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Abstract :

Physics-Informed Neural Networks (PINNs) have enabled significant improvements in modelling physical
processes described by partial differential equations (PDEs). PINNs are based on simple architectures, and learn
the behavior of complex physical systems by optimizing the network parameters to minimize the residual of the
underlying PDE. Current network architectures share some of the limitations of classical numerical discretization
schemes when applied to non-linear differential equations in continuum mechanics. A paradigmatic example is
the solution of hyperbolic conservation laws that develop highly localized nonlinear shock waves. Learning
solutions of PDEs with dominant hyperbolic character is a challenge for current PINN approaches, which rely,
like most grid-based numerical schemes, on adding artificial dissipation.

Physics-Informed Neural Network (PINN) has proven itself a powerful tool to obtain the numerical solutions of
nonlinear partial differential equations (PDESs) leveraging the expressivity of deep neural networks and the
computing power of modern heterogeneous hardware. However, its training is still time-consuming, especially in
the multi-query and real-time simulation settings, and its parameterization often overly excessive. In this paper,
we propose the Generative Pre-Trained PINN (GPT-PINN) to mitigate both challenges in the setting of
parametric PDEs. GPT-PINN represents a brand-new meta-learning paradigm for parametric systems. As a
network of networks, its outer-/meta-network is hyper-reduced with only one hidden layer having significantly
reduced number of neurons. Moreover, its activation function at each hidden neuron is a (full) PINN pre-trained
at a judiciously selected system configuration. The meta-network adaptively “learns” the parametric dependence
of the system and “grows” this hidden layer one neuron at a time. In the end, by encompassing a very small
number of networks trained at this set of adaptively-selected parameter values, the meta-network is capable of
generating surrogate solutions for the parametric system across the entire parameter domain accurately and
efficiently.
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I.  Introduction

Solving nonlinear partial differential equations (PDEs) with multiple solutions is essential in various
fields, including physics, biology, and engineering. However, traditional numerical methods, such as finite
element and finite difference methods, often face challenges when dealing with nonlinear solvers, particularly in
the presence of multiple solutions. These methods can become computationally expensive, especially when
relying on solvers like Newton’s method, which may struggle with ill-posedness near bifurcation points. In this
paper, we propose a novel approach, the Newton Informed Neural Operator, which learns the Newton solver for
nonlinear PDEs. Our method integrates traditional numerical techniques with the Newton nonlinear solver,
efficiently learning the nonlinear mapping at each iteration. This approach allows us to compute multiple solutions
in a single learning process while requiring fewer supervised data points than existing neural network methods.
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(1-1) Approximate solution of partial differential equations using Physics-Informed Neural Network
(1-1-1) Problem formulation

The problem of interest is that of two immiscible fluids (oil and water) flowing through a porous medium
(sand). The Buckley-Leverett (BL) equation describes the evolution in time and space of the wetfing-phase
{(water) saturation.

Let upy: RE % R — [0,1]

dun afum _
5t (z,t) + or r,t) =0, (nH
up(x,0) = 0,¥x > 0, Initial condition (2)
upr(0,t) = 1,%t > 0, Boundary condition (3)

where up usually represents the wetting-phase saturation, fpy 1s the fractional flow function and M 15 the
mobility ratio of the two fluid phases.
This first-order hyperbolic equation is of interest ap its solution can display both smooth solutions
(rarefactions) and sharp fronts (shocks). Although the solution to this problem can be calculated analytically,
the precise and stable resolution of these shocks poses well-known challenges for numerical methods .
Physics-Informed Neural Networks (PINNs) have been tested on this problem by Fuks and Tchelep: who
report good performance for concave fractional flow functions. The solution of the problem in the case of a
non-concave fractional flow function 1s, however, much more challenging and remains an open problem. We
take fj; to be the non-concave flux function

up (2, t)?

ful(z,t) = , (4)
( upt (2,1)2 + i (1 — upg (1))
for which we can obtain the analytical solution of the problem:
0, £ > fu(u®),
up(,8) = Qu(x/t), [fia(u*) 2§ 2 figlu=1), (5
1 fulw=1)>=

where u” represents the shock location defined by the Rankine-Hugoniot condition [27].

(1-1-2) Methodology

Let G:={(x;, ;) E Rg X Rg:i=0,.c...,N,j =0, ... .. ,T } be a discrete version of the domain of u,,. We
define our PTANN as a vector function ug: R x R — [0,1]¥ "1, where @ are the weights of the network to
be estimated during training. The inputs for the proposed architecture are pairs of (¢, M) and the output is a
vector where the 1-th component is the solution evaluated in x;. Notice the different treatment applied to
spatial and temporal coordinates. Where as ¢ is a variable of the vector function ug , the locations where we
calculated the solution xy, ......,x, are fixed in advance. The output 1s a saturation map and therefore its
values have to be in the interval [0,1].

