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measures outlined in this communication include certain well-known measures that are specific instances of our 

suggested measures that are already present in the literature on useful information theory. 
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I. INTRODUCTION 
Early in the 20th century, as the communications sector grew, a number of researchers looked into the 

information control of signals. Shannon's 1948 work, which was based on works by Nyquists [13, 14] and 

Hartley [7], clarified these early attempts into a logical mathematical theory of communication and established 

the field of study that is now known as information theory. The engineering challenge of information 

transmission across a noisy channel is the main concept of classical information theory. Shannon's noisy-

channel coding theorem, which asserts that dependable communication can be performed over noisy channels as 

long as the communication rate falls below a specific threshold, known as the channel capacity. The crucial area 

of coding theory is one of the many deep and wide-ranging applications of information theory, which is a 

mathematical theory. A recent development in probability and statistics, information theory has a wide range of 

possible uses in communication systems. There isn't a single definition for the word information theory. This 

covers a number of useful and affordable techniques for encoding data for transmission as well as the study of 

uncertainty (information) measures. Information measurements are known to be crucial for real-world 

information processing applications. A statistical framework based on information entropy, which Shannon [16] 

established as a measure of information, offers a general method for reviewing information. Additionally to 

satisfying some desirable axiomatic constraints, the Shannon entropy can be given operational relevance in 

significant real-world issues, such as coding and telecommunication. The challenge of efficiently coding 

messages to be delivered over a noiseless channel, where our goal is to maximise the number of messages that 

can be sent across a channel in a given time, is typically encountered in coding theory.  

This paper discusses the relationship between a new parametric generalised useful information measure  

𝐻𝛼(𝑃, 𝑈) and a new  parametric generalised useful average code-word length  𝐿𝛼(𝑃, 𝑈). For a discrete noiseless 

channel, the lower and upper bounds of  𝐿𝛼(𝑃, 𝑈) in terms of 𝐻𝛼(𝑃, 𝑈) are determined. 

 

II. BASIC CONCEPTS 
Let 𝑋 be a finite source or finite discrete random variable that takes values  𝑥1, 𝑥2, … … . . , 𝑥𝑛  with corresponding 

probability 𝑃 = (𝑝1 , 𝑝2, … . … , 𝑝𝑛), 𝑝𝑖 ≥ 0 ∀𝑖 = 1,2, … … . . , 𝑛 and ∑ 𝑝𝑖
𝑛
𝑖=1 = 1 .Shannon [16] defines entropy as 

the following informational metric. 

 

                                                            𝐻(𝑃) = − ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖
𝑛
𝑖=1                                                          (2.1) 

http://www.questjournals.org/
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One suitable way to measure entropy is with (2.1). Assume that 𝑝1, 𝑝2, … , 𝑝𝑛 represents the probability that n 

codewords will be sent and that their lengths 𝑙1, 𝑙2, … , 𝑙𝑛 meet the Kraft [9] inequality. 

      

                                                                     ∑ 𝐷−𝑙𝑖  ≤ 1𝑛
𝑖=1                                                                (2.2) 

Shannon [16] established for uniquely decipherable codes [20, 21] that for all codes meeting (2.2), the lower 

bound of the mean codeword length, 

      

                                                                   𝐿(𝑃) = ∑ 𝑝𝑖𝑙𝑖
𝑛
𝑖=1                                                              (2.3) 

 

includes D, the size of the coding alphabet, and lies between H(P) and H(P)+1. 

 

For this method, Belis and Guiasu [1] proposed the following quantitative-qualitative information measure. We 

refer to  

                      

                                                          𝐻(𝑃, 𝑈) = − ∑ 𝑢𝑖𝑝𝑖𝑙𝑜𝑔𝑝𝑖
𝑛
𝑖=1                                                    (2.5) 

 

as "useful" entropy. The measurement (2.5) can be regarded as sufficiant metric for the typical amount of 

"valuable" or "useful" data. the Kraft’s inequality (2.2), they introduced the following quantity 

 

                                                                 𝐿(𝑃, 𝑈) =
∑ 𝑢𝑖𝑝𝑖𝑙𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

                                                           (2.6) 

 

and say it as the code's "useful" mean length. They also came up with a lower bound [22, 23, 25] for (2.6). 

