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ABSTRACT 

Insurance pricing under heavy-tailed risk models presents challenges due to extreme losses and market volatility. 

Traditional premium principles often fail to capture tail risks accurately, while Extreme Value Theory (EVT)-

based approaches may lead to excessive pricing. This study proposes a hybrid premium calculation strategy 

integrating actuarial methods with EVT, GARCH models, Bayesian inference, and machine learning to improve 

pricing accuracy and risk responsiveness. The study models claim severity using heavy-tailed distributions. 

Additionally, a regime-switching GARCH-EVT model dynamically adjusts premiums based on market volatility. 

Our findings suggest that integrating financial risk management techniques with data-driven actuarial modeling 

enhances premium accuracy, particularly for catastrophe insurance and reinsurance pricing. 
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I. INTRODUCTION 
Insurance markets are increasingly exposed to risks that exhibit heavy-tailed behaviours, such as natural 

catastrophes, pandemics, and cyber incidents. These events are characterized by low frequency but extremely high 

severity, posing significant challenges for premium calculation and solvency management. The pricing of 

insurance products in the presence of heavy-tailed risks has attracted significant research interest, especially 

following the increasing occurrence of catastrophic events. Traditional models, while useful under moderate risk 

settings, often fail to account for extreme losses and the changing dynamics of financial and insurance markets.  

Conventional methods for calculating premiums such as the expected value, variance loading, or 

exponential principles often prove inadequate in scenarios where extreme or catastrophic losses are prevalent. 

They typically assume light-tailed or moderately skewed risk profiles, failing to capture the magnitude and 

dynamics of heavy-tailed claims. Heavy-tailed distributions, such as the Pareto, Fréchet, and Generalized Pareto 

Distribution (GPD), are widely recognized for their ability to model extreme insurance losses [4]. These models 

capture the phenomena where rare events, though infrequent, can cause disproportionately large losses. However, 

while these distributions effectively model the tail behaviour, they are often static and lack the ability to adapt 

dynamically to changing market conditions. While Extreme Value Theory (EVT) has been widely applied to 

address these issues, providing asymptotic models for the tail of the loss distribution [9], EVT by itself does not 

account for the time dynamics of risk exposure. For instance, periods of heightened volatility following a 

catastrophe are not captured purely through static tail models. Consequently, premiums based solely on EVT may 

become overly conservative or insensitive to market regime changes. EVT provides a robust framework for tail 

risk modeling. The Peaks-over-Threshold (POT) approach applies the Generalized Pareto Distribution (GPD) to 

characterize losses exceeding a defined high threshold. The use of Extreme Value Theory (EVT) in actuarial 

science has significantly improved insights into risk metrics like Value-at-Risk (VaR) and Conditional Tail 

Expectation (CTE). Recent work has also highlighted the importance of optimal tail threshold selection in 

improving EVT-based VaR estimation accuracy [3]. Nonetheless, EVT assumes that data points are independent 

and identically distributed (i.i.d.), which may not hold in time-dependent insurance loss processes, particularly 

after large catastrophic events. 

Volatility clustering and regime shifts are critical features of financial and insurance loss data. The 

GARCH models have been instrumental in modeling conditional heteroskedasticity, recognizing that periods of 
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high losses tend to cluster together. These features are essential for catastrophe and reinsurance pricing, where 

market behaviour can change dramatically post-event. To address the time-dependent nature of volatility, the 

GARCH family of models [1] provides a flexible way to model conditional heteroskedasticity. Moreover, 

incorporating Markov-switching frameworks [6] allows for explicit modeling of regime changes, such as shifts 

from low-risk to high-risk environments. Extensions of this framework, such as regime-switching GARCH model 

[5] allow the model parameters to shift based on latent states, such as "calm" versus "turbulent" periods, better 

capturing real-world market dynamics. In insurance contexts, GARCH models have been used to model claims 

volatility, especially in dynamic reinsurance pricing.  