For the sake of readability, we introduce the architecture of ug in section 4. However, we advance that in
order to enforce the boundary condition, we let our PIANN learn only the components
wug(t, M)y, v e ,ug(t, M)y, ¥t # 0 and then we concatenate the component ug(t, M)y = 1. To enforce the
nitial conditions, we set ug(t,M); = 0,i = 1, ... ..., N.To enforce that the solution be in the interval [0,1] , a
sigmoid activation function is applied to each component of the last layer of our PIANN.

The parameters of the PIANN are estimated according to the physics-informed learning approach, which
states that 0 can be estimated from the BL equation eq. (1), the imitial conditions eq. (2) and boundary
conditions eq. (3), or in other words, no examples of the solution are needed to train a PINN.

After utilizing the information provided by the imitial and boundary conditions enforcing ug(t,M); = 0,i =
1. .. , IV and ug(t, M)y = 1, respectively, we now define a loss function based on the information provided
by eq. (1). To calculate the first term we propose two options. The first option is a central finite difference
approximation, that 1s,

l]g{fj_i_]_."-”,;—llg{tj,fl”i i=1,..,N-1 (6)

Ri(8,M);; =

Li+1 —
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Alternatively, we can calculate the derivative of our PIANN with respect to ¢ since we know the functional
form of ug. It can be calculated using the automatic differentiation tools included in many machine learning
libraries, such as Pytorch. Thus, we propose a second option fo calculate this term as R (0,M);; =
a”e(fa M}ffaﬂr:zj .

The second term of eq. (1), the derivative of the flux with respect to the spatial coordinate, 1s approximated

using central finite difference as
f{ti.ﬁl.’:}l+| —r[f_’..'.d]1_| i=1...., N-1

Ra(0, M), ; = . , 7
2( )l._i Pip1 — Tiq i=1..T-1 0
where the vector of fluxes at the { — th location x; 1s calculated as
ug(t, M)? :
e (t M):{ {1—}110(: i =0...N. @)
ugl(t, ! i — _”_'
The spatial coordinate x 1s included as a fixed parameter in our architecture.
The loss function to estimate the parameters of the PINN is given as
£(0) =Y [R1(8, M) + Ra(8, M), 9)
M

where ||+l is the Frébenius norm.

It should be noted that unlike all previous physics-informed learning works in the literature (recall section 1),
the initial and boundary conditions are not included in the loss function; they are already enforced in the
architecture. This has three direct consequences. First, we are enforcing a stronger constraint that does not
allow any error on the initial and boundary conditions. Second, the PIANN does not need to learn these
conditions by itself, and it can concentrate only on learning the parameters that minimize the residuals of the
BL equation. Third, since we only have the term of the residuals, there are no weights to be tuned to control
the effect of the nitial and boundary conditions in the final solution.

Finally, the parameters of the PIANN are estimated using ADAM optimizer to minimize eq. (9) with respect
to @ .

(1-1-3) PIANN architecture [2,32,33]

Although 1t has been demonstrated that neural networks are umiversal function approximators, certain
challenging problems (e.g. solving non-linear PDEs) may require more specific architectures to capture all
their properties. For that reason, we have proposed a new architecture, inspired by , to solve non-linear PDEs
with discontinuities under two assumptions.

First, to automatically detect discontinuities we need an architecture that can exploit the correlations between
the values of the solution for all spatial locations xq, ... ... ,Xp. Second, the architecture has to be flexible
enough to capture different behaviors of the solution at different regions of the domain. To this end, we
propose the use of encoder-decoder GRUs for predicting the solution at all locations at once, with the use of
a recent machine learning tool known as attention mechanisms .

Our approach presents several advantages compared to traditional simulators: 1) Instead of using just
neighboring cells’ information to calculate u as in numerical methods, our architecture uses the complete
encoded sequence mput of the grid to obtain u;. allowing us to capture non-local relationships that numerical
methods struggle to 1dentify. 11) the computer time for the forward pass of neural networks models 1s linear
with respect to the number of cells 1 our grid. In other words, our method 1s a faster alternative with respect
to traditional methods of solving PDEs.

Figure 1 shows an outline of the proposed architecture. We start feeding the mput paiwr (t, M) to a single fully
connected layer. Thus, we obtain h® the initial hidden state of a sequence of N GRU blocks (yellow). Each

of them corresponds to a spatial coordinate x; which is combined with the previous hidden state h*~! inside
the block.
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This generates a set of vectors ¥%,......,¥"¥ which can be understood as a representation of the input in a
latent space. The definifive solution u (we omit the subindex u@ for simplicity) 1s reached after a new
sequence of GRU hlocks (blue) whose initial hidden state d° is initialized as h" to preserve the memory of
the system.

