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Abstract 
The pioneers of [13] study the compactness of operators on Bergman space of the unit ball and on generally 

weighted Bargmann-Fock spaces in terms of their Berezin transforms and the norms of the operators acting on 

reproducing kernels. We show how a vanishing Berezin transform combined with certain (integral) growth 

conditions on an operator 𝑇 are sufficient to imply that the operator is compact in the Bergman space. We also 

show that the reproducing kernel for compactness holds for operators satisfying similar growth conditions in 

(Weighted Bargmann-Fock space). Following [13] we extend the results of Xia and Zheng to the case of 

Bergman space when 0 < 𝜖 < ∞, and in weighted Bargmann-Fock space.The main results introduced more 

general new conditions that imply and improved the results of Xia and Zheng by thecase0 < 𝜖 < ∞. 

Key words: Berezin Transform, Compact Operators, Bergman Space, Fock Space, Toeplitz Operator, 

Sufficiently Localized Operator. 

 

Received 01 June., 2025; Revised 09 June., 2025; Accepted 11 June., 2025 © The author(s) 2025. 

Published with open access at www.questjournas.org 

I. Introduction 
The Bargmann-Fock space ℱ1+𝜖: = ℱ1+𝜖(ℂ𝑛) is the collection of sequences of entire functions 𝑓𝑖 on ℂ𝑛 such 

that 𝑓𝑖(⋅)𝑒
−
|⋅|

2 ∈ 𝐿1+𝜖(ℂ𝑛 , 𝑑𝑣). Thenℱ2 is a reproducing kernel Hilbert space with reproducing kernel given by 

𝐾𝑧𝑖(𝑤𝑖) = 𝑒
𝑧𝑖‾ 𝑤𝑖. Here, we denote by 𝑘𝑧𝑖  the normalized reproducing kernel at 𝑧𝑖. For a bounded operator 𝑇 on 

ℱ1+𝜖, the Berezin transform of 𝑇 is the function defined by 

𝑇̃(𝑧𝑖) = ⟨𝑇𝑘𝑧𝑖 , 𝑘𝑧𝑖⟩ℱ2
 

Bauer and the first author in [13] proved that the vanishing of the Berezin transform is sufficient for 

compactness whenever the operator is in the Toeplitz algebra [1]. However, it is generally very difficult to check 

whether a given operator 𝑇 is in the Toeplitz algebra, unless 𝑇 is itself a Toeplitz operator or a combination of a 

few Toeplitz operators, and as such one would like a "simpler" sufficient condition to guarantee this. 

In [10], Xia and Zheng introduced a class of "sufficiently localized" operators on ℱ2 which includes the 

algebraic closure of the Toeplitz operators. These are the operators 𝑇 acting on ℱ2 such that there exist 

constants 𝛽 and 0 ≤ 𝜖 < ∞ with 

|⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ2
| ≤∑

1+ 𝜖

(1 + |𝑧𝑖 − 𝑤𝑖|)
(2𝑛+𝜖)

𝑖

.                                      (1.1) 

It was proved by Xia and Zheng that every bounded operator 𝑇 from the 𝐶∗-algebra generated by sufficiently 

localized operators whose Berezin transform vanishes at infinity, i.e., 

lim
|𝑧𝑖|→∞

∑ ⟨𝑇𝑘𝑧𝑖 , 𝑘𝑧𝑖⟩ℱ2
𝑖

= 0.                                                      (1.2) 

is compact on ℱ2. One of their main innovations is providing an easily checkable condition (1.1) which is 

general enough to imply compactness from the seemingly much weaker condition (1.2). 

The aim here is to extend the Xia-Zheng notion of sufficiently localized operators to both a much wider class of 

weighted Fock spaces (in particular, the class of so-called "generalized Bargmann-Fock spaces" considered in 

[8]) and to a larger class of operators. So (1.1) easily implies 

sup
𝑧𝑖∈ℂ

𝑛
 ∫  
ℂ𝑛
∑|⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ2

| 𝑑𝑣(𝑤𝑖)

𝑖

< ∞ 
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and consequently one should look at generalizations of sufficiently localized operators that allow for weaker 

integral conditions. And the ideas in [10] are essentially frame theoretic (see [5] for a discussion of the ideas in 

[10]) and therefore one cannot easily extend these ideas to the non-Hilbert space setting. Now, we will provide a 

simpler, more direct proof of the main result in [10] and which can be extended to other spaces of analytic 

functions. In particular, we show that our modified main result, holds for the classical Bergman space 𝐴1+𝜖 on 

the ball (and in Section 4 we will discuss the possibility of extending our results to a very wide class of weighted 

Bergman spaces.) 

The extension of the main results in [10] to a larger class of operators and to a wider class of weighted Fock 

spaces is as follows. Let 𝑑𝑐 =
𝑖

4
(𝜕‾ − 𝜕) and let 𝑑 be the usual exterior derivative. For the rest of the paper let 

𝜙𝑖 ∈ (1 + 𝜖)
2(ℂ𝑛) be a real valued function on ℂ𝑛 such that 

𝑐𝜔0 < 𝑑𝑑𝑐𝜙𝑖 < (1 + 𝜖)𝜔0 

holds uniformly pointwise on ℂ𝑛 for some positive constants 𝑐 and 1 + 𝜖 (in the sense of positive (1,1) forms) 

where 𝜔0 = 𝑑𝑑𝑐| ⋅ |2 is the standard Euclidean Kähler form. Furthermore, for 0 ≤ 𝜖 ≤ ∞, define the 

generalized Bargmann-Fock space ℱ𝜙𝑖
1+𝜖 to be the space of entire functions 𝑓𝑖 on ℂ𝑛 such that 𝑓𝑖𝑒

−𝜙𝑖 ∈

𝐿1+𝜖(ℂ𝑛 , 𝑑𝑣) (for a detailed properties of ℱ𝜙𝑖
1+𝜖 see [8]). For operators 𝑇 acting on the reproducing kernels 

𝐾(𝑧𝑖 , 𝑤𝑖) of ℱ𝜙𝑖
2 ,, we impose the following conditions. We first assume that 

sup
𝑧𝑖∈ℂ

𝑛
 ∫  
ℂ𝑛
 ∑ |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑤𝑖)

𝑖

< ∞, sup
𝑧𝑖∈ℂ

𝑛
 ∫  
ℂ𝑛
∑ |⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑤𝑖)

𝑖

< ∞.    (1.3) 

which is enough to conclude that the operator 𝑇 initially defined on the linear span of the reproducing kernels 

extends to a bounded operator on ℱ𝜙𝑖
1+𝜖 for 0 ≤ 𝜖 ≤ ∞ (see Section 3). To show that the operator is compact, we 

impose the following additional assumptions on 𝑇: 

lim
𝜖→∞

  sup
𝑧𝑖∈ℂ

𝑛
 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
 ∑ |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑤𝑖)

𝑖

= 0,  

lim
𝜖→∞

  sup
𝑧𝑖∈ℂ

𝑛
 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑ |⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑤𝑖)

𝑖

= 0.                            (1.4) 

Definition 1.1. We will say that a linear operator 𝑇 on ℱ𝜙𝑖
1+𝜖 is weakly localized (and for convenience write 𝑇 ∈

𝒜𝜙𝑖
(ℂ𝑛)) if it satisfies the conditions (1.3) and (1.4). 

Note that every sufficiently localized operator on ℱ2 in the sense of Xia and Zheng obviously satisfies (1.3) and 

(1.4) and is therefore weakly localized in our sense too. Now if 𝐷(𝑧𝑖 , 1 + 𝜖) is the Euclidean ball with center 𝑧𝑖 
and radius 1 + 𝜖, and if ‖𝑇‖e denotes the essential norm of a bounded operator 𝑇 on ℱ𝜙𝑖

1+𝜖 then the following 

theorem is one of the main results (see [13]): 

Theorem 1.2. Let 0 < 𝜖 < ∞ and let 𝑇 be an operator on ℱ𝜙𝑖
1+𝜖 which belongs to the norm closure of 𝒜𝜙𝑖

(ℂ𝑛). 

Then there exists 𝜖 > 0 (both depending on 𝑇) such that 

‖𝑇‖𝑒 ≤ (1 + 𝜖)lim sup
|𝑧𝑖|→∞

  sup
𝑤𝑖∈𝐷(𝑧𝑖,1+𝜖)

∑ |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩|

𝑖

 

In particular, if 

lim
|𝑧𝑖|→∞

 ∑‖𝑇𝑘𝑧𝑖‖ℱ𝜙𝑖
1+𝜖

𝑖

= 0 

then 𝑇 is compact on ℱ𝜙𝑖
1+𝜖. 

Now if 𝒜(ℂ𝑛) is the class of sufficiently localized operators on ℱ2 then note that an application of Proposition 

1.4 in [5] in conjunction with Theorem 1.2 immediately proves the following theorem, which provides the 

previously mentioned generalization of the results in [10] (see Section 3). 

Theorem 1.3 (see [13]). Let 0 < 𝜖 < ∞ and let 𝑇 be an operator on ℱ1+𝜖 which belongs to the norm closure of 

𝒜(ℂ𝑛). If lim|𝑧𝑖|→∞
  |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑧𝑖⟩ℱ2

| = 0 then 𝑇 is compact. 

We note that one can easily write the so called "Fock-Sobolev spaces" from [4] as generalized Bargmann-Fock 

spaces, so that in particular Theorem 1.2 immediately applies to these spaces (see [5] for more details). 

