛→∞

 𝑥𝑛 = 𝑥 ⟺ lim
𝑛→∞

 (𝑥𝑛)𝑖 = 𝑥𝑖∀𝑖 = 1, ⋯ , 𝑚. 
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Their main theorem is the following: 

Theorem 1.4. [6] Let 𝐸 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × ⋯ × [𝑎𝑛 , 𝑏𝑛] be a bounded interval of ℝ𝑛. Let 𝑓: 𝐸 ⟶ ℝ𝑛 be a 

Liptschitz function on 𝐸 with the partial order induced by ℝ+
𝑛 . Let {𝛼𝑛} be a real sequence with the properties: 

(1) 0 ≤ 𝛼𝑛 ≤ (𝐿 + 1)−1 

(2) ∑  ∞
𝑛=1 𝛼𝑛 = +∞ 

(3) 𝑓((𝑥1, 𝑥2, ⋯ , 𝑥𝑛)𝑇) ∈ 𝐸, for any 𝑗 ∈ ℕ, 𝑥𝑗 = 𝑎𝑗 or 𝑏𝑗. 

Define {𝑥𝑛} as follows: 

𝑥1 = 𝑎 = (𝑎1, ⋯ , 𝑎𝑛)𝑇 , 𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑓(𝑥𝑛) 

Then the sequence {𝑥𝑛} thus obtained converges to a fixed point of 𝑓. 

In 2006, Qing and Qihou [9] showed that the boundedness of a sequence {𝑥𝑛}, generated by the Mann and 

Ishikawa iteration processes for a continuous self mapping defined on a closed (not necessarily bounded) 

interval of ℝ, is necessary and sufficient condition for the convergence of {𝑥𝑛} to a fixed point of the mapping. 

Their result extends the result of [1]. 

In this paper, we take up the problem of approximating the fixed point of continuous functions defined on a 

closed subset of ℝ𝑛, with partial ordering induced by the positive cone of ℝ𝑛, through the convergence of a 

sequence generated by Mann and Ishikawa iteration processes. Our results extend several comparable results in 

the existing literature, see for example, the results in [1], [6] and [9]. 

II. Main Results 

Throughout this section, we consider the partial ordering on ℝ𝑛 induced by nonnegative orthant ℝ+
𝑛 . That is, for 

any 𝑥, 𝑦 ∈ ℝ𝑛; 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ ℝ+
𝑛 . 

We start with the following fixed-point theorem. 

Lemma 2.1. Let 𝐸 be linearly ordered closed and convex subset of ℝ𝑛, which may be unbounded and 𝑓: 𝐸 ⟶
ℝ𝑛 a continuous mapping with 𝑓(𝐸) ⊆ E. Let {𝛼𝑛}, {𝛽𝑛}, {𝜇𝑛}, {𝛾𝑛} and {𝜏𝑛} be real sequences in [0,1] with 0 ≤
𝜏𝑛 + 𝛽𝑛 ≤ 1 and 0 ≤ 𝛾𝑛 + 𝛼𝑛 ≤ 1 satisfying the following properties 

(i) ∑  ∞
𝑛=1 𝛽𝑛 < ∞, ∑  ∞

𝑛=1 𝜇𝑛 < ∞, . 

(ii) ∑  ∞
𝑛=1 𝛼𝑛 = +∞, lim

𝑛→∞
 𝛼𝑛 = 0. 

Let {𝑥𝑛} be a sequence generated as follows:𝑥1 ∈ 𝐸 

𝑧𝑛 = (1 − 𝜇𝑛)𝑥𝑛 + 𝜇𝑛𝑓(𝑥𝑛) 

𝑦𝑛 = (1 − 𝜏𝑛 − 𝛽𝑛)𝑧𝑛 + 𝜏𝑛𝑧𝑛 + 𝛽𝑛𝑓(𝑧𝑛)(2.1) 

𝑥𝑛+1 = (1 − 𝛾𝑛 − 𝛼𝑛)𝑦𝑛 + 𝛾𝑛𝑦𝑛 + 𝛼𝑛𝑓(𝑦𝑛) 

If {𝑥𝑛} converges, it converges to a fixed point of 𝑓. 