Beyond capturing volatility, uncertainty in model parameters remains a major concern. Traditional 

frequentist methods provide point estimates without quantifying the uncertainty. Bayesian methods, particularly 

Markov Chain Monte Carlo (MCMC) techniques, offer a systematic approach to account for parameter 

uncertainty, leading to more robust premium estimates under model risk and they have been increasingly applied 

to derive posterior predictive distributions [10]. Bayesian approaches enable a full probabilistic treatment of the 

model, accounting for estimation errors and making the premium calculations more robust under uncertainty. 

Recent studies show that Bayesian EVT models outperform classical methods in predicting tail risks. 

Moreover, incorporating machine learning methods introduces fresh insights and innovative approaches. 

Machine learning models can assist in predicting volatility states, optimizing regime classification, or even 

improving tail estimation when classical assumptions break down [12]. Combining machine learning with 

statistical models ensures that the framework is flexible, data-driven, and capable of adapting to changing 

insurance landscapes. Machine learning techniques have been introduced to insurance modeling for tasks such as 

risk classification and claims prediction. In the context of premium calculation, machine learning models can 

improve volatility state prediction, regime identification, and threshold selection for EVT, making the premium 

estimation more accurate and adaptive to new patterns in the data. 

In present paper, we propose a regime-switching GARCH-EVT premium calculation framework 

augmented with Bayesian inference and machine learning techniques. By unifying these approaches, the model 

dynamically adjusts to both heavy-tailed claim severities and evolving market volatility. This hybrid structure 

aims to overcome the shortcomings of traditional actuarial methods and pure EVT models, offering a 

comprehensive, responsive, and robust premium calculation strategy, particularly suited for catastrophe and 

extreme risk insurance lines. Recent works have explored combining GARCH and EVT models to better capture 

the dual features of time-varying volatility and heavy-tailed risks [8]. However, many of these studies still rely on 

classical estimation methods and do not incorporate Bayesian updates or machine learning-driven enhancements. 

Our proposed model builds upon this foundation, adding regime-switching dynamics, Bayesian inference for 

parameter uncertainty, and machine learning for enhanced regime prediction and threshold determination. 

The rest of the paper is structured as follows: Section 2 presents the methodology; Section 3 discusses empirical 

results; Section 4 provides model comparisons and robustness checks; and Section 5 concludes with implications 

for insurance pricing practices. 

 

II. METHODOLOGY 

This section outlines the framework adopted for premium calculation under heavy-tailed risks, 

integrating Extreme Value Theory (EVT), Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

models, regime-switching mechanisms, Bayesian inference via Markov Chain Monte Carlo (MCMC) methods, 

and machine learning techniques. 

 

2.1 Data Simulation and Preprocessing 

Since real catastrophic insurance claims data may be confidential or sparse, we simulate synthetic heavy-

tailed claims data using a Generalized Pareto Distribution (GPD) with parameters fitted from empirical studies. 

Simultaneously, a GARCH(1,1) process is simulated to represent volatility clustering commonly observed in 

claim frequency and severity. 

• Simulated Claim Sizes: 𝑋𝑡 ∼ 𝐺𝑃𝐷(𝜉, 𝛽) for exceedances over a high threshold 𝑢. 

• Simulated Volatility: 𝜎𝑡
2 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2 . 

Where 𝜖𝑡 = 𝑋𝑡 − 𝐸[𝑋𝑡]. 
Data preprocessing involves threshold selection for EVT modeling, standardization of claims, and volatility 

filtering. 

 

2.2 GARCH-EVT Model Construction 

We use a two-step GARCH-EVT modeling: 

• Step 1: Fit a GARCH(1,1) model to the entire claims series to model volatility dynamics. 
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• Step 2: Apply EVT to the standardized residuals of the GARCH model, using the Peaks Over Threshold (POT) 

method. The threshold 𝑢 is selected via mean residual life plots and parameter stability plots. The tail 

distribution of the standardized residuals above 𝑢 is modeled using GPD. 

 

2.3 Regime-Switching Dynamics 

Given that insurance loss dynamics vary across regimes (e.g., calm periods vs. catastrophe periods), we 

incorporate regime-switching through a Hidden Markov Model (HMM). 

• States: 𝑆𝑡 ∈ {1,2}, where state 1 is "normal," and state 2 is "extreme." 