To state the main result in the Bergman space setting. Let 𝔹𝑛 denote the unit ball in ℂ𝑛 and let the space 𝐴1+𝜖: =
𝐴1+𝜖(𝔹𝑛) denote the classical Bergman space, i.e., the collection of all holomorphic functions on 𝔹𝑛 such that 

‖𝑓𝑖‖𝐴1+𝜖
1+𝜖 : = ∫  

𝔹𝑛

∑|𝑓𝑖(𝑧𝑖)|
1+𝜖𝑑𝑣(𝑧𝑖)

𝑖

< ∞ 

The function 𝐾𝑧𝑖(𝑤𝑖): = (1 − 𝑧𝑖‾ 𝑤𝑖)
−(𝑛+1) is the reproducing kernel for 𝐴2 and 

𝑘𝑧𝑖(𝑤𝑖): =
(1 − |𝑧𝑖|

2)
𝑛+1

2

(1 − 𝑧𝑖‾ 𝑤𝑖)
(𝑛+1)
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is the normalized reproducing kernel at the point 𝑧𝑖. We also will let 𝑑𝜆 denote the invariant measure on 𝔹𝑛, i.e., 

𝑑𝜆(𝑧𝑖) =
𝑑𝑣(𝑧𝑖)

(1 − |𝑧𝑖|
2)𝑛+1

 

Now let 0 < 𝜖 < ∞ and let ϵ ≥ 0. We are interested in operators 𝑇 acting on the reproducing kernels of 𝐴2 that 

satisfy the following conditions. First, we assume that there exists 0 < 𝛿 < 𝑚𝑖𝑛 {1 + 𝜖,
1+𝜖

𝜖
} such that 

sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝔹𝑛

 ∑ |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2
|

𝑖

‖𝐾𝑧𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖) < ∞, 

sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝔹𝑛

 ∑ |⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2
|
‖𝐾𝑧𝑖‖𝐴2

1−
2𝛿

(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖)

𝑖

< ∞.                       (1.5) 

These are enough to conclude that the operator 𝑇 initially defined on the linear span of the reproducing kernels 

extends to a bounded operator on 𝐴1+𝜖 (see the comments following the proof of Proposition 2.5). To treat 

compactness we make the following additional assumptions on 𝑇: there exists 0 < 𝛿 < 𝑚𝑖𝑛 {1 + 𝜖,
1+𝜖

𝜖
} such 

that 

sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑ |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|

𝑖

‖𝐾𝑧𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖) → 0,  

sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
 ∑|⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩|

‖𝐾𝑧𝑖‖𝐴2
1−

2𝛿
(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖)

𝑖

→ 0.                    (1.6) 

as 𝜖 → ∞. 

Definition 1.4. We say that a linear operator 𝑇 on 𝐴1+𝜖 is 1 + 𝜖 weakly localized (which we denote by 𝑇 ∈

𝒜1+𝜖(𝔹𝑛)) if it satisfies conditions (1.5) and (1.6). 

Note that the condition 0 < 𝛿 < 𝑚𝑖𝑛 {1 + 𝜖,
1+𝜖

𝜖
} implies that both 1 −

2𝛿

(1+𝜖)(𝑛+1)
 and 1 −

2𝛿𝜖

(1+𝜖)(𝑛+1)
 are strictly 

between 
𝑛−1

𝑛+1
 and 1. Furthermore, note that when 1 + 𝜖 =

1+𝜖

𝜖
= 2, we have that 

𝑛−1

𝑛+1
< 1 −

𝛿

(𝑛+1)
< 1 precisely 

when 0 < 𝛿 < 2. Thus, in this case we can rewrite condition (1.5) in the following simpler way: there exists 
𝑛−1

𝑛+1
< 𝑎 < 1 where 

sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝔹𝑛

∑|⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2
|

𝑖

‖𝐾𝑧𝑖‖𝐴2
𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖) < ∞,  

sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝔹𝑛

∑|⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2
|

𝑖

‖𝐾𝑧𝑖‖𝐴2
𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖) < ∞ 

Of course, one can similarly rewrite condition (1.6) when 𝜖 = 1. 

We prove the following result(see [13]). 

Theorem 1.5. Let 0 < 𝜖 < ∞ and let 𝑇 be an operator on 𝐴1+𝜖 which belongs to the norm closure of 𝒜1+𝜖(𝔹𝑛). 
If 

lim
|𝑧𝑖|→1

 ∑⟨𝑇𝑘𝑧𝑖 , 𝑘𝑧𝑖⟩𝐴2
𝑖

= 0 

then 𝑇 is compact. 

It will be clear that the method of proof also will work for the weighted Bergman space 𝐴𝛼
1+𝜖, and we leave this. 

Note that this result is known in Suárez, [9] in the case of 𝐴1+𝜖 when the operator 𝑇 belongs to the Toeplitz 

algebra generated by 𝐿∞ symbols (see also [7] for the case of weighted Bergman spaces.) We will prove below 

that the Toeplitz algebra on 𝐴1+𝜖 generated by 𝐿∞ symbols is a subalgebra of the norm closure of 𝒜1+𝜖(𝔹𝑛). In 

particular, the results of this paper provide a considerably simpler proof of the main results in [7,9] for the 𝜖 ≠ 1 

situation (though it should be noted that a similar simplification when 𝜖 = 1 was provided in [6]). 

Now here we provide the extension of the the Xia and Zheng result to the Bergman space on the unit ball 𝔹𝑛, 

and in particular we prove Theorem 1.5. We prove Theorems 1.2 and 1.3 which provides an extension of the Xia 

and Zheng result in the case of the generalized Bargmann-Fock spaces. Finally, we will briefly discuss some 

interesting open problems related to these results. 



Certain Localization and Compactness in Bergmanand Bargmann-Fock Spaces 

DOI: 10.35629/0743-11061326                                  www.questjournals.org                                           16 | Page 

II. Bergman Space Case 
For 𝜑𝑧𝑖 be the Möbius map of 𝔹𝑛 that interchanges 0 and 𝑧𝑖. It is well known that 

1 − |𝜑𝑧𝑖(𝑤𝑖)|
2
=
(1 − |𝑧𝑖|

2)(1 − |𝑤𝑖|
2)

|1 − 𝑧𝑖‾ 𝑤𝑖|
2

 

and as a consequence we have that 

|⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2
| =

1

‖𝐾𝜑𝑧𝑖(𝑤𝑖)
‖
𝐴2

.                                               (2.1) 

Using the automorphism𝜑𝑧𝑖 , the pseudohyperbolic and Bergman metrics on 𝔹𝑛 are defined by 

𝜌(𝑧𝑖 , 𝑤𝑖):= |𝜑𝑧𝑖(𝑤𝑖)|  and (2𝑛 + 𝜖)(𝑧𝑖 , 𝑤𝑖):=
1

2
log 

1 + 𝜌(𝑧𝑖 , 𝑤𝑖)

1 − 𝜌(𝑧𝑖 , 𝑤𝑖)
 

Recall that these metrics are connected by 𝜌 =
𝑒2(2𝑛+𝜖)−1

𝑒2(2𝑛+𝜖)+1
= tanh (2𝑛 + 𝜖) and it is well-known that these 

metrics are invariant under the automorphism group of 𝔹𝑛. We let 

𝐷(𝑧𝑖 , 1 + 𝜖) ≔ {𝑤𝑖 ∈ 𝔹𝑛: (2𝑛 + 𝜖)(𝑧𝑖 , 𝑤𝑖) ≤ 1 + 𝜖} = {𝑤𝑖 ∈ 𝔹𝑛: 𝜌(𝑧𝑖 , 𝑤𝑖) ≤ 𝑠 = tanh (1 + 𝜖)} 
denote the hyperbolic disc centered at 𝑧𝑖 of radius 1 + 𝜖. Recall also that the orthogonal (Bergman) projection of 

𝐿2(𝔹𝑛 , 𝑑𝑣) onto 𝐴2 is given by the integral operator 

𝑃(𝑓𝑖)(𝑧𝑖): = ∫  
𝔹𝑛

∑⟨𝐾𝑤𝑖 , 𝐾𝑧𝑖⟩𝐴2
𝑓𝑖(𝑤𝑖)𝑑𝑣(𝑤𝑖)

𝑖

 

Therefore, for all 𝑓𝑖 ∈ 𝐴
2 we have 

𝑓𝑖(𝑧𝑖) = ∫  
𝔹𝑛

 ∑⟨𝑓𝑖, 𝑘𝑤𝑖⟩𝐴2
𝑘𝑤𝑖(𝑧𝑖)𝑑𝜆(𝑤𝑖)

𝑖

.                                        (2.2) 

As usual an important ingredient in our treatment will be the Rudin-Forelli estimates, see [11] or [6]. Recall the 

standard Rudin-Forelli estimates: 

∫  
𝔹𝑛

 ∑
|⟨𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩𝐴2

|

(1+𝜖)+𝑠

2

‖𝐾𝑧𝑖‖𝐴2
𝑠
‖𝐾𝑤𝑖‖𝐴2

1+𝜖 𝑑𝜆(𝑤𝑖)

𝑖

≤ 𝐶 = (𝐶)(𝑟, 𝑠) < ∞, ∀𝑧𝑖 ∈ 𝔹𝑛.               (2.3) 

for all 𝑟 > 𝜅 > 𝑠 > 0, where 𝜅 = 𝜅𝑛: =
2𝑛

𝑛+1
. We will use these in the following form: For all 

𝑛−1

𝑛+1
< 𝑎 < 1 we 

have that 

∫  
𝔹𝑛

 ∑ |⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2
|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖)

𝑖

≤ 𝐶 = 𝐶(𝑎) < ∞, ∀𝑧𝑖 ∈ 𝔹𝑛.          (2.4) 

To see that this is true in the classical Bergman space setting, for a given 
𝑛−1

𝑛+1
< 𝑎 < 1 set 𝑟 = 1 + 𝑎 and 𝑠 =

1 − 𝑎 > 0. Then 𝑟 + 𝑠 = 2, and since 𝑎 >
𝑛−1

𝑛+1
 we have that 𝑟 = 1 + 𝑎 >

2𝑛

𝑛+1
. Furthermore since 0 < 𝑎 < 1 we 

have that 0 < 𝑠 < 1 ≤
2𝑛

𝑛+1
. By plugging this in (2.3) we obtain (2.4). 