Proof. Suppose that 𝑥𝑛 → 𝑎 as 𝑛 → ∞. We show that 𝑓(𝑎) = 𝑎. The proof is by contradiction and it is as 

follows: Suppose 𝑓(𝑎) ≠ 𝑎. Since 𝑓 is continuous, the sequence {𝑓(𝑥𝑛)} is bounded. From condition (i), we 

have that 𝑧𝑛 = (1 − 𝜇𝑛)𝑥𝑛 + 𝜇𝑛𝑓(𝑥𝑛) ⟶ 𝑎 (since {𝑓(𝑥𝑛)} is bounded and 𝑥𝑛 → 𝑎). This implies, by the 

continuity of 𝑓, that {𝑓(𝑧𝑛)} is bounded. Thus 𝑦𝑛 = (1 − 𝜏𝑛 − 𝛽𝑛)𝑧𝑛 + 𝜏𝑛𝑧𝑛 + 𝛽𝑛𝑓(𝑧𝑛) ⟶ 𝑎 (since 𝑧𝑛 → 𝑎 

and {𝑓(𝑧𝑛)} is bounded). This again implies, by the continuity of 𝑓, that {𝑓(𝑦𝑛)} is bounded. 

From (2.1), we have the following: 

𝑥𝑛+1 − 𝑦𝑛= 𝛼𝑛(𝑓(𝑦𝑛) − 𝑦𝑛)

𝑧𝑛 − 𝑥𝑛= 𝜇𝑛(𝑓(𝑥𝑛) − 𝑥𝑛)

𝑦𝑛 − 𝑧𝑛= 𝛽𝑛(𝑓(𝑧𝑛) − 𝑧𝑛)
 

So that 
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(𝑥_(𝑛 + 1) − 𝑥_𝑛 = 𝑥_(𝑛 + 1) − 𝑦_𝑛 + 𝑦_𝑛 − 𝑧_𝑛 + 𝑧_𝑛 − 𝑥_𝑛 
= 𝛼_𝑛 (𝑓(𝑦_𝑛 ) − 𝑦_𝑛 ) + 𝜇_𝑛 (𝑓(𝑥_𝑛 ) − 𝑥_𝑛 ) + 𝛽𝑛(𝑓(𝑧𝑛) − 𝑧𝑛)(2.2) 

Put 𝑝𝑘 = 𝑓(𝑦𝑘) − 𝑦𝑘 , 𝑞𝑘 = 𝑓(𝑧𝑘) − 𝑧𝑘 and 𝑟𝑘 = 𝑓(𝑥𝑘) − 𝑥𝑘. Then from continuity of 𝑓, it follows that 

lim
𝑘→∞

 𝑝𝑘 = lim
𝑘→∞

 (𝑓(𝑦𝑘) − 𝑦𝑘) = 𝑓(𝑎) − 𝑎 = 𝑝( say ) ≠ 0

lim
𝑘→∞

 𝑞𝑘 = lim
𝑘→∞

 (𝑓(𝑧𝑘) − 𝑧𝑘) = 𝑓(𝑎) − 𝑎 = 𝑞( say ) ≠ 0

lim
𝑘→∞

 𝑟𝑘 = lim
𝑘→∞

 (𝑓(𝑥𝑘) − 𝑥𝑘) = 𝑓(𝑎) − 𝑎 = 𝑟( say ) ≠ 0

 