Longo [10], however, provided some useful explanations of this length and characterised (2.6) as the average 

transmission cost of the letters with probability and usefulness. He also calculated constraints for the cost 

function (2.6) in terms of (2.5). 

 

III. PARAMETRIC INFORMATION GENERATING FUNCTION 
 

Along with Golomb [5], Verma [19, 24] also gave the idea of an information generating function of a 

probability distribution for Kullback-Leiblers's measure of relative information and Shannon's [15] measure of 

entropy. The information generating function was defined by Golomb [5] as 

 

                                                       𝐼(𝑡) = − ∑ 𝑝𝑖
𝑡 ,   𝑡 ≥ 1𝑖∈𝑁                                                             (3.1) 

where t is a real or complex variable, N is a discrete sample space, and {𝑝𝑖} is a full probability distribution with  

𝑖 ∈ 𝑁. Additionally, it should be mentioned that 

 

                                                 
𝜕𝐼(𝑡)

𝜕𝑡
= 𝐻(𝑃) = − ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖𝑖∈𝑁                                                         (3.2) 

  

where {𝑝𝑖} is the probability associated with the occurrences {Ei}, and H (P) is a Shannon's entropy [15]. The 

relative information of the events is not taken into consideration by the quantity (3.2), which measures average 

information. Guiasu and Belis [1] proposed the measure of  helpful details 

 

                                                  𝐻(𝑃, 𝑈) = − ∑ 𝑢𝑖𝑝𝑖𝑙𝑜𝑔𝑝𝑖𝑖∈𝑁                                                            (3.3) 

 

where 𝑢𝑖 > 0 is the utility associated with the 𝑖𝑡ℎ event that occurs with probability  𝑝𝑖, and  {𝑢𝑖}is the utility 

distribution. 

 

Hooda and Bhakar [8] described the following "useful information measures" using mean values: 

 

                                                   𝐻(𝑃, 𝑈) = − ∑
𝑢𝑖𝑝𝑖𝑙𝑜𝑔𝑝𝑖

𝑢𝑖𝑝𝑖
𝑖∈𝑁                                                           (3.4) 

and 

                                                 𝐻𝛼(𝑃, 𝑈) =
1

1−𝛼
log ∑

𝑢𝑖𝑝𝑖
𝛼

𝑢𝑖𝑝𝑖
𝑖∈𝑁                                                         (3.4.1) 

 

The following "useful" information measures have been characterised with new mean values: 

 

                          𝐻𝛼(𝑃, 𝑈) =
1

1−𝛼
log[∑ 𝑢𝑖𝑝𝑖

𝛼
𝑖∈𝑁 ∑ 𝑢𝑖𝑝𝑖]𝑖∈𝑁⁄                                             (3.4.2)     
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Additionally, Mahajan and Kumar [11] defined a useful information-generating function as follows: 

                               I(P, U, t) = −
∑ (𝑢𝑖𝑝𝑖)𝑡

𝒊∈𝑵
∑ 𝑢𝑖𝑝𝑖𝑖∈𝑁

⁄                                                     (3.5) 

where t is a real or complex variable and  𝑃 = {𝑝1, 𝑝2, … . , 𝑝𝑛} and 𝑈 = {𝑢1, 𝑢2, … . . , 𝑢𝑛} are the probability and 

utility distributions, respectively. In these section, they examined the characteristics of (3.5) and determined the 

information-generating function for a certain probability distribution. 

 

Assume that, based on an experiment with utility distribution 𝑈 = {(𝑢1, 𝑢2, 𝑢3, … … . , 𝑢𝑛): 𝑢𝑖 > 0∀𝑖}, where N 

is a discrete sample space, 𝑃 = {(𝑝1, 𝑝2, … . . , 𝑝𝑛), 0 ≤ 𝑝𝑖 ≤ 1, ∑ 𝑝𝑖 = 1𝑛
𝑖=1 } is a discrete probability distribution 

of a set of events 𝐸 = {𝐸1, 𝐸2, … . , 𝐸𝑛} of a discrete infinite sample space N. 