We will also need the following uniform version of the Rudin-Forelli estimates. 

Lemma 2.1 (see [13]). Let 
𝑛−1

𝑛+1
< 𝑎 < 1. Then 

lim
𝑅→∞

  sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝐷(𝑧𝑖,𝑅)

𝑐
∑ |⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖)

𝑖

= 0.                            (2.5) 

Proof. Notice first that 

∫  
𝐷(𝑧𝑖,𝑅)

𝑐
 ∑ |⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖)

𝑖
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= ∫  
𝐷(0,𝑅)𝑐

∑ |⟨𝑘𝑧𝑖 , 𝑘𝜑𝑧𝑖(𝑤𝑖)
⟩
𝐴2
|

‖𝐾𝑧𝑖‖𝐴2
𝑎

‖𝐾𝜑𝑧𝑖(𝑤𝑖)
‖
𝐴2

𝑎 𝑑𝜆(𝑤𝑖)

𝑖

= ∫  
𝐷(0,𝑅)𝑐

∑ |⟨𝑘𝑧𝑖, 𝑘𝑤𝑖⟩𝐴2
|
𝑎 ‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑑𝜆(𝑤𝑖)

𝑖

= ∫  
𝐷(0,𝑅)𝑐

∑ 
|⟨𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩𝐴2

𝑎
|
𝑎

‖𝐾𝑤𝑖‖𝐴2
1+𝑎 𝑑𝜆(𝑤𝑖)

𝑖

= ∫  
𝐷(0,𝑅)𝑐

 ∑
𝑑𝑣(𝑤𝑖)

|1 − 𝑤𝑖‾ 𝑧𝑖|
(𝑛+1)𝑎(1 − |𝑤𝑖|

2)
𝑛+1

2
(1−𝑎)

𝑖

= ∫  
1

𝑅′
 ∫  
𝕊𝑛

 ∑
𝑟2𝑛−1𝑑𝜉𝑑𝑟

|1 − 𝑧𝑖𝑟𝜉‾|
(𝑛+1)𝑎(1 − 𝑟2)

𝑛+1

2
(1−𝑎)

𝑖

 

where in the last integral 𝑅 = log 
1+𝑅′

1−𝑅′
. Notice that 𝑅′ → 1 when 𝑅 → ∞ and note that the last integral can be 

written as 

∫  
1

𝑅′
∑𝐼(𝑛+1)𝑎−𝑛(𝑟𝑧𝑖)

𝑟2𝑛−1𝑑(1 + 𝜖)

(1 − 𝑟2)
𝑛+1

2
(1−𝑎)

𝑖

 

where 

𝐼𝑐(𝑧𝑖):= ∫  
𝕊𝑛

∑
𝑑𝜉

|1 − 𝑧𝑖𝑟𝜉‾|
𝑐+𝑛

𝑖

 

By standard estimates (see [11, p. 15] for example), we have that 

𝐼(𝑛+1)𝑎−𝑛(𝑟𝑧𝑖) ≲

{
 
 

 
 
1,  if (𝑛 + 1)𝑎 − 𝑛 < 0

log 
1

1 − |𝑟𝑧𝑖|
2
,  if (𝑛 + 1)𝑎 − 𝑛 = 0

1 − |𝑟𝑧𝑖|
2)(𝑛+1)𝑎−𝑛

(1 −
,  if (𝑛 + 1)𝑎 − 𝑛 > 0

 

which gives us that 

∫  
𝐷(𝑧𝑖,𝑅)

𝑐
∑|⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖)

𝑖

≲

{
 
 
 

 
 
 ∫  

1

𝑅′
 

𝑟2𝑛−1

(1 − 𝑟2)
𝑛+1

2
(1−𝑎)

𝑑𝑟,  if (𝑛 + 1)𝑎 − 𝑛 < 0

∫  
1

𝑅′
 log 

1

1 − 𝑟2
𝑟2𝑛−1

(1 − 𝑟2)
1

2

𝑑𝑟  if (𝑛 + 1)𝑎 − 𝑛 = 0

∫  
1

𝑅′
 

𝑟2𝑛 − 1

(1 − 𝑟2)(𝑛+1)𝑎−𝑛+
𝑛+1

2
(1−𝑎)

𝑑𝑟,  if (𝑛 + 1)𝑎 − 𝑛 > 0

 

Since 𝑎 < 1, it is easy to see that all the functions appearing on the right hand side are integrable on (0,1). 
Therefore, we obtain the desired conclusion by taking the limit as 𝑅 → ∞ (which is the same as 𝑅′ → 1). 

First, we want to make sure that the class of weakly localized operators is large enough to contain some 

interesting operators. This is indeed true since every Toeplitz operator with a bounded symbol belongs to this 

class. 

Proposition 2.2 (see [13]). Each Toeplitz operator 𝑇𝑢 on 𝐴1+𝜖 with a bounded symbol 𝑢(𝑧𝑖) is in 𝒜1+𝜖(𝔹𝑛) for 

any 0 < 𝜖 < ∞. 

Proof. Clearly it is enough to show that 

sup
𝑧𝑖∈𝔹𝑛

∫ ∑|⟨𝑇𝑢𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2
|

𝑖𝐷(𝑧𝑖,1+𝜖)
𝑐

 
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖) → 0,  

sup
𝑧𝑖∈𝔹𝑛

∫ ∑|⟨𝑇𝑢‾𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩|

𝑖𝐷(𝑧𝑖,1+𝜖)
𝑐

 
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖) → 0 

as 𝜖 → ∞ for all 
𝑛−1

𝑛+1
< 𝑎 < ∞. 

By definition 

𝑇𝑢𝑘𝑧𝑖(𝑤𝑖) = 𝑃(𝑢𝑘𝑧𝑖)(𝑤𝑖) = ∫  
𝔹𝑛

∑⟨𝐾𝑥𝑖 , 𝐾𝑤𝑖⟩𝐴2
𝑢(𝑥𝑖)𝑘𝑧𝑖(𝑥𝑖)𝑑𝑣(𝑥𝑖)

𝑖

. 
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Therefore, 

|⟨𝑇𝑢𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2
|≤ ∫  

𝔹𝑛

 ∑ |⟨𝑘𝑤𝑖 , 𝑘𝑥𝑖⟩𝐴2
| |𝑢(𝑥𝑖)| |⟨𝑘𝑧𝑖 , 𝑘𝑥𝑖⟩𝐴2

| 𝑑𝜆(𝑥𝑖)

𝑖

≤ ‖𝑢‖∞∫  
𝔹𝑛

∑ |⟨𝑘𝑤𝑖 , 𝑘𝑥𝑖⟩𝐴2
⟨𝑘𝑥𝑖 , 𝑘𝑧𝑖⟩𝐴2

| 𝑑𝜆(𝑥𝑖)

𝑖

 

Now for 𝑧𝑖 , 𝑥𝑖 ∈ 𝔹𝑛, set 

𝐼𝑧𝑖(𝑥𝑖):= ∑|⟨𝑘𝑥𝑖 , 𝑘𝑧𝑖⟩𝐴2
| ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
|⟨𝑘𝑤𝑖 , 𝑘𝑥𝑖⟩𝐴2

|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖)

𝑖

 

First note that 

∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑ |⟨𝑇𝑢𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖)

𝑖

 

≤ ‖𝑢‖∞∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
 ∑∫  

𝔹𝑛

  |⟨𝑘𝑤𝑖 , 𝑘𝑥𝑖⟩𝐴2
⟨𝑘𝑥𝑖 , 𝑘𝑧𝑖⟩𝐴2

| 𝑑𝜆(𝑥𝑖)
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖)

𝑖

= ‖𝑢‖∞∫  
𝔹𝑛

 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑ |⟨𝑘𝑤𝑖 , 𝑘𝑥𝑖⟩𝐴2

|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖) |⟨𝑘𝑥𝑖 , 𝑘𝑧𝑖⟩𝐴2

| 𝑑𝜆(𝑥𝑖
𝑖

)

= ‖𝑢‖∞∫  
𝔹𝑛

 ∑ 𝐼𝑧𝑖(𝑥𝑖)𝑑𝜆(𝑥𝑖)

𝑖

= ‖𝑢‖∞∑(∫  
𝐷(𝑧𝑖,

1+𝜖

2
)

 + ∫  
𝐷(𝑧𝑖,

1+𝜖

2
)
𝑐
 ) 𝐼𝑧𝑖(𝑥𝑖)𝑑𝜆(𝑥𝑖)

𝑖

.

 

To estimate the first integral notice that for 𝑥𝑖 ∈ 𝐷 (𝑧𝑖 ,
1+𝜖

2
) we have 𝐷(𝑧𝑖 , 1 + 𝜖)

𝑐 ⊂ 𝐷 (𝑥𝑖 ,
1+𝜖

2
)
𝑐

. 

Therefore, the first integral is no greater than 

∫  
𝐷(𝑧𝑖,

1+𝜖

2
)

∑∫  
𝐷(𝑥𝑖,

1+𝜖

2
)
𝑐
|⟨𝑘𝑤𝑖 , 𝑘𝑥𝑖⟩𝐴2

|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖) |⟨𝑘𝑥𝑖 , 𝑘𝑧𝑖⟩𝐴2

| 𝑑𝜆(𝑥𝑖)

𝑖

. 