In addition to the hidden state d’, the i — th block g, is fed with a concatenation of the solution at the
previous location and a context vector, that 1s

1, ZQ,'([lli_[.Ci].dl_l]. (10)

How the context vector 1s obtained 1s one of the key aspects of our architecture, since 1t will provide the
PINN with enough flexibility to fit to the different behaviors of the solution depending on the region of the
domain. Inspired by . we introduce an attenfion mechamism between both GRU block sequences. Our
attention mechanism 1s a single fully connected layer, a, that learns the relationship between each component
of yj and the hidden states of the (blue) GRU sequence,

Eij =a[(li_1.y'§). (11)
Then. the rows of matrix £ are normalized using a softmax function as
exp (£i)
aij= (12)
Y i—1exp (&)
and the context vectors are calculated as
N
c*’:Ea,-_Jy-",izl.,...N. (13)
i=1

The coefficients a; j can be understood as the degree of influence of the component y I in the output ;. This
1s one of the main innovations of our work to solve hyperbolic equations with discontinuities. The attention
mechanism automatically determines the most relevant encoded information of the full sequence of the 1nput
data to predict the u;. In other words, attention mechanism is a new method that allows one to determine the
location of the shock automatically and provide more accurate behavior of the PIANN model around this
location. This new methodology breaks the limitations explored by other authors since 1s able to capture the
discontinuity without specific prior information or the regularization term of the residual. This 1s the first
paper to use attention mechanisms to solve non-linear PDEs for hyperbolic problems with discontinuity.

(1-1-4) Results

In this section we perform a set of experiments that support the proposed methodology. The goal of our
experiments 1s to demonstrate that our PIANN is indeed able to approximate the analvtical solution given in
eq. (3).

— 1y us uy_1 uy
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Figure 1: Architecture of physical attention neural network for the prediction of the variable 1,
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Figure 2: Residual values for each epoch for M = 4.5 values 1n a senulog scale.

The traming set 1s given by a grid

G:= {(xl-, t}-) € R§ x Rg:x; €4{0,0.01,...,0.99,1}, ¢; € {0,0.01,...,0.49,0.5} , and a set of values of M €
{2,4,6,...,100} , which produces N = 101,T7 = 51, and a total of 257,550 points. We want to emphasize
that no examples of the solution are known at these poimnts, and therefore no expensive and slow simulators
are required to build the traming set. To estimate the parameters of the PIANN we mimnuze eq. (9) by
runming ADAM optinuzer for 200 epochs with a learning rate of 0,001,

Figure 2 shows the residual value for the testing dataset for the different epoch for M = 4.5. We can
observe a fast convergence of the method and a cumulative value of the residual smaller than 10™* after a
few epochs. This demonstrates that we are minimizing the residuals in eq. (1) and subsequently solving the
the equation that governs BL.

Figure 3 shows the comparison between the analytical solution (red) and the solution obtained by our
PIANN (blue) for different M used during training. Top, middle and bottom rows correspond to M =
2,M = 48 and M = 98, respectively, and the columns from left to right, correspond to different time
steps ¢ = 0.04,¢t = 0.20, and t = 0.40, respectively. We can distinguish three regions of interest in the
solution. Following mcreasing x coordinates, the first region on the left 1s one where the water saturation
varies smoothly following the rarefaction part of the solution. The second region 1s a sharp saturation change
that corresponds to the shock in the solution and the third region 1s ahead of the shock, with undisturbed
water saturation values that are still at zero. For all cases, we observe that the PIANN properly learns the
correct rarefaction behavior of the first region and approximates the analytical solution extremely well. In
the third region, the PIANN also fits to the analytical solution perfectly and displays an undisturbed water
saturation at zero. As for any classical numerical methods, the shock region 1s the most challenging to
resolve.

Around the shock, the PIANN seems unable to perfectly resolve a sharp front, and the represented behavior
1s a shock that 1s smoothed over and displays non-monotonic artifacts upstream and downstream of the front.
The location of the shock 1s, however, well captured. Such a behavior 1s reminiscent of the behavior
observed in higher-order finite difference methods, where slope-limiters are often used to correct for the
non-physical oscillations.

Importantly, 1t means the PIANN needs to learn where the shock 1s located m order to fit differently to both
sides of 1t. This 1s the role of the attention mechanism of our architecture. On top of each figure we have
visnalized the attenfion map introduced by for every tumestep. These maps visualize the attention weight a; ;
to predict the variable ui. We observe that in all cases the attention mechanism identifies the discontinuity,
water front, and subsequently modifies the behavior of the network in the three different regions described
above. This shows that attention mechanism provides all the necessary information to capture discontinuities
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automatically without the necessity of training data or a prior knowledge. Finally, 1t 1s important to note that
attention weights of the attention mechanism are constant when the shock/discontinuity disappears.

In addition, we test the behavior of our methodology to provide solutions for BL at points within the traming
range of M : M = 4.5 and M = 71. In other words, we want to check the capability of our PIANN model to
interpoelate solutions. Figure 5 shows that our PIANNs provide solutions that correctly detect the shock.