• State-dependent parameters: GARCH and EVT parameters are allowed to switch depending on the hidden 

state. 

Regime transitions are governed by a transition probability matrix 𝑃. This allows premiums to be adjusted 

dynamically based on the detected risk regime. 

 

2.4 Bayesian Inference via MCMC 

Uncertainty in EVT parameter estimates is captured using Bayesian methods: 

• Priors: Weakly informative priors for EVT shape and scale parameters. 

• Sampling: MCMC methods, such as Metropolis-Hastings and Hamiltonian Monte Carlo (HMC), are used 

to generate posterior samples. 

Posterior predictive distributions provide a full distribution of potential future losses rather than single point 

estimates. 

This improves the robustness of premium estimates under model and parameter uncertainty. 

 

2.5 Machine Learning Enhancements 

Machine learning models are incorporated at two stages: 

Threshold Selection: A Random Forest model is trained to predict the optimal threshold 𝑢 based on data features 

(e.g., skewness, kurtosis, sample size). 

Regime Detection: A Gradient Boosting Classifier is used to improve regime classification beyond the HMM 

when additional explanatory variables (like macroeconomic indicators) are available. These enhancements ensure 

dynamic adaptation of the model to structural changes in the data. 

 

2.6 Premium Calculation Formula 

The final dynamic premium at time 𝑡 is calculated as: 

𝑃𝑡 = 𝜆0 + 𝜆1𝐸[𝑋𝑡 ∣ 𝑋𝑡 > 𝑢] + 𝜆2𝜎𝑡
2 + 𝜆3𝐼(𝑆𝑡 = 2)                              (1) 

Where: 

• 𝜆0: Baseline premium component (fixed costs and normal losses). 

• 𝜆1: Contribution from EVT-tail expected claim severity. 

• 𝜆2: Volatility premium component from GARCH. 

• 𝜆3: Regime-adjustment penalty when switching to extreme state. 

• 𝐼(𝑆𝑡 = 2): Indicator function for the "extreme" regime. 

• The EVT expected value 𝐸[𝑋𝑡 ∣ 𝑋𝑡 > 𝑢] is computed as: 

                                   𝐸[𝑋𝑡 ∣ 𝑋𝑡 > 𝑢] =
𝛽

1−𝜉
,  for 𝜉 < 1 

where all 𝜆𝑖 > 0, ∀𝑖 = 0,1,2,3.  and 𝜎𝑡
2 ≥ 0. 

Premiums are thus sensitive to both tail risk and market volatility, dynamically updated via Bayesian and 

machine learning techniques. 

 

III. EMPIRICAL RESULTS 

3.1 Verification of Premium Calculation Properties 

The proposed GARCH-EVT premium calculation model satisfies the standard actuarial premium principles. 

According to classical actuarial literature (see Wang (1995), Denuit et al. (2006), Kaas et al. (2008)), a premium 

principle 𝛱(𝑋) should satisfy the following properties: 

(i) Positivity: 

𝑋 ≥ 0 ⇒ 𝛱(𝑋) ≥ 0 

(ii) Monotonicity: 

𝑋 ≤ 𝑌 ⇒ 𝛱(𝑋) ≤ 𝛱(𝑌)  
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(iii) Translation Invariance: 

                                                      𝛱(𝑋 + 𝑐) = 𝛱(𝑋) + 𝑐, for any constant c>0  

(iv) Subadditivity (Risk Diversification): 

𝛱(𝑋 + 𝑌) ≤ 𝛱(𝑋) + 𝛱(𝑌) 

Proposition1: Positivity 

Statement: The premium 𝑃𝑡 (in equation (1)) is always non-negative if 𝑋𝑡 ≥ 0. 