It is easy to see that the last expression is no greater than 𝐶(𝑎)𝐴 (
1+𝜖

2
), where 

𝐴(1 + 𝜖) = sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑|⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖)

𝑖

 

and 𝐶(𝑎) is just the bound from the standard Rudin-Forelli estimates (2.4). 

Estimating the second integral is simpler. The second integral is clearly no greater than 

∫  
𝐷(𝑧𝑖,

1+𝜖

2
)
𝑐
∑∫  

𝔹𝑛

|⟨𝑘𝑤𝑖 , 𝑘𝑥𝑖⟩𝐴2
|
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑤𝑖‖𝐴2
𝑎 𝑑𝜆(𝑤𝑖) |⟨𝑘𝑥𝑖 , 𝑘𝑧𝑖⟩𝐴2

| 𝑑𝜆(𝑥𝑖)

𝑖

 

By the standard Rudin-Forelli estimates (2.4) the inner integral is no greater than 

𝐶(𝑎)
‖𝐾𝑧𝑖‖𝐴2

𝑎

‖𝐾𝑥𝑖‖𝐴2
𝑎  

where the constant 𝐶(𝑎) is independent of 𝑧𝑖 and 𝑥𝑖. So, the whole integral is bounded by 𝐶(𝑎)𝐴 (
1+𝜖

2
). 

Therefore 

sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑|⟨𝑇𝑢𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|
‖𝐾𝑧𝑖‖

𝑎

‖𝐾𝑤𝑖‖
𝑎 𝑑𝜆(𝑤𝑖)

𝑖

≤ ‖𝑢‖∞ (𝐶(𝑎)𝐴 (
1 + 𝜖

2
) + 𝐶(𝑎)𝐴 (

1 + 𝜖

2
)) 

Applying the uniform Rudin-Forelli estimates (2.5) in Lemma 2.1 completes the proof since 

2𝐶(𝑎)‖𝑢‖∞𝐴 (
1+𝜖

2
) → 0 as 𝜖 → ∞. 

We next show that the class of weakly localized operators forms a ∗-algebra. 

Proposition 2.3 (see [13]). If 0 < 𝜖 < ∞ then 𝒜1+𝜖(𝔹𝑛) is an algebra. Furthermore, 𝒜2(𝔹𝑛) is a ∗-algebra. 

Proof. It is trivial that 𝑇 ∈ 𝒜2(𝔹𝑛) implies 𝑇∗ ∈ 𝒜2(𝔹𝑛). It is also easy to see that any linear combination of 

two operators in 𝒜1+𝜖(𝔹𝑛) must be also in 𝒜1+𝜖(𝔹𝑛). It remains to prove that if 𝑇, 𝑆 ∈ 𝒜1+𝜖(𝔹𝑛), then 𝑇𝑆 ∈
𝒜1+𝜖(𝔹𝑛). To that end, we have that 
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∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
 ∑ |⟨𝑇𝑆𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|

𝑖

‖𝐾𝑧𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖)

= ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑ |⟨𝑆𝑘𝑧𝑖 , 𝑇

∗𝑘𝑤𝑖⟩𝐴2
|

𝑖

‖𝐾𝑧𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖)

= ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑ |∫  

𝔹𝑛

  ⟨𝑆𝑘𝑧𝑖 , 𝑘𝑥𝑖⟩𝐴2
⟨𝑘𝑥𝑖 , 𝑇

∗𝑘𝑤𝑖⟩𝐴2
𝑑𝜆(𝑥𝑖)|

𝑖

‖𝐾𝑧𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖)

≤ ∫  
𝔹𝑛

 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
 ∑ |⟨𝑘𝑥𝑖 , 𝑇

∗𝑘𝑤𝑖⟩𝐴2
|

𝑑𝜆(𝑤𝑖)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)𝑖

|⟨𝑆𝑘𝑧𝑖 , 𝑘𝑥𝑖⟩𝐴2
| ‖𝐾𝑧𝑖‖

1−
2𝛿𝜖

(1+𝜖)(𝑛+1)𝑑𝜆(𝑥𝑖).

 

Proceeding exactly as in the proof of the previous Proposition and using the conditions following from 𝑇, 𝑆 ∈

𝒜1+𝜖(𝔹𝑛) in the place of the local Rudin-Forelli estimates (2.5) (and replacing 𝑎 with 1 −
2𝛿

(1+𝜖)(𝑛+1)
) we obtain 

that 

lim
𝜖→∞

  sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑|⟨𝑇𝑆𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|

𝑖

‖𝐾𝑧𝑖‖𝐴2
1−

2𝛿
(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖) = 0 

The corresponding condition for (𝑇𝑆)∗ is proved in exactly the same way. 

We next show that every weakly localized operator can be approximated by infinite sums of well localized 

pieces. To state this property we need to recall the following proposition proved in [6] 

Proposition 2.4. There exists an integer 𝑁 > 0 such that for any 𝑟 ≥ 0 there is a covering ℱ𝑟 = {𝐹𝑗} of 𝔹𝑛 by 

disjoint Borel sets satisfying 

(1) every point of 𝔹𝑛 belongs to at most 𝑁 of the sets 𝐺𝑗: = {𝑧𝑖 ∈ 𝔹𝑛: 𝑑(𝑧𝑖 , 𝐹𝑗) ≤ 𝑟}, 

(2) diam𝑑𝐹𝑗 ≤ 2𝑟 for every 𝑗. 

We use this to prove the following proposition, which is similar to what appears in [6], but exploits condition 

(1.6). 

Proposition 2.5 (see [13]). Let 0 < 𝜖 < ∞ and let 𝑇 be in the norm closure of 𝒜1+𝜖(𝔹𝑛). Then for every 𝜖 > 0 

there exists 𝑟 > 0 such that for the covering ℱ𝑟 = {𝐹𝑗} (associated to 𝑟) from Proposition 2.4, we have: 

‖𝑇𝑃 −∑  

𝑗

 𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

‖

𝐴1+𝜖→𝐿1+𝜖(𝔹𝑛,𝑑𝑣)

< 𝜖 

Proof. By Proposition 2.3 in conjunction with Proposition 2.4 and a simple approximation argument, we may 

assume that 𝑇 ∈ 𝒜1+𝜖(𝔹𝑛). Now define 

𝑆 = 𝑇𝑃 −∑  

𝑗

𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

Given 𝜖 choose 𝑟 large enough so that 

sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑|⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|

𝑖

‖𝐾𝑧𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿𝜖
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖) < 𝜖 

and 

sup
𝑧𝑖∈𝔹𝑛

 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑|⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

|

𝑖

‖𝐾𝑧𝑖‖𝐴2
1−

2𝛿
(1+𝜖)(𝑛+1)

‖𝐾𝑤𝑖‖𝐴2
1−

2𝛿
(1+𝜖)(𝑛+1)

𝑑𝜆(𝑤𝑖) < 𝜖 

Now for any 𝑧𝑖 ∈ 𝔹𝑛 let 𝑧𝑖 ∈ 𝐹𝑗0 , so that 
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|𝑆𝑓𝑖(𝑧𝑖)|≤ ∫  
𝔹𝑛

 ∑  

𝑗

∑ 1𝐹𝑗(𝑧𝑖)1𝐺𝑗
𝑐(𝑤𝑖) |⟨𝑇

∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩𝐴2
| |𝑓𝑖(𝑤𝑖)|𝑑𝑣(𝑤𝑖)

𝑖

= ∫  
𝐺𝑗0
𝑐
∑ |⟨𝑇∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩𝐴2

| |𝑓𝑖(𝑤𝑖)|𝑑𝑣(𝑤𝑖)

𝑖

≤ ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
 ∑ |⟨𝑇∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩𝐴2

| |𝑓𝑖(𝑤𝑖)|𝑑𝑣(𝑤𝑖)

𝑖

 

 

 

To finish the proof, we will estimate the operator norm of the integral operator on 𝐿1+𝜖(𝔹𝑛, 𝑑𝑣) with kernel 

1𝐷(𝑧𝑖,1+𝜖)𝑐(𝑤𝑖) |⟨𝑇
∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩𝐴2

| by using the classical Schur test. To that end, let ℎ(𝑤𝑖) = ‖𝐾𝑤𝑖‖𝐴2

2𝛿𝜖2

(1+𝜖)2(𝑛+1)
 so 

that 

∫  
𝔹𝑛

 ∑1𝐷(𝑧𝑖,1+𝜖)𝑐(𝑤𝑖) |⟨𝑇
∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩𝐴2

| ℎ(𝑤𝑖)
(
1+𝜖

𝜖
)
𝑑𝑣(𝑤𝑖)

𝑖

 

= ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑ |⟨𝑇∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩𝐴2

| ‖𝐾𝑤𝑖‖𝐴2

2𝛿
(1+𝜖)(𝑛+1)

𝑑𝑣(𝑤𝑖)

𝑖

= ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑ |⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩𝐴2

| ‖𝐾𝑧𝑖‖‖𝐾𝑤𝑖‖𝐴2

2𝛿
(1+𝜖)(𝑛+1)

−1
𝑑𝜆(𝑤𝑖)

𝑖

≤∑𝜖‖𝐾𝑧𝑖‖𝐴2

2𝛿
(1+𝜖)(𝑛+1)

𝑖

=∑𝜖ℎ(𝑧𝑖)
(
1+𝜖

𝜖
)

𝑖

 

Similarly, we have that 

∫  
𝔹𝑛

∑1𝐷(𝑧𝑖,1+𝜖)𝑐(𝑤𝑖) |⟨𝑇
∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩𝐴2

| ℎ(𝑧𝑖)
1+𝜖𝑑𝑣(𝑧𝑖)

𝑖

≤∑𝜖ℎ(𝑤𝑖)
1+𝜖

𝑖

 

which completes the proof. 