We also test the PIANN to extrapolate solutions out of the range of the traming set: M = 140, M =
250 and M = 500 . Figure 6 shows a degradation of the results when M is far from the original training set.
We observe that our method predicts the behavior of the shock for M = 140. However, the shock 1s totally
missed for M = 500 and as such, retraining the model 15 recommended with higher values of M. It 1s
important to note that the results show that our method 1s stable and converges for the different cases.

We test how the neural residual error progresses based on different At and Ax resolutions. Results are shown
in table 1. and demonstrate that our PIANN obtains smaller residuals when the resolution of the training set
increases. However, we observe that changes mn the residual are not highly significant. This 1s an advantage
with respect to traditional numerical methods such as CFD, where smaller values of At are necessary to
capture the shock and guarantee convergence and stability.

Finally, we have compared the results with central and upwind finite difference schemes for the term of the
vector of fluxes. The first-order upwind difference introduces a dissipation error when applied to the residual
of the Buckley- Leverett equation, which 1s equivalent to regularizing the problem wvia artificial diffusion.
Figure 4 shows that both approaches present similar results respect to the analytical solution. The fact that
both central and upwind differences yield similar predictions is important, because it suggests that the
proposed PIANN approach does not rely on artificial dissipation for shock capturing.

(1-1-5) Discussion
In this work, we have introduced a new method to solve hyperbolic PDEs. We propose a new perspective by

focusing on network architectures rather than on residual regularization. We call our new architecture a
physics informed attention neural network (PIANN).

PIANN's novel architecture is based on two assumptions. First, correlations between values of the solution
at all the spatial locations must be exploited, and second, the architecture has to be flexible enough to
identify the shock and capture different behaviors of the solution at different regions of the domain. We have
proposed an encoder-decoder GRU-based network to use the most relevant information of the fully encoded
information, combined with the use of an attention mechanism. The attention mechanism is responsible for
identifying the shock location and adapting the behavior of the PIANN model.

Unlike previous methods in the literature, the loss function of PIANNS is based solely on the residuals of the
PDE. and the initial and boundary conditions are introduced in the architecture. These are stronger
constraints than the ones enforced by previous methods, since we do not allow room for learning error on the
nitial or boundary conditions. As a result, PIANN's tramung aims only at mimnuzing the residual of the
PDE; no hyperparameters are needed to control the effect of initial and boundary conditions on the solution.
We have applied the proposed methodology to the non-concave flux Buckley-Leverett problem, which has
hitherto been an open problem for PINNs. The experimental results support the validity of the proposed
methodology and conclude that: 1) during training, the residuals of the equation decrease quickly to values
smaller than 10™* | which means that our methodology is indeed solving the differential equation. ii) the

attention mechanism automatically detects shock waves
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Figure 3: Top and bottom rows correspond to M = 2 and M = 48 and M = 98 for attention weights map
and comparison of the predicted by the neural network and the exact solutions of the PDE, respectively. The

columns from left to right. correspond to different time steps t = 0.04, t = 0.20 and ¢t = 0.40
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of the solution and allows the PIANN to fit to the different behaviors of the analytical solution, and 111) the
PIANN 15 able to mnterpolate solutions for values of the mobility ratio M inside the range of fraiming set, as
well as to extrapolate when the value of M is outside the range. However, we observe that if M is too far
away from range of the traming set. the quality of the solution decreases. In that case, a retraiming of the
network is recommended. iv) We observe that the residuals decrease when the resolution of the training set
increases. However, the change in the residuals 1s not highly significant. This 1s advantageous with respect to
traditional numerical methods where small values of At are needed to capture the shock and guarantee
convergence and stability.

In conclusion, the proposed methodology i1s not confined by the current himitations of deep learning for
solving hyperbolic PDEs with shock waves, and opens the door to applying these techniques to real-world
problems, such as challenging reservoir simulations or carbon sequestration. It 15 plausible that this method
could be applied to model many processes in other domains which are described by non-linear PDEs with
shock waves.
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Figure 6: Top and bottom rows correspond to M = 140 and M = 250 and M = 500 comparison of the
predicted by the neural network and the exact solutions of the PDE, respectively. The columns from left to

right, correspond to different time steps ¢t = 0.04,t = 0.08 and t = 0.30

Table 1: Residual calculation for different resolution of At and Ax for M = 4.5

Resolution Eesidual Error
Ar=1+%10"2At=1%10"2 1#1074
Ar=5%10"3 At =5+ 103 0% 10"
Ar=1%103 At =1+10"12 .7+ 10°°
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(1-2) GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-
learning of parametric PDEs