Now by (2.2), 

𝑥𝑛 − 𝑥1= 𝑥𝑛 − 𝑥𝑛−1 + 𝑥𝑛−1 − 𝑥𝑛−2 + ⋯ + 𝑥2 − 𝑥1

= ∑  

𝑛−1

𝑘=1

  (𝛼𝑘(𝑓(𝑦𝑘) − 𝑦𝑘) + 𝜇𝑘(𝑓(𝑥𝑘) − 𝑥𝑘) + 𝛽𝑘(𝑓(𝑧𝑘) − 𝑧𝑘))
 

which implies that 

𝑥𝑛 − 𝑥1 = ∑  

𝑛−1

𝑘=1

(𝛼𝑘𝑝𝑘 + 𝜇𝑘𝑟𝑘 + 𝛽𝑘𝑞𝑘) = ∑  

𝑛−1

𝑘=1

𝛼𝑘𝑝𝑘 + ∑  

𝑛−1

𝑘=1

𝜇𝑘𝑟𝑘 + ∑  

𝑛−1

𝑘=1

𝛽𝑘𝑞𝑘 

Thus 

𝑥𝑛 = 𝑥1 + ∑  

𝑛−1

𝑘=1

𝛼𝑘𝑝𝑘 + ∑  

𝑛−1

𝑘=1

𝜇𝑘𝑟𝑘 + ∑  

𝑛−1

𝑘=1

𝛽𝑘𝑞𝑘 

Since 𝑞𝑘 ⟶ 𝑞 ≠ 0 and ∑  ∞
𝑘=1 𝛽𝑘 < ∞, it follows that ∑  ∞

𝑘=1 𝛽𝑘𝑞𝑘 < ∞. Similarly, since 𝑟𝑘 ⟶ 𝑟 ≠ 0 and 

∑  ∞
𝑘=1 𝜇𝑘 < ∞, it follows that ∑  ∞

𝑘=1 𝜇𝑘𝑟𝑘 < ∞. However, since 𝑝𝑘 ⟶ 𝑝 ≠ 0 and ∑  ∞
𝑛=1 𝛼𝑛 = +∞, we obtain 

that {𝑥𝑛} is divergent, a contradiction. Hence 𝑓(𝑎) = 𝑎. 

Our main result is the following. 

Theorem 2.2. Let 𝐸 be linearly ordered closed and convex subset of ℝ𝑛, which may be unbounded and 𝑓: 𝐸 ⟶
ℝ𝑛 a continuous mapping with 𝑓(𝐸) ⊆ 𝐸. Let {𝛼𝑛}, {𝛽𝑛}, {𝜇𝑛}, {𝛾𝑛} and {𝜏𝑛} be real sequences in [0,1] with 

0 ≤ 𝜏𝑛 + 𝛽𝑛 ≤ 1 and 0 ≤ 𝛾𝑛 + 𝛼𝑛 ≤ 1 satisfying (i) -(ii) in Lemma 2.1. Let a sequence {𝑥𝑛} be generated by 

the iterative scheme (2.1). If {𝑥𝑛} is bounded, then it converges. 

Proof. Let {𝑥𝑛} be a bounded sequence. We show that {𝑥𝑛} is convergent. The proof is by contradiction. 

Suppose {𝑥𝑛} is not convergent, let 

𝑎𝑖= lim inf
𝑛→∞

 (𝑥𝑛)𝑖 and 

𝑏𝑖= lim sup
𝑛→∞

 (𝑥𝑛)𝑖∀𝑖 = 1, ⋯ , 𝑛
 

Then 𝑎𝑖 < 𝑏𝑖 for each 𝑖 = 1, ⋯ , 𝑛, which implies that 𝑎 < 𝑏, where 𝑎, 𝑏 ∈ ℝ𝑛. 

Claim: If 𝑎 < 𝑚 < 𝑏, then 𝑓(𝑚) = 𝑚. That is, 𝑎𝑖 < 𝑚𝑖 < 𝑏𝑖  implies that 𝑓𝑗(𝑚𝑖) = 𝑚𝑖∀𝑖 = 1, ⋯ , 𝑛 and for 

each 𝑗 = 1, ⋯ 𝑛. 