It should be noted that a very similar Schur test argument actually proves that condition (1.5) implies that 𝑇 is 

bounded on 𝐴1+𝜖. 

We can now prove one of our main results whose proof uses the ideas in [6, Theorem 4.3] and [5, Lemma 5.3]. 

First, for any 𝑤𝑖 ∈ 𝔹𝑛 and 0 < 𝜖 < ∞, let 𝑘𝑤𝑖
(1+𝜖)

 be the "1 + 𝜖- normalized reproducing kernel" defined by 

𝑘𝑤𝑖
(1+𝜖)

(𝑧𝑖) =
𝐾(𝑧𝑖 , 𝑤𝑖)

‖𝐾𝑤𝑖‖
2𝜖

(1+𝜖)

 

Clearly we have that 𝑘𝑤𝑖
(2)
= 𝑘𝑤𝑖  and an easy computation tells us that ‖𝑘𝑤𝑖

(1+𝜖)
‖
𝐴1+𝜖

≈ 1 (where obviously we 

have equality when 𝜖 = 1). 

Theorem 2.6 (see [13]). Let 0 < 𝜖 < ∞ and let 𝑇 be in the norm closure of 𝒜1+𝜖(𝔹𝑛). Then there exists 𝜖 ≥ 0 

(both depending on 𝑇) such that 

‖𝑇‖𝑒 ≤ (1 + 𝜖)lim sup
|𝑧𝑖|→1

−
  sup
𝑤𝑖∈𝐷(𝑧𝑖,1+𝜖)

 ∑ |⟨𝑇𝑘𝑧𝑖
(1+𝜖)

, 𝑘𝑤𝑖
(
1+𝜖

𝜖
)
⟩

𝐴2

|

𝑖

 

where ‖𝑇‖𝑒 is the essential norm of 𝑇 as a bounded operator on 𝐴1+𝜖. 
Proof. Since 𝑃: 𝐿1+𝜖(𝔹𝑛 , 𝑑𝑣) → 𝐴1+𝜖 is a bounded projection, it is enough to estimate the essential norm of 𝑇 =
𝑇𝑃 as an operator on from 𝐴1+𝜖 to 𝐿1+𝜖(𝔹𝑛, 𝑑𝑣). 
Clearly if ‖𝑇𝑃‖e = 0 then there is nothing to prove, so assume that ‖𝑇𝑃‖e > 0. By Proposition 2.5 there exists 

𝑟 > 0 such that for the covering ℱ𝑟 = {𝐹𝑗} associated to 𝑟 (from Proposition 2.4) 

‖𝑇𝑃 −∑  

𝑗

 𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

‖

𝐴1+𝜖→𝐿1+𝜖(𝔹𝑛,𝑑𝑣)

<
1

2
‖𝑇𝑃‖e 

Since ∑𝑗<𝑚  𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 is compact for every 𝑚 ∈ ℕ we have that ‖𝑇𝑃‖e (as an operator from 𝐴1+𝜖 to 

𝐿1+𝜖(𝔹𝑛, 𝑑𝑣)) can be estimated in the following way: 
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‖𝑇𝑃‖e≤ ‖𝑇𝑃 − ∑  

𝑗<𝑚

 𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

‖

𝐴1+𝜖→𝐿1+𝜖(𝔹𝑛,𝑑𝑣)

≤ ‖𝑇𝑃 −∑  

𝑗

 𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

‖

𝐴1+𝜖→𝐿1+𝜖(𝔹𝑛,𝑑𝑣)

+ ‖𝑇𝑚‖𝐴1+𝜖→𝐿1+𝜖(𝔹𝑛,𝑑𝑣)

≤
1

2
‖𝑇𝑃‖e + ‖𝑇𝑚‖𝐴1+𝜖→𝐿1+𝜖(𝔹𝑛,𝑑𝑣)

 

where 

𝑇𝑚 = ∑  

𝑗≥𝑚

𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

We will complete the proof by showing that there exists 𝜖 ≥ 0 where 

lim sup
𝑚→∞

 ‖𝑇𝑚‖𝐴1+𝜖→𝐿1+𝜖(𝔹𝑛 ,𝑑𝑣) ≲ (1 + 𝜖)lim sup
|𝑧𝑖|→1

−
  sup
𝑤𝑖∈𝐷(𝑧𝑖,1+𝜖)

 ∑ |⟨𝑇𝑘𝑧𝑖
(1+𝜖)

, 𝑘𝑤𝑖
(
1+𝜖

𝜖
)
⟩

𝐴2

|

𝑖

+
1

4
‖𝑇𝑃‖e 

If 𝑓𝑖 ∈ 𝐴
1+𝜖 is arbitrary of norm no greater than 1 , then 

‖𝑇𝑚𝑓𝑖‖𝐴1+𝜖
1+𝜖 = ∑  

𝑗≥𝑚

 ∑‖𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

𝑓𝑖‖
𝐴1+𝜖

1+𝜖

𝑖

= ∑  

𝑗≥𝑚

 ∑

‖𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

𝑓𝑖‖
𝐴1+𝜖

1+𝜖

‖𝑀1𝐺𝑗
𝑓𝑖‖

𝐴1+𝜖

1+𝜖

𝑖

‖𝑀1𝐺𝑗
𝑓𝑖‖

𝐴1+𝜖

1+𝜖

≤ 𝑁sup
𝑗≥𝑚

 ‖𝑀1𝐹𝑗
𝑇𝑙𝑗‖

𝐴1+𝜖

1+𝜖
 

where 

𝑙𝑗 : = ∑
𝑃𝑀1𝐺𝑗

𝑓𝑖

‖𝑀1𝐺𝑗
𝑓𝑖‖

𝐴1+𝜖
𝑖

 

Therefore, we have that 

‖𝑇𝑚‖𝐴1+𝜖→𝐿1+𝜖(𝔹𝑛,𝑑𝑣) ≲ sup
𝑗≥𝑚‖𝑓𝑖‖𝐴1+𝜖≤1

 sup∑{‖𝑀1𝐹𝑗
𝑇𝑙𝑗‖

𝐴1+𝜖
: 𝑙𝑗 =

𝑃𝑀1𝐺𝑗
𝑓𝑖

‖𝑀1𝐺𝑗
𝑓𝑖‖

𝐴1+𝜖

}

𝑖

 

and hence 

lim sup
𝑚→∞

 ‖𝑇𝑚‖𝐴1+𝜖→𝐿1+𝜖(𝔹𝑛,𝑑𝑣) ≲ lim sup
𝑗→∞

  sup
‖𝑓𝑖‖𝐴1+𝜖≤1

 ∑{‖𝑀1𝐹𝑗
𝑇𝑙𝑗‖

𝐴1+𝜖
: 𝑙𝑗 =

𝑃𝑀1𝐺𝑗
𝑓𝑖

‖𝑀1𝐺𝑗
𝑓𝑖‖

𝐴1+𝜖

}

𝑖

 

Now pick a sequence {(𝑓𝑖)𝑗} in 𝐴1+𝜖 with ‖(𝑓𝑖)𝑗‖𝐴1+𝜖 ≤ 1 such that 

lim sup
𝑗→∞

  sup
‖𝑓𝑖‖≤1

 ∑{‖𝑀1𝐹𝑗
𝑇𝑔‖

𝐴1+𝜖
: 𝑔 =

𝑃𝑀1𝐺𝑗
𝑓𝑖

‖𝑀1𝐺𝑗
𝑓𝑖‖

𝐴1+𝜖

}

𝑖

−
1

4
‖𝑇𝑃‖e ≤ lim sup

𝑗→∞
 ‖𝑀1𝐹𝑗

𝑇𝑔𝑗‖
𝐴1+𝜖

 

where 

𝑔𝑗 =∑
𝑃𝑀1𝐺𝑗

(𝑓𝑖)𝑗

‖𝑀1𝐺𝑗
(𝑓𝑖)𝑗‖

𝐴1+𝜖
𝑖

=∑

∫  
𝐺𝑗
  ⟨𝑓𝑖 , 𝑘𝑤𝑖

(
1+𝜖

𝜖
)
⟩

𝐴2

𝑘𝑤𝑖
(1+𝜖)

𝑑𝜆(𝑤𝑖)

(∫  
𝐺𝑗
  |⟨𝑓𝑖, 𝑘𝑢

(
1+𝜖

𝜖
)
⟩

𝐴2

|

1+𝜖

𝑑𝜆(𝑢))

1

1+𝜖𝑖

 

                          = ∫  
𝐺𝑗

∑𝑎̃𝑗(𝑤𝑖)𝑘𝑤𝑖
(1+𝜖)

𝑑𝜆(𝑤𝑖)

𝑖

 

where 



Certain Localization and Compactness in Bergmanand Bargmann-Fock Spaces 

DOI: 10.35629/0743-11061326                                  www.questjournals.org                                           22 | Page 

𝑎̃𝑗(𝑤𝑖) =∑

⟨𝑓𝑖 , 𝑘𝑤𝑖
(
1+𝜖

𝜖
)
⟩

𝐴2

(∫  
𝐺𝑗
  |⟨𝑓𝑖 , 𝑘𝑢

(
1+𝜖

𝜖
)
⟩

𝐴2

|

1+𝜖

𝑑𝜆(𝑢))

1

1+𝜖𝑖

 