 

We recognise that the following gives the weighted mean of 𝑢𝑖  𝑎𝑛𝑑 𝑃𝑖: 

           

                                                                   
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

∑ 𝑢𝑖
𝑛
𝑖−1

                                                                             (3.6) 

 

We obtain a new weighted mean of order 1 − 𝛼 as follows if we replace  𝑢𝑖 with weights (𝑢𝑖𝑝𝑖)𝛽𝑖  and  𝑝𝑖  of 

order 𝛼 − 1. 

𝑀𝛼,𝛽(𝑃, 𝑈) = [
∑ (𝑢𝑖𝑝𝑖)𝛽𝑖𝑛

𝑖=1 𝑝𝑖
𝛼−1

∑ (𝑢𝑖𝑝𝑖)𝛽𝑖𝑛
𝑖=1

⁄ ]

1
𝛼−1

 

               𝑀𝛼,𝛽(𝑃, 𝑈) = [
∑ 𝑢𝑖

𝛽𝑖𝑛
𝑖=1 𝑝𝑖

𝛼+𝛽𝑖−1

∑ (𝑢𝑖𝑝𝑖)𝛽𝑖𝑛
𝑖=1

⁄ ]

1

𝛼−1

;  𝛼 ≥ 0, 𝛼 ≠ 1, 𝛽𝑖 ≥ 1                    (3.7) 

The generalised useful information generating function for this is provided by 

 

                                               𝐼𝛼,𝛽(𝑃, 𝑈, 𝑡) = [𝑀𝛼,𝛽𝑖
(𝑃, 𝑈)]−𝑡  

From (3.7) we get, 

                                𝐼𝛼,𝛽(𝑃, 𝑈, 𝑡) = [
∑ 𝑢𝑖

𝛽𝑖𝑛
𝑖=1 𝑝𝑖

𝛼+𝛽𝑖−1

∑ (𝑢𝑖𝑝𝑖)
𝛽𝑖𝑛

𝑖=1
⁄ ]

−𝑡

𝛼−1

                                      (3.8) 

in which t is a complex or real variable. 

 

When we differentiate equation (3.8) with regard to t at t=0, respectively, we obtain 

 

                               𝐻𝛼
𝛽𝑖(𝑃, 𝑈) =

1

1−𝛼
log [

∑ 𝑢𝑖
𝛽𝑖𝑛

𝑖=1 𝑝𝑖
𝛼+𝛽𝑖−1

∑ (𝑢𝑖𝑝𝑖)𝛽𝑖 𝑛
𝑖=1

⁄ ]                                     (3.9) 

 

This is the type 𝛽𝑖 and order  𝛼 generalised useful information measure. 

 

IV. Our Main Work  
 

We define a two parametric new generalized useful information measure in equation (3.9) 

 

𝐻𝛼
𝛽(𝑃, 𝑈) =

1

1−𝛼
log [

∑ 𝑢𝑖
𝛽𝑛

𝑖=1 𝑝𝑖
𝛼+𝛽−1

∑ (𝑢𝑖𝑝𝑖)𝛽 𝑛
𝑖=1

⁄ ]                                               (4.1) 

 

where  0 < 𝛼 < 1, 𝛽𝑖 ≥ 1  

 

If  𝛽 = 1 then the equation (4.1) reduce to 

 

𝐻𝛼(𝑃, 𝑈) =
1

1−𝛼
log [

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1
∑ (𝑢𝑖𝑝𝑖)

𝑛
𝑖=1

⁄ ]                                                                (4.2) 

 

Particular Cases: 

 

(I) When 𝛽 = 1, 𝑢𝑖 = 12, … . , 𝑛 𝑎𝑛𝑑 ∑ 𝑝𝑖 = 1𝑛
𝑖=1  then the equation (4.1) reduce to 

 

𝐻𝛼(𝑃, 𝑈) =
1

1−𝛼
log[∑ 𝑝𝑖

𝛼𝑛
𝑖=1 ]                                                     (4.3) 
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This is the Reyni’s [15] entropy. 

 

(II) When 𝛽 = 1 𝑎𝑛𝑑 𝛼 → 1 then the equation (4.1) reduce to 

 

𝐻(𝑃, 𝑈) = −
∑ 𝑢𝑖𝑝𝑖 log 𝑝𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

                                                         (4.4) 

This is‘useful’ information measure for the incomplete distribution due to Bhakar and Hooda [2]. 