Proof of claim: Suppose 𝑓(𝑚) ≠ 𝑚. Without loss of generality, let 𝑓(𝑚) − 𝑚 > 0. Since 𝑓 is continuous, there 

exists 𝛿 > 0, 𝛿 < ‖𝑏 − 𝑎‖ such that 

𝑓(𝑥) − 𝑥 > 0  for  ‖𝑥 − 𝑚‖ ≤ 𝛿. 

Since {𝑥𝑛} is bounded, there exists 𝑀1 > 0 such that ‖𝑥𝑛‖ ≤ 𝑀1. From continuity of 𝑓, it follows that there 

exists 𝑀2 > 0 such that ‖𝑓(𝑥𝑛)‖ ≤ 𝑀2, that is, the sequence {𝑓(𝑥𝑛)} is bounded. Thus, the sequences 

{𝑧𝑛}, {𝑓(𝑧𝑛)}, {𝑦𝑛} and {𝑓(𝑦𝑛)} are all bounded. Note that 
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‖𝑧𝑛 − 𝑥𝑛‖= ‖𝜇𝑛(𝑓(𝑥𝑛) − 𝑥𝑛)‖ = 𝜇𝑛‖𝑓(𝑥𝑛) − 𝑥𝑛‖

‖𝑦𝑛 − 𝑧𝑛‖= ‖𝛽𝑛(𝑓(𝑧𝑛) − 𝑧𝑛)‖ = 𝛽𝑛‖𝑓(𝑦𝑛) − 𝑦𝑛‖

‖𝑥𝑛+1 − 𝑦𝑛‖= ‖𝛼𝑛(𝑓(𝑦𝑛) − 𝑦𝑛)‖ = 𝛼𝑛‖𝑓(𝑦𝑛) − 𝑦𝑛‖

‖𝑥𝑛+1 − 𝑥𝑛‖= ‖𝑥𝑛+1 − 𝑦𝑛 + 𝑦𝑛 − 𝑧𝑛 + 𝑧𝑛 − 𝑥𝑛‖

≤ ‖𝑥𝑛+1 − 𝑦𝑛‖ + ‖𝑦𝑛 − 𝑧𝑛‖ + ‖𝑧𝑛 − 𝑥𝑛‖

‖𝑦𝑛 − 𝑥𝑛‖= ‖𝑦𝑛 − 𝑧𝑛 + 𝑧𝑛 − 𝑥𝑛‖ ≤ ‖𝑦𝑛 − 𝑧𝑛‖ + ‖𝑧𝑛 − 𝑥𝑛‖

 

From condition (i) - (ii), it follows that 

lim
𝑛→∞

 ‖𝑧𝑛 − 𝑥𝑛‖ = lim
𝑛→∞

 ‖𝑦𝑛 − 𝑧𝑛‖ = lim
𝑛→∞

 ‖𝑥𝑛+1 − 𝑦𝑛‖ = 0 

which implies 

lim
𝑛→∞

 ‖𝑦𝑛 − 𝑥𝑛‖ = 0 and lim
𝑛→∞

 ‖𝑥𝑛+1 − 𝑥𝑛‖ = 0 

From definition of ‖.‖, 𝑤𝑒𝑜𝑏𝑡𝑎𝑖𝑛𝑡ℎ𝑎𝑡 

lim
𝑛→∞

 |(𝑥𝑛+1)𝑗 − (𝑥𝑛)𝑗| = lim
𝑛→∞

 |(𝑦𝑛)𝑗 − (𝑥𝑛)𝑗| = lim
𝑛→∞

 |(𝑧𝑛)𝑗 − (𝑥𝑛)𝑗| = 0

 for each 𝑗 ∈ {1,2, … , 𝑛}
 

Choose 𝜖𝑗 =
𝛿𝑗

2
, there exists 𝑁𝑗 ∈ ℕ such that 

|(𝑥𝑛+1)𝑗 − (𝑥𝑛)𝑗| <
𝛿𝑗

2
, |(𝑧𝑛)𝑗 − (𝑥𝑛)𝑗| <

𝛿𝑗

2
 and |(𝑦𝑛)𝑗 − (𝑥𝑛)𝑗| <

𝛿𝑗

2
 for all 𝑛 > 𝑁𝑗 . (2.3) 