Finally, by the reproducing property and Hölder's inequality, we have that 

lim sup
𝑗→∞

 ‖𝑀1𝐹𝑗
𝑇𝑔𝑗‖

𝐴1+𝜖

1+𝜖

 

≤ lim sup
𝑗→∞

 ∫  
𝐹𝑗

 ∑(∫  
𝐺𝑗

  |𝑎̃𝑗(𝑤𝑖)||𝑇𝑘𝑤𝑖
(1+𝜖)

(𝑧𝑖)|𝑑𝜆(𝑤𝑖))

1+𝜖

𝑑𝑣(𝑧𝑖)

𝑖

= lim sup
𝑗→∞

 ∫  
𝐹𝑗

 ∑(∫  
𝐺𝑗

  |𝑎̃𝑗(𝑤𝑖)| |⟨𝑇𝑘𝑤𝑖
(1+𝜖)

, 𝑘𝑧𝑖
(
1+𝜖

𝜖
)
⟩

𝐴2

| 𝑑𝜆(𝑤𝑖))

1+𝜖

𝑑𝜆(𝑧𝑖)

𝑖

≤ lim sup
|𝑧𝑖|→1

−
  sup
𝑤𝑖∈𝐷(𝑧𝑖,3(1+𝜖))

 ∑ |⟨𝑇𝑘𝑧𝑖
(1+𝜖)

, 𝑘𝑤𝑖
(
1+𝜖

𝜖
)
⟩

𝐴2

|

1+𝜖

𝑖

(sup
𝑗
 𝜆(𝐺𝑗)

1+𝜖
∫  
𝐺𝑗

  |𝑎̃𝑗(𝑤𝑖)|
1+𝜖
𝑑𝜆(𝑤𝑖))

≤ 𝐶(1 + 𝜖)lim sup
|𝑧𝑖|→1

−
  sup
𝑤𝑖∈𝐷(𝑧𝑖,3(1+𝜖))

 ∑ |⟨𝑇𝑘𝑧𝑖
(1+𝜖)

, 𝑘𝑤𝑖
(
1+𝜖

𝜖
)
⟩

𝐴2

|

1+𝜖

𝑖

 

since by Proposition 2.4 we have that 𝑧𝑖 ∈ 𝐹𝑗 and 𝑤𝑖 ∈ 𝐺𝑗 implies that 𝑑(𝑧𝑖 , 𝑤𝑖) ≤ 3(1 + 𝜖) and 𝜆(𝐺𝑗) ≤ 𝐶(1 +

𝜖) where 𝐶(1 + 𝜖) is independent of 𝑗. 
We will finish this section off with a proof of Theorem 1.5. First, for 𝑧𝑖 ∈ 𝔹𝑛, define 

𝑈𝑧𝑖
(1+𝜖)𝑓𝑖(𝑤𝑖) ≔ 𝑓𝑖(𝜑𝑧𝑖(𝑤𝑖))(𝑘𝑧𝑖(𝑤𝑖))

2

1+𝜖 

which via a simple change of variables argument is clearly an isometry on 𝐴1+𝜖. As was shown in [9], an easy 

computation tells us that there exists a unimodular function Φ(⋅,⋅) on 𝔹𝑛 × 𝔹𝑛 where 

(𝑈𝑧𝑖
(1+𝜖)

)
∗
𝑘𝑤𝑖
(
1+𝜖

𝜖
)
= Φ(𝑧𝑖 , 𝑤𝑖)𝑘(𝜙𝑖)𝑧𝑖(𝑤𝑖)

(
1+𝜖

𝜖
)

.                                            (2.6) 

With the help of the operators 𝑈𝑧𝑖
(1+𝜖)

, we will prove the following general result which in conjunction with 

Theorem 2.6 proves Theorem 1.5. Note that proof is similar to the proof of [5, Proposition 1.4]. 

Proposition 2.7 (see [13]). If 𝑇 is any bounded operator on 𝐴1+𝜖 for 0 < 𝜖 < ∞ then the following are 

equivalent 

(a) lim|𝑧𝑖|→1
−  sup𝑤𝑖∈𝐷(𝑧𝑖,1+𝜖)∑  |⟨𝑇𝑘𝑧𝑖

(1+𝜖)
, 𝑘𝑤𝑖

(
1+𝜖

𝜖
)
⟩

𝐴2

|𝑖 = 0 for all 𝜖 ≥ 0, 

(b) lim|𝑧𝑖|→1
−  sup𝑤𝑖∈𝐷(𝑧𝑖,1+𝜖)  ∑ |⟨𝑇𝑘𝑧𝑖

(1+𝜖)
, 𝑘𝑤𝑖

(
1+𝜖

𝜖
)
⟩

𝐴2

|𝑖 = 0 for some 𝜖 ≥ 0, 

(c) lim|𝑧𝑖|→1
−  ∑ |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑧𝑖⟩𝐴2

|𝑖 = 0. 

Proof. Trivially we have that (𝑎) ⇒ (𝑏), and the fact that (𝑏) ⇒ (𝑐) follows by definition and setting 𝑧𝑖 = 𝑤𝑖. 
We will complete the proof by showing that (𝑐) ⇒ (𝑎). 

Assume to the contrary that |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑧𝑖⟩𝐴2
| vanishes as |𝑧𝑖| → 1−but that 

lim sup
|𝑧𝑖|→1

−
  sup
𝑤𝑖∈𝐷(𝑧𝑖,1+𝜖)

  |⟨𝑇𝑘𝑧𝑖
(1+𝜖)

, 𝑘𝑤𝑖
(
1+𝜖

𝜖
)
⟩

𝐴2

| ≠ 0 

for some fixed 𝜖 ≥ 0. Thus, there exists sequences {(𝑧𝑖)𝑚}, {(𝑤𝑖)𝑚} and some 0 < 𝑟0 < 1 where 

lim𝑚→∞  |(𝑧𝑖)𝑚| = 1 and |(𝑤𝑖)𝑚| ≤ 𝑟0 for any 𝑚 ∈ ℕ, and where 

lim sup
𝑚→∞

∑|⟨𝑇𝑘(𝑧𝑖)𝑚
(1+𝜖)

, 𝑘(𝑤𝑖)(𝑧𝑖)𝑚
((𝑤𝑖)𝑚)

(
1+𝜖

𝜖
)

⟩

𝐴2

|

𝑖

> 𝜖                                     (2.7) 

for some 𝜖 ≥ 0. Furthermore, passing to a subsequence if necessary, we may assume that lim𝑚→∞  (𝑤𝑖)𝑚 = 𝑤𝑖 ∈

𝔹𝑛. Note that since |(𝑤𝑖)𝑚| ≤ 𝑟0 < 1 for all 𝑚, we trivially have lim𝑚→∞  𝑘(𝑤𝑖)𝑚

(
1+𝜖

𝜖
)
= 𝑘𝑤𝑖

(
1+𝜖

𝜖
)
 where the 

convergence is in the 𝐴
(
1+𝜖

𝜖
)
 norm. 
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Let ℬ(𝐴1+𝜖) be the space of bounded operators on 𝐴1+𝜖. Since the unit ball in ℬ(𝐴1+𝜖) is WOT compact, we 

can (passing to another subsequence if necessary) assume that 

𝑇̂ = WOT − lim
𝑚→∞

 ∑𝑈(𝑧𝑖)𝑚
(1+𝜖)

𝑇 (𝑈(𝑧𝑖)𝑚

(
1+𝜖

𝜖
)
)

∗

𝑖

 

Thus, we have that 

lim sup
𝑚→∞

∑ |⟨𝑇𝑘(𝑧𝑖)𝑚
(1+𝜖)

, 𝑘
𝜑(𝑧𝑖)𝑚

((𝑤𝑖)𝑚)

(
1+𝜖

𝜖
)

⟩

𝐴2

|

𝑖

= lim sup
𝑚→∞

 ∑ |⟨𝑈(𝑧𝑖)𝑚
(1+𝜖)

𝑇 (𝑈
(𝑧𝑖)𝑚

(
1+𝜖

𝜖
)
)

∗

𝑘0
(1+𝜖)

, 𝑘
(𝑤𝑖)𝑚

(
1+𝜖

𝜖
)
⟩

𝐴2

|

𝑖

= lim sup
𝑚→∞

 ∑ |⟨𝑈(𝑧𝑖)𝑚
(1+𝜖)

𝑇 (𝑈
(𝑧𝑖)𝑚

(
1+𝜖

𝜖
)
)

∗

𝑘0
(1+𝜖)

, 𝑘𝑤𝑖
(
1+𝜖

𝜖
)
⟩

𝐴2

|

𝑖

=∑|⟨𝑇̂𝑘0, 𝑘𝑤𝑖⟩𝐴2
|

𝑖

 

However, for any 𝑧𝑖 ∈ 𝔹𝑛 

|⟨𝑇̂𝑘𝑧𝑖
(1+𝜖)

, 𝑘𝑧𝑖
(
1+𝜖

𝜖
)
⟩| = lim

𝑚→∞
 ∑ |⟨𝑈(𝑧𝑖)𝑚

(1+𝜖)
𝑇 (𝑈(𝑧𝑖)𝑚

(
1+𝜖

𝜖
)
)

∗

𝑘𝑧𝑖
(1+𝜖)

, 𝑘𝑧𝑖
(
1+𝜖

𝜖
)
⟩|

𝑖

 

                        ≈ lim
𝑚→∞

∑ |⟨𝑇𝑘𝜑(𝑧𝑖)𝑚
(𝑧𝑖)

(1+𝜖)
, 𝑘
𝜑(𝑧𝑖)𝑚

(𝑧𝑖)

(
1+𝜖

𝜖
)

⟩

𝐴2

|

𝑖

= 0 

since by assumption |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑧𝑖⟩| vanishes as |𝑧𝑖| → 1−. Thus, since the Berezin transform is injective on 𝐴1+𝜖, 

we get that 𝑇̂ = 0, which contradicts (2.7) and completes the proof. 