 

(III) When 𝛽 = 1, 𝑢𝑖 = 12, … . , 𝑛 , ∑ 𝑝𝑖 = 1 𝑎𝑛𝑑 𝛼 → 1𝑛
𝑖=1  then the equation (4.1) reduce to 

𝐻(𝑃) = − ∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1                                                                      (4.5) 

This is the Shannon’s entropy [16]. 

 

(IV) When 𝛼 → 1  then the measure (4.1) is reduce to useful information measure for the incomplete power 

distribution  𝑝𝛽 due to Sharma, Man Mohan, and Mitter [17]. i.e, 

𝐻𝛽(𝑃, 𝑈) = −
∑ (𝑢𝑖𝑝𝑖)𝛽 log 𝑝𝑖

𝛽𝑛
𝑖=1

∑ (𝑢𝑖𝑝𝑖)𝛽𝑛
𝑖=1

                                                         (4.6) 

 

(V) When 𝛼 → 1 , 𝑢𝑖 = 1, ∀𝑖 = 1,2, . . , 𝑛 𝑖. 𝑒, when utility aspect is ignored, then the equation (4.1) reduce 

to measure 

 

𝐻𝛽(𝑃) = −
∑ 𝑝𝑖

𝛽 log 𝑝𝑖
𝛽𝑛

𝑖=1

∑ 𝑝𝑖
𝛽𝑛

𝑖=1

                                                                         (4.7) 

This is a measure of incomplete power probability distribution due to Mitter and Mathur  [12]. 

 

 

       V. PARAMETRIC NEW GENERALISED USEFUL AVERAGE CODE-WORD LENGTH   

 

Assume a prefix code such that 

𝑝𝑖 = 𝐷−𝑙𝑖 ⇒ 𝑙𝑖 = − log𝐷 𝑝𝑖  

Then we get 

𝑝𝑖
𝛼 = 𝐷−𝛼𝑙𝑖  

Substituting in  (4.2) 

                                  𝐻𝛼(𝑃, 𝑈) =
1

1−𝛼
[log𝐷(∑ 𝑢𝑖𝐷

−𝛼𝑙𝑖𝑛
𝑖=1 ) − log𝐷(∑ 𝑢𝑖𝐷

−𝑙𝑖𝑛
𝑖=1 )]  

Now, define a new function for generalized useful average codeword length 

 

𝐿𝛼
𝛽

=
𝛼

1−𝛼
[log𝐷 (

∑ 𝑢𝑖𝐷
−𝑙𝑖(

𝛼−1
𝛼 )𝑛

𝑖=1

∑ 𝑢𝑛
𝑖=1 𝑖

)]  

 

𝐿𝛼
𝛽

=
𝛼

1−𝛼
[log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛽

𝐷
−𝑙𝑖(

𝛼−1
𝛼 )𝑛

𝑖=1

∑ 𝑢𝑛
𝑖=1 𝑖

𝑝
𝑖
𝛽 )]                                            (5.1) 

 

 Remarks for (5.1) 

 

(I) When 𝛽 = 1 then the equation (5.1) reduce to the equation 

 

𝐿𝛼(𝑃, 𝑈) =
𝛼

1−𝛼
[log𝐷 (

∑ 𝑢𝑖𝑝𝑖𝐷
−𝑙𝑖(

𝛼−1
𝛼 )𝑛

𝑖=1

∑ 𝑢𝑛
𝑖=1 𝑖

𝑝𝑖
)]                                                        (5.2) 

This is‘useful’ average codeword length according to Taneja, Hooda, and Tuteja [18]. 

 

 

(II) When 𝛽 = 1, 𝑢𝑖 = 1 ∀1,2, … . , 𝑛 𝑎𝑛𝑑 ∑ 𝑝𝑖 = 1𝑛
𝑖=1  then from the equation (5.1) reduce to   

 

𝐿𝛼(𝑃) =
𝛼

1−𝛼
log𝐷 [∑ 𝑝𝑖𝐷−𝑙𝑖(

𝛼−1

𝛼
)𝑛

𝑖=1 ]                                        (5.3) 

 

This is exponentiated mean codeword length according to Campbell [4] entropy. 
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(III) When 𝛽 = 1 𝑎𝑛𝑑 𝛼 → 1 then from the equation (5.1) reduce to 

 

𝐿(𝑃, 𝑈) =
∑ 𝑢𝑖𝑝𝑖𝑙𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

                                                     (5.4) 

 

This is ‘useful’ codeword length according to Guiasu and Picard [6]. 