Since 𝑚𝑗 < 𝑏𝑗 = lim sup
𝑛→∞

 (𝑥𝑛)𝑗, there exists 𝑘1 ∈ ℕ, 𝑘1 > 𝑁𝑗 such that 𝑚𝑗 < 𝑥𝑛𝑘1
. That is, there exists a 

subsequence {𝑥𝑛𝑘1
} that satisfies the inequality 𝑚𝑗 < (𝑥𝑛𝑘1

)
𝑗
 for each 𝑗 = 1, ⋯ , 𝑛. 

Set 𝑛𝑘1
= 𝑘. Then we have (𝑥𝑘) > 𝑚, that is, (𝑥𝑘)𝑗 > 𝑚𝑗∀𝑗 = 1, ⋯ , 𝑛. Thus 𝑚𝑗 < (𝑥𝑘)𝑗 < 𝑏𝑗∀𝑗 = 1, ⋯ , 𝑛. 

Now we consider the following two cases: 

Case 1: If (𝑥𝑘)𝑗 > 𝑚𝑗 +
𝛿𝑗

2
, ∀𝑗 = 1, ⋯ , 𝑛, then we have (𝑥𝑘+1)𝑗 > (𝑥𝑘)𝑗 −

𝛿𝑗

2
≥ 𝑚𝑗, using (2.3), and hence 

(𝑥𝑘+1)𝑗 > 𝑚𝑗. 

Case 2: If 𝑚𝑗 < (𝑥𝑘)𝑗 < 𝑚𝑗 +
𝛿𝑗

2
, ∀𝑗 = 1, ⋯ , 𝑛, then, from (2.3), we have 

𝑚𝑗 −
𝛿𝑗

2
< (𝑦𝑘)𝑗 < 𝑚𝑗 + 𝛿𝑗 

and 

𝑚𝑗 −
𝛿𝑗

2
< (𝑧𝑘)𝑗 < 𝑚𝑗 + 𝛿𝑗 

∀𝑗 = 1, ⋯ , 𝑛. So that 

|(𝑥𝑘)𝑗 − 𝑚𝑗| <
𝛿𝑗

2
< 𝛿𝑗 

implies that 

|(𝑦𝑘)𝑗 − 𝑚𝑗| < 𝛿𝑗 

and 
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|(𝑧𝑘)𝑗 − 𝑚𝑗| < 𝛿𝑗 

Thus 

𝑓((𝑥𝑘)𝑗) − (𝑥𝑘)𝑗 > 0 

𝑓((𝑦𝑘)𝑗) − (𝑦𝑘)𝑗 > 0. (2.4)  

𝑎𝑛𝑑 𝑓((𝑧_𝑘 )_𝑗 ) − (𝑧_𝑘 )_𝑗 > 0. 

From (2.2) we have 

((𝑥_(𝑘 + 1) )_𝑗 = (𝑥_𝑘 )_𝑗 + 𝛼_𝑘 ((𝑓(𝑦_𝑘 ))_𝑗 − (𝑦_𝑘 )_𝑗 ) + 𝜇_𝑘 ((𝑓(𝑥_𝑘 ))_𝑗 − (𝑥_𝑘 )_𝑗 )

+ 𝛽𝑘 ((𝑓(𝑧𝑘))
𝑗

− (𝑧𝑘)𝑗) (2.5) 