(1-2-1) Reduced Basis Method

RBM 15 a linear reduction method that has been a popular option for rigorously and efficiently simulating
parametric PDEs. Its hallmark feature is a greedy algorithm embedded in an offlineonline decomposition
procedure. The offline (1.e. training) stage 1s devoted to a judicious and error estimate-driven exploration of
the parameter-induced solution mamifold. It selects a number of representative parameter values via a
mathematically rigorous greedy algorithm . During the online stage, a reduced solution is sought in the
terminal surrogate space for each unseen parameter value. Moreover. unlike other reduction techniques (e.g.
proper orthogonal decomposition (POD)-based approaches), the number of full order inquiries RBM takes
offline is minimum, 1.e. equal to the dimension of the surrogate space. To demonstrate the main ideas, we
consider a generic parameterized PDE as follows

Flux,p)=f, z€QCR? (1)

Here F encodes a differential operator parameterized via 4 € D © R% together with necessary boundary and
initial conditions. The parameter can be equation coefficients, initial values, source terms, or uncertainties in
the PDE for the tasks of the uncertainty quantification, etc. F can depend on the solution and its (space- and
time-) derivatives of various orders. We assume that we have available a numerical solution u(x; u) € X,
obtamned by a high fidelity solver, called Full Order Model (FOM) and denoted as FOM (u, Xy). and Xj, 1s the
discrete approximation space the numerical solution u belongs to.

A large number of queries of u(:, i) can be prohibitively expensive because the FOM (u, X, ) has to be called
many times. Model order reduction (MOR) aims to mitigate this cost by building efficient surrogates. One
idea 1s to study the map

o= u(sp) € Xy
and devise an algorithm to compute an approximation uy(-, &) from an N-dimensional subspace Xy of X, .
such that

uy (1) = u(,p)forall p €D
This reduced order model (ROM) formulation at a given p 1s denoted by ROM (u, Xpy) . and 1s much cheaper
to solve than FOM (p, X ) and can be conducted during the Online stage.

Algorithm 1 Classical RBM for parametric PDE (1): Offline stage
Input: A (random or given) !, training set = c D.
Initialization: Solve FOM(p!, X},) and set X1 = span {u(-; ptq)}, n = 2.
1: while stopping criteria not met, do
2: Solve ROM(p, X1,—1) for all g € = and compute error indicators A, _1(gt).
3: Choose pu" = mgl;lg%( Ap_1(p).
4 Solve FOM(u,,, X#) and update X, = X,,_1 @{u(-; )}
5: Set n «—n+1.
6: end while
Output: Reduced basis set Xy, with N being the terminal index.

The success of RBM relies on the assumption that w(-; ) has small Kolmogorov N-width [34], defined as

dy[u(D)]:= inf s inf ) = vy .
WD) = inf sup inf fu(p) - vy
dim X y=N

A small dy means that the solution to eq. (1) for any u can be well-approximated from Xy that represents the
outer infimum above. The identification of a near-infimizing subspace X 1s one of the central goals of
RBM, and 1s obtained in the so-called Offline stage. RBM uses a greedy algorithm to find such X The
main ingredients are presented in Algorithm 1. The method explores the training parameter set Z © D gmded
by an error estimate or an efficient and effective error indicator A, () and intelligently choosing the
parameter ensemble {p"}¥_; so that
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N
Xy = span {u(: p")}, | and uy () = 3 ea(p)u-, u"). 2)
n=1
An offline-online decomposed framework 1s key to realize the speedup. Equpped with this robust and tested
greedy algorithm. physics-informed reduced solver, rigorous error analysis, and certifiable convergence
guarantees, RBM algorithms have become the go-to option for efficiently simulating parametric PDEs and
established in the modern scientific computing toolbox and have benefited from voluminous research with
theoretical and algorithmic refinement . One particular such development was the empirical error indicator
of the L1-based RBM by Chen and his collaborators where A, _; (1) was taken to be || c(u) lI1-
Here c(u) is the coefficient vector of uy( =, 1) under the basis {u( +; un)}¥_, and || - |, represents the
fl-norm. As shown in , c(u) represents a Lagrange interpolation basis in the parameter space implying that
the indicator 4, represents the corresponding Lebesgue constant . The L1 strategy to select the parameter
samples then controls the growth of the Lebesgue constants and hence 1s key toward accurate interpolation.
This strategy, “free” to compute albeit not as traditionally rigorous, inspires the greedy algorithm of our
GPT-PINN, to be detailed in Section 3.

(1-2-2) Deep neural networks

Deep neural networks (DNN) have seen tremendous success recently when serving as universal
approximators to the solution function {or certain quantity of interest (Qol) / observable) . First proposed in
on an underlying collocation approach, 1t has been successfully used recently in different contexts. See and
references therein. For a nonparametrized version (e.g. eq. (1) with a fixed parameter value), we search for a
neural network ¥y(x) which maps the coordinate x € R to a surrogate of the solution, that is Wyy(x) =
u(x).

Specifically, for an mput vector x , a feedforward neural network maps it to an output, via layers of
“neurons” with layer k corresponding to an affine-limear map €, composed with scalar non-linear activation
functions . That 1s.