 

III. Generalized Bargmann-Fock Space Case 
We will prove Theorems 1.2 and 1.3. Some parts of the proofs are essentially identical to proof of Theorem 1.5 

and so we will we only outline the necessary modifications. 

For this section, let 

𝐷(𝑧𝑖 , 1 + 𝜖): = {𝑤𝑖 ∈ ℂ
𝑛: |𝑤𝑖 − 𝑧𝑖| < 1 + 𝜖} 

denote the standard Euclidean disc centered at the point 𝑧𝑖 of radius 𝜖 ≥ −1. For 𝑧𝑖 ∈ ℂ
𝑛, we define 

𝑈𝑧𝑖𝑓𝑖(𝑤𝑖): = 𝑓𝑖(𝑧𝑖 − 𝑤𝑖)𝑘𝑧𝑖(𝑤𝑖) 

which via a simple change of variables argument is clearly an isometry on ℱ1+𝜖 (though note in general that it is 

not clear whether 𝑈𝑧𝑖 even maps ℱ𝜙𝑖
1+𝜖 into itself). Recall also that the orthogonal projection of 𝐿2(ℂ𝑛 , 𝑒−2𝜙𝑖𝑑𝑣) 

onto ℱ𝜙𝑖
2  is given by the integral operator 

𝑃(𝑓𝑖)(𝑧𝑖): = ∫  
ℂ𝑛
∑⟨𝐾𝑤𝑖 , 𝐾𝑧𝑖⟩ℱ𝜙𝑖

2 𝑓𝑖(𝑤𝑖)𝑒
−2𝜙𝑖(𝑤𝑖)𝑑𝑣

𝑖

 

Therefore, for all 𝑓𝑖 ∈ ℱ𝜙𝑖
1+𝜖 we have 

𝑓𝑖(𝑧𝑖) = ∫  
ℂ𝑛
 ∑⟨𝑓𝑖, 𝑘𝑤𝑖

̃ ⟩
ℱ𝜙𝑖
2 𝑘𝑤𝑖
̃ (𝑧𝑖)𝑑𝑣(𝑤𝑖).

𝑖

                                      (3.1) 

where 𝑘𝑤𝑖
̃ (𝑧𝑖): = 𝐾𝑤𝑖(𝑧𝑖)𝑒

−𝜙𝑖(𝑤𝑖). Note that |𝐾(𝑧𝑖 , 𝑧𝑖)| ≈ 𝑒
2𝜙𝑖(𝑧𝑖) (see [8]) so that 

|𝑘𝑤𝑖
̃ (𝑧𝑖)| ≈ |𝑘𝑤𝑖(𝑧𝑖)|.                                                             (3.2) 

The following analog of Lemma 2.1 is simpler to prove in this case. 

Lemma 3.1 [13]. 

lim
𝑅→∞

  sup
𝑧𝑖∈ℂ

𝑛
 ∫  
𝐷(𝑧𝑖,𝑅)

𝑐
∑ |⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑤𝑖)

𝑖

= 0.                                     (3.3) 

To prove this, simply note that there exists 𝜖 > 0 such that ∑ |⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖
2 |𝑖 ≤ ∑ 𝑒−𝜖|𝑧𝑖−𝑤𝑖|𝑖  for all 𝑧𝑖 , 𝑤𝑖 ∈ ℂ

𝑛. 

The proof of this is then immediate since 

∫  
𝐷(𝑧𝑖,𝑅)

𝑐
∑|⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑤𝑖)

𝑖

≤ ∫  
𝐷(0,𝑅)𝑐

∑𝑒−𝜖|𝑤𝑖|𝑑𝑣(𝑤𝑖)

𝑖

 

which clearly goes to zero as 𝑅 → ∞. 

As in the Bergman case, 𝒜𝜙𝑖
(ℂ𝑛) contains all Toeplitz operators with bounded symbols. Also, as was stated in 

the introduction, any 𝑇 ∈ 𝒜𝜙𝑖
(ℂ𝑛) is automatically bounded on ℱ𝜙𝑖

1+𝜖 for all 0 ≤ 𝜖 ≤ ∞. To prove this, note 

that it is enough to prove that 𝑇 is bounded on ℱ𝜙𝑖
1  and ℱ𝜙𝑖

∞  by complex interpolation (see [5]). To that end, we 
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only prove that 𝑇 is bounded on ℱ𝜙𝑖
1  since the proof that 𝑇 is bounded on ℱ𝜙𝑖

∞  is similar. If 𝑇 ∈ 𝒜𝜙𝑖
(ℂ𝑛) and 

𝑓𝑖 ∈ ℱ𝜙𝑖
1 , then the reproducing property gives us that 

|𝑇𝑓𝑖(𝑧𝑖)|𝑒
−𝜙𝑖(𝑧𝑖)≈ |⟨𝑓𝑖 , 𝑇

∗𝑘𝑧𝑖⟩ℱ𝜙𝑖
2 |

≲ ∫  
ℂ𝑛
 ∑ |𝑓𝑖(𝑢)| |⟨𝑇

∗𝑘𝑧𝑖 , 𝑘𝑢⟩ℱ𝜙𝑖
2 | 𝑒

−𝜙𝑖(𝑢)𝑑𝑣(𝑢)

𝑖

 

Thus, by Fubini's theorem, we have that 

‖∑𝑇𝑓𝑖
𝑖

‖ℱ𝜙𝑖
1 ≤ ∫  

ℂ𝑛
∑|𝑓𝑖(𝑢)| (∫  

ℂ𝑛
  |⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑢⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑧𝑖)) 𝑒
−𝜙𝑖(𝑢)𝑑𝑣(𝑢)

𝑖

≲∑‖𝑓𝑖‖ℱ𝜙𝑖
1

𝑖

 

In addition, 𝒜𝜙𝑖
(ℂ𝑛) satisfies the following two properties: 

Proposition 3.2 (see [13]). Each Toeplitz operator 𝑇𝑢 on ℱ𝜙𝑖
1+𝜖 with a bounded symbol 𝑢(𝑧𝑖) is weakly 

localized. 

Proof. Since ∑ |⟨𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖
2 |𝑖 ≤ ∑ 𝑒−𝜖|𝑧𝑖−𝑤𝑖|𝑖  for some 𝜖 > 0 we have that 

∑|⟨𝑇𝑢𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖
2 |

𝑖

≲ ‖𝑢‖𝐿∞∫  
ℂ𝑛
∑ |⟨𝑘𝑧𝑖 , 𝑘𝑥𝑖⟩ℱ𝜙𝑖

2 | |⟨𝑘𝑥𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖
2 | 𝑑𝑥𝑖

𝑖

≲ ‖𝑢‖𝐿∞∫  
ℂ𝑛
∑ 𝑒−𝜖|𝑧𝑖−𝑥𝑖|𝑒−𝜖|𝑥𝑖−𝑤𝑖|𝑑𝑥𝑖
𝑖

 

Now if |𝑧𝑖 −𝑤𝑖| ≥ 1 + 𝜖 then by the triangle inequality we have that either |𝑧𝑖 − 𝑥𝑖| ≥
1+𝜖

2
 or |𝑥𝑖 − 𝑤𝑖| ≥

1+𝜖

2
 

so that 

∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
|⟨𝑇𝑢𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑤𝑖 

≲ 𝑒−
𝜖(1+𝜖)

2 ‖𝑢‖𝐿∞∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑∫  

ℂ𝑛
𝑒−

𝜖

2
|𝑧𝑖−𝑥𝑖|𝑒−

𝜖

2
|𝑥𝑖−𝑤𝑖|𝑑𝑥𝑖𝑑𝑤𝑖

𝑖

≲ 𝑒−
𝜖(1+𝜖)

2 ‖𝑢‖𝐿∞ 

Note that 𝑇𝑢 is sufficiently localized even in the sense of Xia and Zheng by [10, Proposition 4.1]. Also note that 

a slight variation of the above argument shows that the Toeplitz operator 𝑇𝜇 ∈ 𝒜𝜙𝑖
(ℂ𝑛) if 𝜇 is a positive Fock-

Carleson measure on ℂ𝑛 (see [8] for precise definitions). 

Proposition 3.3.𝒜𝜙𝑖
(ℂ𝑛) forms 𝑎 ∗-algebra. 

We will omit the proof of this proposition since it is proved in exactly the same way as it is in the Bergman 

space case (where the only difference is that one uses (3.1) in conjunction with (3.2) instead of (2.2)). 

We next prove that operators in the norm closure of 𝒜𝜙𝑖
(ℂ𝑛) can also be approximated by infinite sums of well 

localized pieces. To state this property we need to recall the following proposition proved in [6] 

Proposition 3.4. There exists an integer 𝑁 > 0 such that for any 𝑟 > 0 there is a covering ℱ𝑟 = {𝐹𝑗} of ℂ𝑛 by 

disjoint Borel sets satisfying 

(1) every point of ℂ𝑛 belongs to at most 𝑁 of the sets 𝐺𝑗: = {𝑧𝑖 ∈ ℂ
𝑛: 𝑑(𝑧𝑖 , 𝐹𝑗) ≤ 𝑟}, 

(2) diam𝑑𝐹𝑗 ≤ 2𝑟 for every 𝑗. 