Hence, from (2.4) and (2.5), we have 

(𝑥𝑘+1)𝑗 = (𝑥𝑘)𝑗+𝛼𝑘 ((𝑓(𝑦𝑘))
𝑗

− (𝑦𝑘)𝑗)

+𝜇𝑘 ((𝑓(𝑥𝑘))
𝑗

− (𝑥𝑘)𝑗) + 𝛽𝑘 ((𝑓(𝑧𝑘))
𝑗

− (𝑧𝑘)𝑗)

> (𝑥𝑘)𝑗

 

Thus (𝑥𝑘+1)𝑗 > (𝑥𝑘)𝑗 > 𝑚𝑗. From the Case 1 and the Case 2, we conclude that (𝑥𝑘+1)𝑗 > 𝑚𝑗∀𝑗 = 1, ⋯ , 𝑛 

which implies that 𝑥𝑘+1 > 𝑚. Similarly, we have 

𝑥𝑘+1 > 𝑚, 𝑥𝑘+2 > 𝑚, 𝑥𝑘+3 > 𝑚, ⋯ 

So there exists a subsequence {𝑥𝜈} such that 𝑥𝜈 > 𝑚, ∀𝜈 > 𝑘 = 𝑛𝑘1
. That is, 𝑥𝑛𝑘1+1 > 𝑚, 𝑥𝑛𝑘1+2

> 𝑚, ⋯. As 

𝑎 = lim inf
𝑛→∞

 𝑥𝑛, there exists a subsequence {𝑥𝑛𝑘
} which converges to 𝑎. This implies that there exists 𝑁 ∈ ℕ such 

that for all 𝑛𝑘 > 𝑁, we have 𝑎 = lim
𝑁→∞

 𝑥𝑛𝑘
. Hence for all 𝜈 > 𝑛𝑘, 𝑥𝜈 > 𝑚, we have 𝑎 = lim inf

𝑛→∞
 𝑥𝑛𝑘

≥ 𝑚. This is 

a contradiction since 𝑎 < 𝑚. Thus 𝑓(𝑚) = 𝑚. 

Next, we consider the following two cases of the sequence {𝑥𝑛}. 

Case I: Since {𝑥𝑛} is bounded, there exists 𝑀 such that 𝑎 < 𝑥𝑀 < 𝑏 and 𝑓(𝑥𝑀) = 𝑥𝑀. Thus 

𝑧𝑀= (1 − 𝜇𝑀)𝑥𝑀 + 𝜇𝑀𝑓(𝑥𝑀) = 𝑥𝑀

𝑦𝑀= (1 − 𝜏𝑀 − 𝛽𝑀)𝑧𝑀 + 𝜏𝑀𝑧𝑀 + 𝛽𝑀𝑓(𝑧𝑀)

= (1 − 𝜏𝑀 − 𝛽𝑀)𝑥𝑀 + 𝜏𝑀𝑥𝑀 + 𝛽𝑀𝑓(𝑥𝑀) = 𝑥𝑀

𝑥𝑛+1= (1 − 𝛾𝑀 − 𝛼𝑀)𝑦𝑀 + 𝛾𝑀𝑦𝑀 + 𝛼𝑀𝑓(𝑦𝑀)

= (1 − 𝛾𝑀 − 𝛼𝑀)𝑥𝑀 + 𝛾𝑀𝑥𝑀 + 𝛼𝑀𝑓(𝑥𝑀) = 𝑥𝑀

 

Analogously, 𝑥𝑀 = 𝑥𝑀+1 = 𝑥𝑀+2 = 𝑥𝑀+3 = ⋯ which implies that 𝑥𝑛 ⟶ 𝑥𝑀. Also, since there exists a 

subsequence 𝑥𝑛𝑘
⟶ 𝑎, it follows that 𝑥𝑀 = 𝑎 and 𝑥𝑛 ⟶ 𝑎, a contradiction. 