Proof:  

Since, 

•  𝐸[𝑋𝑡|𝑋𝑡 > 𝑢] ≥ 0 because 𝑋𝑡 ≥ 0,  (𝑋𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑙𝑎𝑖𝑚 𝑠𝑖𝑧𝑒), 

• 𝜎𝑡
2 ≥ 0 , because variance is non-negative, 

• 𝐼(𝑆𝑡 = 2) ∈ {0,1} is always positive, 

• and 𝜆0, 𝜆1, 𝜆2, 𝜆3 > 0, 

this implies, 

    𝜆0 + 𝜆1𝐸[𝑋𝑡 ∣ 𝑋𝑡 > 𝑢] + 𝜆2𝜎𝑡
2 + 𝜆3𝐼(𝑆𝑡 = 2)  ≥ 𝜆0 > 0 

Therefore,                                             ⟹ 𝑃𝑡 > 0 

Thus, positivity is satisfied. 

Proposition 2: Monotonicity  

Statement: If 𝑋𝑡 and 𝑌𝑡 are claims such that, 𝑋𝑡 ≤ 𝑌𝑡  almost surely, then 𝑃𝑡(𝑋) ≤ 𝑃𝑡(𝑌). 

Proof: 

Given 𝑋𝑡 ≤ 𝑌𝑡, it follows that: 

𝐸[𝑋𝑡|𝑋𝑡 > 𝑢] ≤ 𝐸[𝑌𝑡|𝑌𝑡 > 𝑢] 

Also, 𝑋𝑡 being the claim size having smaller magnitude compared to 𝑌𝑡 will also results in lower volatility 𝜎𝑡
2(𝑋) 

under GARCH dynamics i.e  

𝜎𝑡
2(𝑋) ≤ 𝜎𝑡

2(𝑌) 

Thus, 

⇒ 𝜆1𝐸[𝑋𝑡|𝑋𝑡 > 𝑢] + 𝜆2𝜎𝑡
2(𝑋) ≤ 𝐸[𝑌𝑡|𝑌𝑡 > 𝑢] + 𝜆2𝜎𝑡

2 

and the regime indicator 𝐼𝑡 remains unaffected 

 ⇒ 𝜆0 + 𝜆1𝐸[ 𝑋𝑡 ∣∣ 𝑋𝑡 > 𝑢 ] + 𝜆2𝜎𝑡
2(𝑋) + 𝜆3𝐼(𝑆𝑡 = 2) 

≤ 𝜆0 + 𝜆1𝐸[𝑌𝑡 ∣ 𝑌𝑡 > 𝑢] + 𝜆2𝜎𝑡
2(𝑌) + 𝜆3𝐼(𝑆𝑡 = 2) 

Hence,                                                     𝑃𝑡(𝑋) ≤ 𝑃𝑡(𝑌) 

Thus, monotonicity is satisfied. 

Proposition 3: Translation Invariance 

Statement: For any constant 𝑐 ≥ 0, 𝑃𝑡(𝑋𝑡 + 𝑐) = 𝑃𝑡(𝑋𝑡) + 𝜆1𝑐 

Proof:  

Let 𝑐 ≥ 0, define:                                  𝑋𝑡
′ = 𝑋𝑡 + 𝑐 

Then, 

𝐸[𝑋𝑡
′|𝑋𝑡  

′ > 𝑢] = 𝐸[𝑋𝑡 + 𝑐|𝑋𝑡 + 𝑐 > 𝑢] 
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                             = 𝐸[𝑋𝑡|𝑋𝑡 > 𝑢 − 𝑐] + 𝑐 

If u is adaptively shifted, then effectively: 

𝐸[𝑋𝑡
′|𝑋𝑡

′ > 𝑢] = 𝐸[𝑋𝑡|𝑋𝑡 > 𝑢] + 𝑐 

Thus, the premium becomes: 

         𝑃𝑡(𝑋 + 𝑐) = 𝜆0 + 𝜆1(𝐸[ 𝑋𝑡 ∣∣ 𝑋𝑡 > 𝑢 ] + 𝑐) + 𝜆2𝜎𝑡
2 + 𝜆3𝐼(𝑆𝑡 = 2)

= (𝜆0 + 𝜆1𝐸[ 𝑋𝑡 ∣∣ 𝑋𝑡 > 𝑢 ] + 𝜆2𝜎𝑡
2 + 𝜆3𝐼(𝑆𝑡 = 2)) + 𝜆1𝑐 

                                                      𝑃𝑡(𝑋 + 𝑐) = 𝑃𝑡(𝑋) + 𝜆1𝑐 

Remark: 

• Exact translation invariance holds up to a scaling by 𝜆1. 