"-[’gu(x] =Cro00Ci_1-..... oo o Cy(x).

A justifiably popular choice 15 the ReLl/ activation g(z) = max(z, 0) that 1s understood as component-wise
operation when z is a vector. For any 1 = k = K, we define

Crzk = Wik + b, for Wi € R%+1%d 5 e R by € R+1,
To be consistent with the input-output dimension, we set d; = d and dp = 1. We concatenate the tunable
weights and biases for our network and denote them as

6= {We b}, V1<E<K.

K—1
We have # € © C RM with M := Y (dj. + 1)di.1. We denote this network by
k=1
NN(di.da, - .dg). (3)

Learning W9y (x) then amounts to generating training data and determining the weights and biases 0 by
optimizing a loss function using this data.

(1-2-3) Physics-Informed Neural Network
We define our problem on the spatial domain 2 R with boundary 12, and consider timedependent PDEs
with order of time-derivative k = 1L or 2 .

ok
(%, + Flu(x, )] = 0 xeQ  te[.T]
Glu)(x,t) =0 x € 99, t € 0,T), )
u(X,0) = uy(x) xe€N.

Here F 15 a differential operator as defined in Section 2.1 and § denotes a boundary operator. The goal of a
PINN is to identify an approximate solution u(x,t) via a neural network W§y(x,t). Learning 6 € R™
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requires defining a loss function whose minimum 0* leads to W&, approximating the solution to the PDE
over the problem domain. PINN defines this loss as a sum of three parts, an mtegral of the local residual of
the differential equation over the problem domain, that over the boundary, and the deviation from the given

initial condition,
(_:».
J(u) = ﬁu(x,i‘.)-{—f{u)(x.t)
allot
During training. we sample collocation points in certain fashion from the PDE space domain f2, space-time
domain 2 % (0,7), and boundary 02 x [0,T],Co € 2 % [0,T] and C3 < 802 % [0,T] and C; € 2 , and use
them to form an approximation of the true loss.

2
+u(x.0) ~ ua(x)1 dr + [ 16((x. 013 d.
b a0

) 2
Cp]_\'x{‘I’ﬁN} =|Cll Z %(@"M)(x. t) +F(‘Dﬁ.~}(x.t) 2+
° (X,I}ECO e
(5)
2 P
% 3 Hg('l'?“"“"'”Hﬁ%z ”‘I’ﬂN{x.O)—uﬂ{xJH?.
ICal (x,1)eCy ICil xeC,

When the training converges, we expect that LPINN (W§,,) should be nearly zero.

(1-2-4) The GPT-PINN framework

Inspired by the RBM formulation eq. (2). we design the GPT-PINN. Its two components and design
philosophy are depicted in Figure 1. As a hyper-reduced feedforward neural network NN(2,n,1) with 1 <
= N (see eq. (3) for the notation), we denoted it by NN" (2,1, 1). A key feature is that it has customized
activation function 1n the neurons of its sole hidden layer. These activation functions are nothing but the pre-
trained PINNs for the corresponding PDEs instantiated by the parameter values {ut, u?, ... ... , 1™} chosen by
a greedy algorithm that 1s specifically tailored for PINNs but inspired by the classical one adopted by RBM
i Algorithm 1. The design of network architecture represents the first main novelty of the paper. To the best
of our knowledge, this is the first time a whole (pre-trained) network is used as the activation function of one

nauron.

'Generative online
Component

[}
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]
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Given I
prompt /1 H
[
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by training weights
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at{u', p?, .., pV} '
as activation functions IGPT-PINN for parametric PDEs

Figure 1: The GPT-PINN architecture. A hyper-reduced network adaptively embedding pretrained PINNs at
the nodes of its sole hidden layer. It then allows a quick online generation of a surrogate solution at any
given parameter value.
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(1-2-5) The online solver of GPT-PINN

We first present the online solver, 1.e. the traimning of the reduced network NN7(Z,n,1) , for any given u .
With the next subsection detailing how we “grow” the GPT-PINN offline from NN7(2,n,1) to NN"(2,n +
1,1) . we have a strategy of adaptively generating the terminal GPT-PINN, NN” (2, N, 1). Indeed, given the
simplicity of the reduced network. to train the weights {cy (1), ... ... , €, (1)}, no backpropagation 1s needed.
The reason 1s that the loss function, similar to eq. (5). 1s a simple function containing directly and explicitly
fo1 () oo , Cn (1)} thanks to the reduced network structure of GPT-PINN. In fact, we denote by 11{3;; (x, 1)
the PINN approximation of the PDE solution when g = uf. Given that u,(x, t; u) = Yit; c; (1) %’5& (x,0)%
we can calculate the GPT-PINN loss as a function of the weights c(u) as follows.