Case II: Suppose that 𝑥𝑛 ≤ 𝑎 or 𝑥𝑛 ≥ 𝑏 for all 𝑛. Choose 𝜖 =
𝑏−𝑎

2
> 0. By lim

𝑛→∞
 ‖𝑥𝑛+1 − 𝑥𝑛‖ =0 , there exists 

𝑁 ∈ ℕ such that ‖𝑥𝑛+1 − 𝑥𝑛‖ <
𝑏−𝑎

2
, for 𝑛 > 𝑁. So it is always that 𝑥𝑛 ≤ 𝑎 for 𝑛 > 𝑁 or it is always that 𝑥𝑛 ≥

𝑏 for 𝑛 > 𝑁. Now if 𝑥𝑛 ≤ 𝑎 for 𝑛 > 𝑁, then 𝑏 = lim
𝑙→∞

 𝑥𝑛𝑙
≤ 𝑎, which is a contradiction to 𝑎 < 𝑏. On the other 

hand, if 𝑥𝑛 ≥ 𝑏 for 𝑛 > 𝑁, then 𝑎 = lim
𝑛→∞

  ≥ 𝑏, again a contradiction with 𝑎 < 𝑏. Thus, from Case I and Case II, 

we conclude that {𝑥𝑛} converges. This completes the proof. 

Theorem 2.3. Let 𝐸 be linearly ordered closed and convex subset of ℝ𝑛, which may be unbounded and 𝑓: 𝐸 ⟶
ℝ𝑛 a continuous mapping with 𝑓(𝐸) ⊆ 𝐸. Let {𝛼𝑛}, {𝛽𝑛}, {𝜇𝑛}, {𝛾𝑛} and {𝜏𝑛} be real sequences in [0,1] with 

0 ≤ 𝜏𝑛 + 𝛽𝑛 ≤ 1 and 0 ≤ 𝛾𝑛 + 𝛼𝑛 ≤ 1 satisfying (i) -(ii) in Lemma 2.1. The sequence {𝑥𝑛} generated by the 

iterative scheme (2.1) converges to a fixed point of 𝑓 if and only if {𝑥𝑛} is bounded. 
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Proof. ( ⟹ ) Let {𝑥𝑛} be bounded. Then by Theorem 2.2, {𝑥𝑛} converges. Let 𝑥𝑛 ⟶ 𝑎, 𝑛 ⟶ ∞. Then 𝑓(𝑎) =
𝑎, by Theorem 2.1. That is, {𝑥𝑛} converges to a fixed point of 𝑓. 

(⟸) Let {𝑥𝑛} converge to a fixed point of 𝑓 but is not bounded. Then then for all 𝑚 ∈ ℝ, there exists 𝑁 ∈ ℕ 

such that 𝑥𝑛 > 𝑚∀𝑛 > 𝑁. This implies {𝑥𝑛} does not converge which contradicts our assumption. Thus {𝑥𝑛} is 

bounded. 

Theorem 2.4. Let 𝐸 be linearly ordered closed and convex subset of ℝ𝑛, which may be unbounded and 𝑓: 𝐸 ⟶
ℝ𝑛 a continuous mapping. Let {𝑥𝑛} be the Mann iterative sequence for the mapping 𝑓. If the parameters {𝛼𝑛} 

satisfy the conditions (𝑖) − (𝑖𝑖𝑖) stated in the Definition 1.1, then {𝑥𝑛} converges to a fixed point of 𝑓 if and 

only if {𝑥𝑛} is bounded. 

Proof. In Theorem 2.3, put 𝛽𝑛 = 0 to get the result. 

III. Numerical Example 

In this section, we present an example to illustrate the convergence result presented above. The result presented 

here were generated with MATLAB programming. 