• If 𝜆1 = 1, it matches classical translation invariance exactly. 

Thus, generalized translation invariance is satisfied. 

Proposition 4: Subadditivity 

Statement: The premium of two aggregated risks is no greater than the sum of individual premiums. 

Proof:  

Given 𝑋𝑡 and 𝑌𝑡 two random risks (e.g., insurance losses or claim amounts) at time 𝑡. 

To prove 𝑃𝑡(𝑋𝑡 + 𝑌𝑡) ≤ 𝑃𝑡(𝑋𝑡) + 𝑃𝑡(𝑌𝑡). 

Let 𝑍 = 𝑋𝑡 + 𝑌𝑡 , 

Then,         𝑃𝑡(𝑍) = 𝜆0 + 𝜆1𝐸[𝑍 ∣ 𝑍 > 𝑢] + 𝜆2𝜎𝑡
2 + 𝜆3𝐼(𝑆𝑡 = 2)  

𝑃𝑡(𝑋𝑡 + 𝑌𝑡) = 𝜆0 + 𝜆1𝐸[ 𝑋𝑡 + 𝑌𝑡 ∣∣ 𝑋𝑡 + 𝑌𝑡 > 𝑢 ] + 𝜆2𝜎𝑡
2(𝑋𝑡 + 𝑌𝑡) + 𝜆3𝐼(𝑆𝑡 = 2)     (2)                   

 Consider conditional expectations under exceedance of a threshold 𝑢. If 𝑋𝑡 and 𝑌𝑡  follow Generalized Pareto 

Distributions (GPD) or extreme value distributions, then due to the convexity of conditional expectations, we 

have: 

𝐸[𝑋𝑡 + 𝑌𝑡|𝑋𝑡 + 𝑌𝑡 > 𝑢] ≤ 𝐸[𝑋𝑡|𝑋𝑡 > 𝑢] + 𝐸[𝑌𝑡|𝑌𝑡 > 𝑢]                        (3)                                                        

This holds particularly when the tail behaviour is heavy-tailed and sub additive (as in heavy-tailed GPD). 

If 𝑋𝑡 and 𝑌𝑡 are independent, 

𝑉𝑎𝑟(𝑋𝑡 + 𝑌𝑡) ≤ 𝑉𝑎𝑟(𝑋𝑡) + 𝑉𝑎𝑟(𝑌𝑡) 

in the dependent case, the variance increase can still be less than additive due to nonlinear effects in GARCH-

type volatility processes. 

So, under GARCH models, 

𝜎𝑡
2(𝑋𝑡 + 𝑌𝑡) ≤ 𝜎𝑡

2(𝑋𝑡) + 𝜎𝑡
2(𝑌𝑡)                                                     (4)                                                                                                    

The term 𝜆3𝐼(𝑆𝑡 = 2) dependents only on the regime 𝑆𝑡. 

Sum of individual Premiums is given as:   

𝑃𝑡(𝑋𝑡) + 𝑃𝑡(𝑌𝑡) = 2𝜆0 + 𝜆1(𝐸[ 𝑋𝑡 ∣∣ 𝑋𝑡 > 𝑢 ] + 𝐸[𝑌𝑡 ∣ 𝑌𝑡 > 𝑢]) + 𝜆2(𝜎𝑡
2(𝑋𝑡)+𝜎𝑡

2(𝑌𝑡) + 2𝜆3𝐼(𝑆𝑡 =
2)                                                                                                                                         (5)          

                                                                                                                  

From equations (2), (3), (4) and (5), we get, 

𝑃𝑡(𝑋𝑡 + 𝑌𝑡) ≤ 𝑃𝑡(𝑋𝑡) + 𝑃𝑡(𝑌𝑡) 
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Thus, subadditivity is satisfied. 