 

(IV) When  𝛽 = 1, 𝑢𝑖 = 1, ∀1,2, … . , 𝑛 , ∑ 𝑝𝑖 = 1 𝑎𝑛𝑑  𝛼 → 1𝑛
𝑖=1  then from (5.1) reduce to 

  

  𝐿(𝑃) = ∑ 𝑝𝑖𝑙𝑖
𝑛
𝑖=1                                                         (5.5) 

 

This is optimal codeword length defined by Shannon [16].  

 

Now we derive the lower and upper bound of (5.1) in terms of (4.2) under the condition 

 
∑ 𝑢𝑖𝐷−𝑙𝑖𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

≤ 1                                                           (5.6) 

 

It is simple to see that when 𝛽 = 1, 𝑢𝑖 = 1, ∀𝑖 = 1,2, … , 𝑛.  that is, when the utility aspect disappears and  

∑ 𝑝𝑖 = 1𝑛
𝑖=1  , then the inequality (5.6) reduces to Kraft's [9] inequality (2.2). A code that satisfies (5.6) would be 

referred to as a "useful" personal probability code. 

 

Theorem 5.1 If the inequality (5.6) is satisfied by {𝑢𝑖}𝑖=1
𝑛  , {𝑝𝑖}𝑖=1

𝑛  𝑎𝑛𝑑 {𝑙𝑖}𝑖=1
𝑛  then the parametric generalised 

"useful" code-word lengths (5.1) also satisfy the inequality 

                                                           𝐿𝛼(𝑃, 𝑈) ≥ 𝐻𝛼(𝑃, 𝑈),  0 < 𝛼 < 1.                                         (5.7) 

          

Where 𝐻𝛼(𝑃, 𝑈)and  𝐿𝛼(𝑃, 𝑈) are defined in (4.2) and (5.2) respectively. Furthermore, equality holds good if  

𝑙𝑖 = − log𝐷 [
𝑝𝑖

𝛼

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

]                                                            (5.8) 

Proof: By Holder’s Inequality, we have 

(∑ 𝑥𝑖
𝑝𝑛

𝑖=1 )
1

𝑝(∑ 𝑦𝑖
𝑞𝑛

𝑖=1 )
1

𝑞 ≤ ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1                                                 (5.9) 

∀𝑥𝑖 , 𝑦𝑖 > 0, 𝑖 = 1,2,3, … , 𝑛 𝑎𝑛𝑑 
1

𝑝
+

1

𝑞
= 1, 𝑝 < 1(≠ 0), 𝑞 < 0 𝑜𝑟 𝑞 < 1(≠ 0), 𝑝 < 0. 

We see that if a positive constant c exists such that  

                     𝑥𝑖
𝑝

= 𝑐𝑦𝑖
𝑞
                                                             (5.10)  

then the equality holds. 

 

Making the substitution  

𝑥𝑖 =
𝑢

𝑖

𝛼
𝛼−1𝑝

𝑖

𝛼
𝛼−1

(∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1 )

𝛼
𝛼−1

 𝐷−𝑙𝑖 ,   𝑝 =
𝛼 − 1

𝛼
 

𝑦𝑖 =
𝑢

𝑖

1
1−𝛼𝑝

𝑖

𝛼
1−𝛼

(∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1 )

1
1−𝛼

             &   𝑞 = 1 − 𝛼 

Putting the value of 𝑥𝑖𝑎𝑛𝑑 𝑦𝑖  in equation (5.6) and after suitable simplification,we get 

 

(
∑ 𝑢𝑖𝑝𝑖𝐷

−𝑙𝑖(
𝛼−1

𝛼 )𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)

𝛼

𝛼−1

(
∑ 𝑢𝑖𝑝𝑖

𝛼𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)

1

1−𝛼
≤

∑ 𝑢𝑖𝑝𝑖𝐷−𝑙𝑖𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

                                          (5.11) 

Now, using the inequality (5.6) we get 

 

(
∑ 𝑢𝑖𝑝𝑖𝐷

−𝑙𝑖(
𝛼−1

𝛼 )𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)