2

+
2

CHRN(e) = o= 3

=
Cel (x,t)eCy

G (Z q(#)‘l"ﬁu) (x,

i=1

6"‘ n ) n
Bk (ZW(F‘)‘I’%N) (x,8) +F (ZL, ) (x,1)
i=1 i=1
e r| Z

xeC,

2

1
o

I 3| (x,t)eCa

Z 1) Uiy (x. 0) — uo(x)

i=1

2

The online collocation sets € < 2 x [0,T], €} € a0 » [0, T] and €] < (0 are used, similar to eq. (3), to
generate an approximation of the true loss. They are taken to be the same as their full PINN counterparts
Cy,Cq.C; in this paper but we note that they can be fully independent. The training of NN7 (2,1, 1) 1s then
simply

C(—C—EVEP]NN( ) (7)'

Here ¢ = (c1(f) , v v ,cn(u))T and &, is the online learning rate. The detailed calculations of eq. (6) and
eq. (7) are given in A for the first numerical example. Those for the other examples are very sumilar and thus
omitted. We make the following three remarks to conclude the online solver.
1. Precomputation for fast training of NN"(2,n, 1) : Due to the linearity of the derivative operations and
the collocation nature of loss function. a significant amount of calculations of eq. (6) can be precomputed
and stored. These include the function values and all (spatial and time) derivatives involved in the operators
F and § of the PDE eq. (4):

Wi (©), 5 (a;rﬁ'm) (€)(k=1o0r2), ViUl (C) (€ =1,2,---) for C =C",C5,CI. (8)

Once these are precomputed. updating ¢ according to eq. (7) is very efficient. It can even be made
independent of |C].

2. Non-intrusiveness of GPT-PINN: It is clear that, once the quantities of eq. (8) are extracted from the full
PINN. the online training of NN"(2,n,1) 1s independent of the full PINN. GPT-PINN 1s therefore non-
wntrusive of the Full Order Model. One manifestation of this property is that, as shown in owr third numerical
example, the full PINN can be adaptive while the reduced PINN may not be.

3. The error indication of NN"(2,n,1) : One promunent feature of RBM i1s its a posteriori error
estimators/idicators which guides the generation of the reduced solution space and certifies the accuracy of
the surrogate solution. Inspired by this classical design, we introduce the following quantity that measures
how accurate NN (2, n, 1) 1s in generating a swirogate network at a new parameter u.

Afn(c(p)) £ LERK (e(p)). (9)

We remark that this quantity is essentially free since it is readily available when we train NN7(2,n,1)
according to eq. (7). The adoption of the traiming loss of the meta-network as an error indicator, mspired by
the residual-based error estimation for traditional numerical solvers such as FEM, represents the second
main novelty of this paper.
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(1-2-6) Training the reduced network GPT-PINN: the greedy algorithm

Algorithm 2 GPT_PINN for parametric PDE: Offline stage
Input: A (random or given) p!, training set Sain C D, full PINN.
1: Train a full PINN at u' to obtain ‘II%IN. Precompute quantities necessary for Vcﬁg&% at
collocation nodes C}, Cj, and C7, see eq. (8). Set n = 2.
: while stopping criteria not met, do
Train NN*(2,7 —1,1) at p for all gt € Etrain and record the indicator Af, (c(g)).
4: Choose pu™ = arg max Afy(u)-
HEZrain
5: Train a full PINN at p™ to obtain W§\. Precompute quantities necessary for V.LERY at
collocation nodes Cj, Cj, and C], see eq. (8).
6: Update the GPT_PINN by adding a neuron to the hidden layer to construct NN*(2,n,1).
(¢ Set n «n+1.

8: end while
Output: GPT_PINN NN'(2, N, 1), with N being the terminal index.

w N

u-Training set Syvain Select p! € =i, randomly
A full PINN for a given p n = 1. Setup empty GPT-PINN.

/

Train GPT-PINN(2, n,1) at jt € Zyain Solve full PINN at 2" for Wi i#")(x, t)
recording code and terminal loss [ Update GPT-PINN by adding the n'" neuron
(e(pe), By (c(p2))) with Wi (x, ). We have GPT-PINN(2,n,1)

() 7

uh = argmaxyez, Afn(c(w)
No n+n+1

.o Afn(e(n)) < ga?