3.2 Premium Calculation under Regime-Switching Volatility and Heavy-Tailed Claims 

To appropriately model the extreme right-tail behaviour of cyber claims, we employ the Generalized Pareto 

Distribution (GPD) within a Bayesian framework. The exceedances over a high threshold are assumed to follow 

a GPD, with shape parameter 𝜉 and scale parameter 𝜎. The Bayesian model is implemented in Stan, utilizing 

weakly informative priors to ensure generality. Figure 1 below shows the histogram of simulated excess claims 

for 500-time step with shape parameter 0.4 and scale parameter 200. 

 

Figure 1.Histogram of claim sizes fitted with GPD density 

 

Figure 2. Posterior densities of σ and ξ 

Figure 2, shows that the posterior distributions of shape and scale parameter from stan model which are 

sharply peaked and unimodal, indicating stable estimates of the GPD parameters. The shape parameter ξ is close 

to 0.87, indicates a heavy-tailed distribution, potentially suggesting infinite variance. Market-induced volatility is 

simulated using a GARCH(1,1) model with normal innovations. The model captures the clustering and persistence 

of volatility commonly observed in financial markets. 



A GARCH-EVT Framework for Premium Calculation under Heavy-Tailed Risks 

DOI: 10.35629/0743-11071932                                  www.questjournals.org                                            25 | Page 

 

Figure 3.Simulated volatility series from GARCH(1,1) process. 

Figure 3, reveals prolonged periods of high and low volatility, consistent with stylized facts of real-world financial 

data. The presence of volatility clustering supports the suitability of the GARCH(1,1) model .To detect structural 

breaks and regime shifts in volatility, we apply both a statistical and machine learning approach. 

• Hidden Markov Model (HMM): A two-state Gaussian HMM is fitted to the volatility series. 

• XGBoost: A supervised machine learning classifier is trained using lagged volatility and expected excess 

as features, with HMM regimes as training labels. 

 

Figure 4(a). Volatility over time with HMM-inferred regimes (blue: low, red: high). 

HMM-based classification identifies temporal clusters of high-risk regimes. These correspond to spikes in 

volatility, suggesting the model effectively captures regime transitions (Figure 4(a)). 
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Figure 4(b).Volatility with XGBoost-predicted regimes (green: low-risk, orange: high-risk) 

The XGBoost model shows strong agreement with HMM classifications, providing a fast and scalable alternative 

to unsupervised regime detection. The classifier utilizes lagged information effectively to anticipate volatility 

regimes (Figure 4(b)). 

The final premium is modeled using equation (1), i.e: 

                                      𝑃𝑡 = 𝜆0 + 𝜆1𝐸[𝑋𝑡 ∣ 𝑋𝑡 > 𝑢] + 𝜆2𝜎𝑡
2 + 𝜆3𝐼(𝑆𝑡 = 2)                               

Where, 𝜆0 = 1275.9,  𝜆1 = 0.8,  𝜆2 = 250,  𝜆3 = 200. 

Here the selection criteria for 𝜆′𝑠 is based on the literature where 𝜆0 is the 75th quartile value of the simulated 

claims, 𝜆2 for catastrophic event is in the range of 0.5 -1, 𝜆2 and 𝜆3 are the loading for the volatility and regime 

based on high and low risk. 

Visualization of Dynamic Premiums is shown in the following figure: 

The shaded regions mark high-risk regimes, where the volatility crosses critical thresholds. These zones are 

expected to trigger higher premiums. The premium plot reveals dynamic responsiveness to both volatility and 

regime shifts. Noticeable upward jumps in premiums coincide with red-shaded high-risk periods, illustrating the 

model’s sensitivity to systemic fluctuations (see Figure 5). 
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Figure 5.Volatility series with high-risk regimes highlighted and Premium evolution over time with regime 

overlays. 

a. Sensitivity Analysis of Premium Components 

To evaluate the robustness of the proposed premium model, we conduct a sensitivity analysis on four key 

parameters: 

• ξ (EVT shape parameter) 

• σ (EVT scale parameter) 

• λ₂ (volatility loading) 

• λ₃ (regime penalty loading) 

The premium formula used is given in equation (1) i.e: 

 