𝛼

𝛼−1

(
∑ 𝑢𝑖𝑝𝑖

𝛼𝑛
𝑖=1

∑ 𝑢𝑖
𝑛
𝑖=1 𝑝𝑖

)

1

1−𝛼
≤ 1                                                (5.12) 
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Equation (5.12), can be written as 

 

(
∑ 𝑢𝑖𝑝𝑖𝐷

−𝑙𝑖(
𝛼−1

𝛼 )𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)

𝛼

𝛼−1

≤ (
∑ 𝑢𝑖𝑝𝑖

𝛼𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)

1

𝛼−1
                                                     (5.13) 

Taking logarithms to both sides with base D then we get, 

 

𝛼

𝛼−1
log𝐷 (

∑ 𝑢𝑖𝑝𝑖𝐷
−𝑙𝑖(

𝛼−1
𝛼 )𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) ≤
1

𝛼−1
log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)                                 (5.14) 

 

Equivalently we can write equation (5.14), as 

 

        
𝛼

1−𝛼
log𝐷 (

∑ 𝑢𝑖𝑝𝑖𝐷
−𝑙𝑖(

𝛼−1
𝛼 )𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) ≥
1

1−𝛼
log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)                                        (5.15) 

This implies 

                                               𝐿𝛼(𝑃, 𝑈) ≥ 𝐻𝛼(𝑃, 𝑈) 

 

Hece the result for 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1 

 

Now, 

We will show that the equality in (5.7) holds iff  

𝑙𝑖 = − log𝐷 (
𝑝𝑖

𝛼

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

) ,0 < 𝛼 < 1     

Equivalently we can write 

𝐷−𝑙𝑖 = (
𝑝𝑖

𝛼

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

)  

 Or we can write 

𝐷−𝑙𝑖 = 𝑝𝑖
𝛼 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)
−1

                                                              (5.16) 

Taking both side to the power  
𝛼−1

𝛼
, to equation (5.16), and after simplification we get, 

 

𝐷−𝑙𝑖(
𝛼−1

𝛼
) = 𝑝𝑖

(𝛼−1)
(

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)

1−𝛼

𝛼
                                                            (5.17) 

 

Multiply equation (5.17) both sides by 
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

  and after simplification, we can write 

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

𝐷−𝑙𝑖(
𝛼−1

𝛼
) = (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)

1

𝛼
                                                    (5.18) 

Taking logarithms both sides with base D to equation (5.18) and multiply both sides by  
𝛼

1−𝛼
, we get, 

𝛼

1−𝛼
log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

𝐷−𝑙𝑖(
𝛼−1

𝛼
)) =  

1

1−𝛼
log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)  

This implies  

𝐿𝛼(𝑃, 𝑈) = 𝐻𝛼(𝑃, 𝑈) 

Hence the result. 

 

Theorem 5.2  Lα(𝑃, 𝑈) satisfy the inequality 

 

 𝐿𝛼(𝑃, 𝑈) < 𝐻𝛼(𝑃, 𝑈) + 𝛽 𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1   for every code lengths 𝑙1, 𝑙2, … … , 𝑙𝑛 which  

 

is satisfy the condition (5.6). 

 

Proof: From the theorem 5.1 we have, 
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𝐿𝛼(𝑃, 𝑈) = 𝐻𝛼(𝑃, 𝑈), holds iff   𝑙𝑖 = − log𝐷 (
𝑝𝑖

𝛼

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

) ,0 < 𝛼 < 1    

Or we can write  

                                                    −log𝐷 𝑝𝑖
𝛼 + log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)  

 

In order to satisfy the inequality, we now select the code-word lengths. 