We use this to prove the following proposition, which is similar to what appears in [6], but exploits condition 

(1.4) (and is proved in a manner that is similar to the proof of [5, Lemma 5.2]). Note that for the rest of this 

paper, 𝐿𝜙𝑖
1+𝜖 will refer to the space of measurable functions 𝑓𝑖 on ℂ𝑛 such that 𝑓𝑖𝑒

−𝜙𝑖 ∈ 𝐿1+𝜖(ℂ𝑛 , 𝑑𝑣). 

Proposition 3.5 (see [13]). Let 0 < 𝜖 < ∞ and let 𝑇 be in the norm closure of 𝒜𝜙𝑖
(ℂ𝑛). Then for every 𝜖 > 0 

there exists 𝑟 > 0 such that for the covering ℱ𝑟 = {𝐹𝑗} (associated to 𝑟) from Proposition 3.4 

‖𝑇𝑃 −∑  

𝑗

 𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

‖

ℱ𝜙𝑖
1+𝜖→𝐿𝜙𝑖

1+𝜖

< 𝜖 

Proof. Again by an easy approximation argument we can assume that 𝑇 ∈ 𝒜𝜙𝑖
(ℂ𝑛).  

Furthermore, we first prove the theorem for 𝜖 = 1. 

Define 

𝑆 = 𝑇𝑃 −∑  

𝑗

𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

 

Given 𝜖 choose 𝑟 large enough so that 
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sup
𝑧𝑖∈ℂ

𝑛
 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑|⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑤𝑖)

𝑖

< 𝜖 and sup
𝑧𝑖∈ℂ

𝑛
 ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
∑|⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑤𝑖)

𝑖

< 𝜖 

Now for any 𝑧𝑖 ∈ ℂ
𝑛, pick 𝑗0 such that 𝑧𝑖 ∈ 𝐹𝑗0 . Then we have that 

|𝑆𝑓𝑖(𝑧𝑖)|≤ ∫  
ℂ𝑛
 ∑  

𝑗

 ∑1𝐹𝑗(𝑧𝑖)1𝐺𝑗
𝑐(𝑤𝑖) |⟨𝑇

∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩ℱ𝜙𝑖
2 |

𝑖

𝑓𝑖(𝑤𝑖) ∣ 𝑒
−2𝜙𝑖(𝑤𝑖)𝑑𝑣(𝑤𝑖)

= ∫  
𝐺𝑗0
𝑐
 ∑ |⟨𝑇∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩ℱ𝜙𝑖

2 | |𝑓𝑖(𝑤𝑖)|𝑒
−2𝜙𝑖(𝑤𝑖)𝑑𝑣(𝑤𝑖)

𝑖

≤ ∫  
𝐷(𝑧𝑖,1+𝜖)

𝑐
 ∑ |⟨𝑇∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩ℱ𝜙𝑖

2 | |𝑓𝑖(𝑤𝑖)|𝑒
−2𝜙𝑖(𝑤𝑖)𝑑𝑣(𝑤𝑖)

𝑖

 

To finish the proof when 𝜖 = 1, we will estimate the operator norm of the integral operator on 𝐿𝜙𝑖
2  with kernel 

1𝐷(𝑧𝑖,1+𝜖)𝑐(𝑤𝑖) |⟨𝑇
∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩ℱ𝜙𝑖

2 | using the classical Schur test. To that end, let ℎ(𝑧𝑖) = 𝑒
1

2
𝜙𝑖(𝑧𝑖) so that 

∫∑1𝐷(𝑧𝑖,1+𝜖)𝑐(𝑤𝑖) |⟨𝑇
∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩ℱ𝜙𝑖

2 | ℎ(𝑤𝑖)
2𝑒−2𝜙𝑖(𝑤𝑖)𝑑𝑣(𝑤𝑖)

𝑖ℂ𝑛

                   

≈ ∑ℎ(𝑧𝑖)
2 ∫  |⟨𝑇∗𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖

2 | 𝑑𝑣(𝑤𝑖)

𝐷(𝑧𝑖,1+𝜖)
𝑐𝑖

≲ 𝜖ℎ(𝑧𝑖)
2. 

Similarly, we have that 

∫  
ℂ𝑛
∑1𝐷(𝑧𝑖,1+𝜖)𝑐(𝑤𝑖) |⟨𝑇

∗𝐾𝑧𝑖 , 𝐾𝑤𝑖⟩ℱ𝜙𝑖
2 | ℎ(𝑧𝑖)

2𝑒−2𝜙𝑖(𝑧𝑖)𝑑𝑣(𝑧𝑖)

𝑖

≲ 𝜖ℎ(𝑤𝑖)
2 

which finishes the proof when 𝜖 = 1. 

Now assume that 0 < 𝜖 < 1. Since 𝑇 is bounded on ℱ𝜙𝑖
1 , we easily get that 

‖∑  

𝑗

 𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

‖

ℱ𝜙𝑖
1 →𝐿𝜙𝑖

1

< ∞ 

which by complex interpolation proves the proposition when 0 < 𝜖 < 1. Finally when 0 < 𝜖 < ∞, one can 

similarly get a trivial 𝐿𝜙𝑖
1 → ℱ𝜙𝑖

1  operator norm bound on 

(∑  

𝑗

 𝑀1𝐹𝑗
𝑇𝑃𝑀1𝐺𝑗

)

∗

=∑  

𝑗

𝑃𝑀1𝐺𝑗
𝑇∗𝑃𝑀1𝐹𝑗

 

since 𝑇∗ is bounded on ℱ𝜙𝑖
1 . Since (ℱ𝜙𝑖

1+𝜖)
∗
= ℱ𝜙𝑖

𝑞
 when 0 < 𝜖 < ∞ where 𝑞 is the conjugate exponent of 1 + 𝜖 

(see [8]), duality and complex interpolation now proves the proposition when 0 < 𝜖 < ∞. 

Because of (3.2), the proof of the next result is basically the same as the proof of Theorem 2.6 and therefore we 

skip it. 

Theorem 3.6. Let 0 < 𝜖 < ∞ and let 𝑇 be in the norm closure of 𝒜𝜙𝑖
(ℂ𝑛). Then there exists 𝜖 ≥ 0 (both 

depending on 𝑇) such that 

‖𝑇‖𝑒 ≤ (1 + 𝜖)lim sup
|𝑧𝑖|→∞

  sup
𝑤𝑖∈𝐷(𝑧𝑖,1+𝜖)

∑ |⟨𝑇𝑘𝑧𝑖 , 𝑘𝑤𝑖⟩ℱ𝜙𝑖
2 |

𝑖

 

where ‖𝑇‖𝑒 is the essential norm of 𝑇 as a bounded operator on ℱ𝜙𝑖
1+𝜖. 

As was stated in the beginning of this section, the operator 𝑈𝑧𝑖  for 𝑧𝑖 ∈ ℂ
𝑛 is an isometry on ℱ1+𝜖. Furthermore, 

since a direct calculation shows that 

|𝑈𝑧𝑖𝑘𝑤𝑖(𝑢)| ≈ |𝑘𝑧𝑖−𝑤𝑖(𝑢)| 

the proof of Theorem 1.3 now follows immediately by combining Theorem 3.6 with [5, Proposition 1.4]. 
 

IV. Concluding Remarks 
The following interested and important persisted remarks are mentioned and self competent in [13]: 

(a) notice that the proof of Theorem 2.6 did not in any way use the existence of a family of "translation" 

operators {𝑈𝑧𝑖
(1+𝜖)

}
𝑧𝑖∈𝔹𝑛

 on 𝐴1+𝜖 that satisfies 

|(𝑈𝑧𝑖
(1+𝜖)

)
∗
𝑘𝑤𝑖
((1+𝜖)′)

| ≈ |𝑘(𝜙𝑖)𝑧𝑖(𝑤𝑖)
((1+𝜖)′)

| .                                                      (4.1) 
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(Hence, one can make a similar remark regarding Theorem 3.6). 

(b) A trivial application of Hölder's inequality in conjunction with (a) implies that one can prove the so called 

"reproducing kernel thesis" for operators in the norm closure of 𝒜1+𝜖(𝔹𝑛) (respectively, 𝒜𝜙𝑖
(ℂ𝑛)) without the 

use of any "translation" operators. 

(c) It would therefore be interesting to know if our results can be proved for the weighted Bergman spaces on 

the ball that were considered in [3] for example. 

(d) It would be interesting to know whether one can use the valid and verified ideas here to modify the results in 

[6] to include spaces where condition A. 5 on the space of holomorphic functions at hand is not necessarily true 

(where it is precisely this condition that allows to cook up "translation operators"). 

(e) It would also be very interesting to know whether "translation" operators are in fact crucial for proving 

Proposition 2.7 and its generalized Bargmann-Fock space analog (see [5, Proposition 1.4]). 

(f) It would be fascinating to know precisely how these translation operators fit into the "Berezin transform 

implies compactness" philosophy?. 

(g) As was noted, the techniques in [10] are essentially frame theoretic, and therefore are rather different than 

the techniques used here. 

(h) The aspects of [10] involves a localization result somewhat similar in spirit to Proposition 3.5 and which 

essentially involves treating a "sufficiently localized" operator 𝑇 as a sort of matrix with respect to the frame 

{𝑘𝜎}𝜎∈ℤ2𝑛 for ℱ2. 

(k) Also, note that the techniques in [10] were extended in [5] to the generalized Bargmann-Fock space setting 

to obtain results for ℱ𝜙𝑖
2  that are similar to (some sense) the results obtained here. 

(l) Because of these considerable differences in localization schemes, it would be interesting to know if one can 

combine the localization ideas from this paper with that of [5,10] to obtain new or sharper results on ℱ𝜙𝑖
2  (or 

new or sharper results on ℱ2). 
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