Each parameter was varied across a reasonable range, holding others fixed. For each setting, the premium 

across time is computed and the recorded summary statistics are given in the table below with visual 

illustrations 

Table 1. Sensitivity of Premium to Model Parameters (ξ, σ, λ₂, λ₃) 

Parameter Value Mean Premium SD 

Premium 

Min 

Premium 

Max 

Premium 

 

 

 

 

 
 

 
 
 

 

 

0.3 1905 156 1718 2268 

0.35 1928 156 1740 2291 

0.4 1954 156 1767 2317 

0.45 1986 156 1798 2348 

0.5 2023 156 1836 2386 

0.55 2069 156 1881 2432 

0.6 2126 156 1939 2489 

0.65 2200 156 2012 2562 

0.7 2298 156 2110 2661 

0.75 2435 156 2248 2798 

0.8 2641 156 2454 3004 

0.85 2985 156 2797 3348 

0.9 3672 156 3484 4035 

0.95 5733 156 5545 6096 

 

 

 

150 2534 156 2347 2897 

160 2596 156 2408 2958 

170 2657 156 2470 3020 
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180 2719 156 2531 3081 

190 2780 156 2593 3143 

200 2842 156 2654 3204 

210 2903 156 2716 3266 

220 2965 156 2777 3327 

230 3026 156 2839 3389 

240 3088 156 2900 3451 

250 3149 156 2962 3512 

260 3211 156 3023 3574 

270 3272 156 3085 3635 

280 3334 156 3147 3697 

290 3396 156 3208 3758 

300 3457 156 3270 3820 

 
 

 

 

 

100 3042 120 2320 3260 

125 3068 126 2935 3310 

150 3094 132 2950 3360 

175 3119 138 2965 3410 

200 3145 144 2979 3459 

225 3171 150 2994 3509 

250 3196 156 3009 3559 

275 3222 162 3024 3609 

300 3248 168 3038 3658 

 

 
 

 

 

100 3157 110 3009 3459 

125 3167 121 3009 3484 

150 3177 133 3009 3509 

175 3186 144 3009 3534 

200 3196 156 3009 3559 

225 3206 168 3009 3584 

250 3216 180 3009 3609 

275 3226 191 3009 3634 

300 3236 203 3009 3659 

 

From Table1. It is observed that for EVT shape parameter ξ, mean premium increases rapidly with higher 

ξ, showing nonlinear tail risk sensitivity, standard deviation remains constant because the expected tail loss term 

is constant across time for each ξ. For EVT scale parameter σ, mean premium increases linearly with higher σ, 

reflecting proportional scaling of tail severity, Standard deviation remains constant, as with ξ, due to the use of 

time-invariant expected excess. In case of volatility loading 𝜆2, both mean and standard deviation increase with 

λ₂, higher λ₂ amplifies the influence of time-varying GARCH volatility, increasing the dispersion of premiums 

over time. For regime penalty 𝜆3, mean premium increases with λ₃ due to increased penalty during high-risk 

regimes, the standard deviation also increases, but only during regime = 1 periods and the Minimum premium 

remains constant across λ₃ because low-risk regime periods (regime = 0) are unaffected by λ₃. 

 
Figure 6. Sensitivity of Premium to EVT Shape Parameter (ξ) 
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Figure 7. Sensitivity of Premium to EVT Scale Parameter (σ) 

 

Figure 8. Sensitivity of Premium to Volatility Loading (λ₂) 

 

Figure 9. Sensitivity of Premium to Regime Penalty (λ₃) 

Visual Interpretation: 

Figures 6-9, show the evolution of premiums for different values of each parameter. Figure 6 (ξ) shows upward 

shifts in premium curves, with increasingly heavy tails resulting in higher premiums. The consistent pattern of 

fluctuations indicates that the variance remains constant over time. Figure 7 (σ) shows a similar upward trend 
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with stable variability. Figure 8 (λ₂) shows increasing fluctuation amplitude as λ₂ increases, validating the dynamic 

sensitivity to volatility. Figure 9 (λ₃) shows regime-based amplification of premiums. Premiums diverge during 

high-risk periods while remaining identical during low-risk periods. These visualizations reinforce the numerical 

findings and confirm that the model responds predictably and interpretably to parameter changes. 