Example 3.1. Let 𝑓: 𝐸 ⊂ ℝ2 ⟶ ℝ2 be defined by 𝑓(𝑥, 𝑦) = (
1

2
𝑥2 + 3𝑦2 + 0.1,0.5𝑥3 + 0.2𝑦 + 0.1)

𝑇

 for all 

(𝑥, 𝑦) ∈ 𝐸, where 𝐸 is linearly ordered closed and convex set. Choose 𝛼𝑛 =
1

𝑛
 and 𝛽𝑛 =

1

2𝑛
 with initial data set 

at (𝑥0, 𝑦0) = (−0.7, −0.5). The results in this example were generated using MATLAB programming with 

tolerance 𝑒 = 10−3. 

 Ishikawa Mann 

𝑛 ( 𝑥𝑛 , 𝑦𝑛 ) ‖𝑓(𝑥𝑛 , 𝑦𝑛) − (𝑥𝑛 , 𝑦𝑛)‖ ( 𝑥𝑛𝑦𝑛 ) ‖𝑓(𝑥𝑛 , 𝑦𝑛) − (𝑥𝑛 , 𝑦𝑛)‖ 

1.0 (0.140707, 0.078704) 0.040327 (0.375000, 0.091500) 0.268464 

2.0 (0.136789, 0.098835) 0.022290 (0.285215,0.008284) 0.178472 

3.0 (0.138173, 0.106489 ) 0.017006 (0.237103,0.043275 ) 0.126004 

4.0 (0.139869, 0.110627 ) 0.014473 (0.211259,0.061286 ) 0.095574 

5.0 (0.141385, 0.113255 ) 0.012927 (0.195724,0.072423) 0.076154 

6.0 (0.142683, 0.115090) 0.011845 (0.185585,0.080058 ) 0.062825 

7.0 (0.143793, 0.116451) 0.011025 (0.178565,0.085651 ) 0.053177 

200.0 (0.158843, 0.126619 ) 0.001999 (0.156209,0.124470 ) 0.003395 

201.0 (0.158852, 0.126622) 0.001994 (0.156221,0.124481) 0.003388 

605.0 (0.160381, 0.127166 ) 0.001047 (0.158593,0.126219 ) 0.002048 

608.0 (0.160386, 0.127168) 0.001044 (0.158602,0.126224 ) 0.002043 

609.0 (0.160388, 0.127168) 0.001043 (0.158604,0.126226 ) 0.002042 

658.0 (0.000000, 0.000000 ) 0.000000 (0.158739,0.126302) 0.001966 

1014.0 (0.000000, 0.000000 ) 0.000000 (0.159416,0.126658) 0.001581 

1015.0 (0.000000, 0.000000 ) 0.000000 (0.159417,0.126658) 0.001580 

1301.0 (0.000000, 0.000000 ) 0.000000 (0.159749,0.126817 ) 0.001388 

1303.0 (0.000000, 0.000000 ) 0.000000 (0.159751,0.126818) 0.001387 

1454.0 (0.000000, 0.000000 ) 0.000000 (0.159885,0.126880 ) 0.001308 

2000.0 (0.000000, 0.000000 ) 0.000000 (0.160236,0.127034 ) 0.001102 
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2385.0 (0.000000, 0.000000 ) 0.000000 (0.160407,0.127105) 0.001000 

2386.0 (0.000000, 0.000000 ) 0.000000 (0.160407,0.127105) 0.001000 

2387.0 (0.000000, 0.000000) 0.000000 (0.000000,0.000000) 0.000000 

Table 1: Table showing numerical results 

IV. Conclusion 

From the above table, one can conclude that Mann and Ishikawa iterative sequences converge to the fixed point 

(0.160407,0.127105) of the function 𝑓(𝑥, 𝑦) = (
1

2
𝑥2 + 3𝑦2 +

1

10
,

1

2
𝑥3 +

1

5
𝑦 +

1

10
) in ℝ2. The Ishikawa 

iterative process converges to the accuracy of 10−6 after 655 iterations while the Mann iteration process 

converges after 2386 iterations. Thus the Ishikawa iterative process converges faster than that of Mann. 
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