 

                       −log𝐷 𝑝𝑖
𝛼 + log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) ≤ 𝑙𝑖 < −log𝐷 𝑝𝑖
𝛼 + log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) + 1                   (5.19) 

 

Consider the interval 

 

                        𝛿𝑖 = [−log𝐷 𝑝𝑖
𝛼 + log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) , −log𝐷 𝑝𝑖
𝛼 + log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) + 1]                 (5.20) 

 

There exit one positive integer 𝑙𝑖 such that, 

 

                     0 < −log𝐷 𝑝𝑖
𝛼 + log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) ≤ 𝑙𝑖 < −log𝐷 𝑝𝑖
𝛼 + log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) + 1             (5.21) 

 

Now, we will show that the sequence  𝑙1, 𝑙2, … … , 𝑙𝑛 satisfies generalization of Kraft inequality. From the left 

inequality of (5.21), we have, 

 

    −log𝐷 𝑝𝑖
𝛼 + log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) ≤ 𝑙𝑖  

We can write, 

                                                          𝐷−𝑙𝑖 ≤ (
𝑝𝑖

𝛼

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

) 

Multiply by 𝑢𝑖 both side then summing over i=1,2,...,n both side to the resulted expression, we get,   

                                                         
∑ 𝑢𝑖𝐷−𝑙𝑖𝑛

𝑖=1

∑ 𝑢𝑛
𝑖=1 𝑖

𝑝𝑖
≤ 1  

 

Now, the last inequality of (5.21), gives 

𝑙𝑖 < −log𝐷 𝑝𝑖
𝛼 + log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) + 1 

𝐷𝑙𝑖 ≤ 𝑝𝑖
−𝛼 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) 𝐷                                                      (5.22)  

 

𝐷𝑙𝑖
(
1−𝛼

𝛼
)

< 𝑝𝑖
(𝛼−1)

(
∑ 𝑢𝑖𝑝𝑖

𝛼𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)

(
1−𝛼

𝛼
)

𝐷(
1−𝛼

𝛼
)
 

 

                                              𝐷−𝑙𝑖
(

𝛼−1

𝛼
)

< 𝑝𝑖
(𝛼−1)

(
∑ 𝑢𝑖𝑝𝑖

𝛼𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)
(

1−𝛼

𝛼
)

𝐷(
1−𝛼

𝛼
)
  

 

Multiplying both side by 
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

, we get, 

 

                                      
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

𝐷−𝑙𝑖

(
𝛼−1

𝛼
)

<  
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

(
∑ 𝑢𝑖𝑝𝑖

𝛼𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)
(

1−𝛼

𝛼
)

𝐷(
1−𝛼

𝛼
)
  

 

                                              
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

𝐷−𝑙𝑖

(
𝛼−1

𝛼
)

<  (
∑ 𝑢𝑖𝑝𝑖

𝛼𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

)
(

1

𝛼
)

𝐷(
1−𝛼

𝛼
)
  

 

Taking log on both side  
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                                  log𝐷 (
∑ 𝑢𝑖𝑝𝑖

𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

𝐷−𝑙𝑖

(
𝛼−1

𝛼
)

) <
1

𝛼
log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) +
1−𝛼

𝛼
   

 

Multiplying 
𝛼

1−𝛼
 on both side 

 

                
𝛼

1−𝛼
log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

𝐷−𝑙𝑖

(
𝛼−1

𝛼
)

) <
1

1−𝛼
log𝐷 (

∑ 𝑢𝑖𝑝𝑖
𝛼𝑛

𝑖=1

∑ 𝑢𝑖𝑝𝑖
𝑛
𝑖=1

) + 𝛽, 𝑤ℎ𝑒𝑟𝑒 𝛽 =
1−𝛼

𝛼
  

 

This implies 

                             𝐿𝛼(𝑃, 𝑈) < 𝐻𝛼(𝑃, 𝑈) + 𝛽 𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1  

 

Thus from above two theorems, we have shown that 

 

                   𝐻𝛼(𝑃, 𝑈) ≤ 𝐿𝛼(𝑃, 𝑈) < 𝐻𝛼(𝑃, 𝑈) + 𝛽 𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1  

 

VI. CONCLUSION 

In this study we describe a new parameter generalised "useful" entropy measure, or 𝐻𝛼(𝑃, 𝑈). Additionally, we 

establish two new parametric generalised "useful" code-word mean lengths, 𝐿𝛼(𝑃, 𝑈) and 𝐻𝛼(𝑃, 𝑈) and then 

describe 𝐿𝛼(𝑃, 𝑈) in terms of 𝐻𝛼(𝑃, 𝑈) and showed that 

𝐻𝛼(𝑃, 𝑈) ≤ 𝐿𝛼(𝑃, 𝑈) < 𝐻𝛼(𝑃, 𝑈) + 𝛽 𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1 
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