The sensitivity analysis confirms the following: 

• The model captures nonlinear effects of tail risk via ξ. 

• It responds linearly and proportionally to changes in scale (σ). 

• Temporal variability in premiums is driven primarily by the λ₂ and λ₃ parameters, which interact with 

time-varying volatility and regime states. 

• This structure gives actuaries meaningful levers to control risk sensitivity, ensuring the premium reflects 

both long-term tail properties and short-term market dynamics. 

IV. MODEL COMPARISON 

This section compares the proposed GARCH-EVT-based premium model with a suite of traditional and 

tail-sensitive premium principles. The analysis now includes seven premium models, offering a broader 

understanding of how different approaches handle volatility and risk dynamics. 

Premium Models Compared 

• the Expected Value Principle (EVP), 

• the Variance Principle (VP), 

• the Exponential Premium Principle (EXP), 

• Conditional Tail Expectation (CTE), 

• Wang Premium Principle (Wang), 

• Utility-Based Premium Principle (Utility). 

The Table 2 presents the premium estimates over time for a representative subset of the simulated period: 

Table 2. Premium Levels Across Four Premium Models 

Time  Volatility Regime GARCH-
EVT 

EVP VP EXP Wang CTE Utility 

T1 0.8385487 0 3070.891 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

T2 0.8572766 0 3075.573 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

T3 0.8646517 0 3077.417 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

T4 0.7997642 0 3061.195 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

T5 0.8995964 0 3086.153 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

T6 0.9284156 0 3093.358 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

T7 0.8541182 0 3074.783 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

T8 0.7833128 0 3057.082 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

T9 1.0183225 1 3315.834 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

T10 0.9851070 1 3307.531 1978.418 978809.8 10370.81 1271.018 7540.354 1088.672 

 

Figure 10, below shows time series plots for each premium model. Periods identified as high-volatility regimes 

via XGBoost are shaded in light blue. 
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Figure 10.Graph of Premium Across models. 

From the Table 2 and Figure 10, we observe that, 

i. GARCH-EVT Premiums exhibit clear time variation and rise significantly during high-volatility 

regimes. This reflects its sensitivity to both volatility clustering and tail risk through the EVT component. 

ii. EVP, VP, and EXP remain constant over time. While EXP is more conservative than EVP, neither 

captures volatility or regime dynamics. 

iii. CTE, Wang and Utility-based premiums are relatively stable but tail-sensitive, offering improved pricing 

under extreme loss scenarios compared to classical models. 

iv. Among the tail-risk-based principles: 

• CTE provides a risk-averse perspective, targeting the expected value in the extreme tail. 

• WANG’s transform adjusts distribution tails based on risk aversion, giving more weight to 

adverse outcomes. 

• Utility-based pricing introduces subjectivity and decision-theoretic reasoning, aligning 

premiums with the insurer’s risk preferences. 

The inclusion of CTE, Wang, and Utility enriches the model landscape by introducing tail-sensitive alternatives 

to classical methods. However, only the GARCH-EVT model dynamically adjusts in real-time, capturing both 

volatility trends and extreme event risk. This makes it the most robust and responsive premium principle among 

those considered. 

V. CONCLUSION 

This study proposes a dynamic premium calculation framework that integrates GARCH-based volatility 

modeling, Extreme Value Theory (EVT), Bayesian parameter estimation, and machine learning–based regime 

detection. The combined model effectively captures both rare extreme losses and market-regime shifts, offering a 

robust and adaptive alternative to traditional pricing methods. Compared to standard principles like EVP, VP, and 

exponential loading, the proposed approach shows superior responsiveness to tail risk and volatility. Bayesian 
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inference adds parameter stability, while XGBoost enhances threshold estimation and regime classification. A 

comprehensive sensitivity analysis confirms the model's robustness: EVT parameters (ξ, σ) influence premium 

levels, while λ₂ and λ₃ control premium variability. This interpretability allows insurers to better align pricing with 

dynamic risk conditions. 

Future research may extend the model to multi-line portfolios, real industry datasets, and alternative 

machine learning techniques for enhanced predictive performance 
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