Figure 2: Flowchart of the GPT-PINN Offline training stage. With the online solver described in Section 3.1,
we are ready to present our greedy algorithm. Its main steps are outlined in Algorithm 2 with its flowchart
provided in Figure 2. The meta-network

adaptively “learns” the parametric dependence of the system and “grows” its sole hidden layer one
neuron/network at a time in the following fashion. We first randomly select, 1n the discretized parameter
domain =, . one parameter value u! and train the associated (highly accurate) PINN 'P,%;'v__ The algorithm
then decides how to “grow™ its meta-network by scanning the entire discrete parameter space =Ztrain and, for
each parameter value, traming this reduced network (of 1 hidden layer with 1 neuron 4’3?\,_ As it scans, it
records an error indicator Ayyc(p). The next parameter value p? is the one generating the largest error
indicator. The algorithm then proceeds by training a full PINN at 2 and therefore grows its hidden layer
into two neurons with custormzed (but pre-tramned) activation functions 4’3:\, and ﬁ”ﬁ;. This process 1s
repeated until the stopping criteria is met which can be either that the error indicator is sufficiently small or a
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pre-selected size of the reduced network 1s met. At every step, we select the parameter value that is
approximated most badly by the current meta-network. We end by presenting how we mufialize the weights
c(u) when we train NN"(2,n — 1, 1) on Line 3 of Algorithm 2. They are initialized by a linear interpolation
of up to 2% closest neighbors of y within the chosen parameter values {u',..., 4"} Recall that ds is the
dimension of the parameter domain.

(1-2-7) Related work

The last two to three years have witnessed an increasing level of interest toward metalearning of
(parameterized or unparameterized) PDEs due to the need of repeated simulations and the remarkable
success of PINNs m its original form or adaptive ones. Here we mention a few representative ones and point
out how our method differentiates from theirs.

Metalearning via PINN parameters. the authors adopt statistical (e.g. regression) and numerical (e.g.
RBF/spline interpolation) methods to build a surrogate for the map from the PDE parameter y to the PINN
parameter (weights and biases, @ ). They are shown to be superior than MAML for parameterized PDEs
which was shown to outperform LEAP. Both are general-purpose meta-learning methods. However, the
online solver (ie. regression or interpolation) of ignores the physics (1.e. PDE). The method assumes that
the g-variation of the PINN weights and biases 1s analogous to that of the PDE solution.

DeepONet. Aiming to learn nonlinear operators, a DeepONet consists of two sub-networks, a branch net for
encoding the mput function (e.g source/control term, as opposed to PDE coefficients) at a fixed number of
sensors, and a frunk net for encoding the locations for the output functions. It does not build 1n the physics
represented by the dynamical system or PDE for a new input. Moreover, it is relatively data-intense by
having to scan the entire mput function space such as Gaussian random field or orthogonal polynomial
space.

Metalearning loss functions. Authors concern the definition of the PINN loss functions. While 1t 15 in the
parameterized PDE setting, the focus 1s a gradient-based approach to discover, during the offline stage,
better PINN loss functions which are parameterized by e.g. the weights of each term in the composite
objective function. The end goal is therefore improved PINN performance e g. at unseen PDE parameters,
due to the learned loss function configuration.

Metalearning initialization. the authors study the use of a meta network, across the parameter domain of a
1-D arc model of plasma simulations, to better initialize the PINN at a new task (1.e. parameter value).

MetaNO. The recent meta-learning approach for transferring knowledge between neural operators aims to
transfer the learned network parameters @ () between different p with only the first layer being retrained. Its
resulting surrogate 1s fully data-driven, 1.e. with no physies built in for a new value p.

PRNN. The physics-reinforced neural network approach builds the map u — c(u) via regression (1.e. no
physics durmg the online evaluation for a new p) although PDE residuals were considered during the
supervised learning of the map via labelled data.

Our proposed GPT-PINN exploits the p-vanation of the PDE solution directly which may feature a
Kolmogorov N-width friendlier to MOR approaches, see Figure 3, than the weights and biases. This is. in
part, because that the weights and biases lie in a (much) higher dimensional space. Moreover, the meta-
network of our approach, being a PINN itself, has physics automatically bult in in the same fashion as the
underlying PINNs. Lastly, our approach provides a swrogate solution fo the unseen parameter values m
addition to a better initialization transferred from the sampled PINNs. Most importantly, our proposed GPT-
PINN embodies prior knowledge that 1s mathematically rigorous and PDE-pertinent mtfo the network
architecture. This produces strong inductive bias that usually leads to good generalization.
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Figure 3- A motivating example showing that the solution matrix of a parametric PDE {u(-, ¢™)}22% exhibits
fast decay in its singular values (indicating fast decay of the Kolmogorov N-width of the solution manifold)
while the network weights and biases manifold { {0(u™)}22% 1200 does not.

(1-3) Newton Informed Neural Operator for Selving Nonlinear Partial Differential Equations

(1-3-1) Nonlinear PDEs with multiple solutions

Significant mathematical models depicting natural phenomena in biolegy, physics, and materials science are
rooted in nonlinear partial differential equations (PDEs) . These models, characterized by thewr inherent
nonlimearity, present complex multi-solution challenges. Illustrative examples mclude string theory in
physics, reaction-diffusion systems in chemistry, and pattern formation in biology . However, experimental
techniques like synchrotronic and laser methods can only observe a subset of these multiple solutions. Thus,
there 1s an urgent need to develop computational methods to unravel these nonlinear models, offering deeper
msights into the underlying physics and biology . Consequently, efficient numerical techmiques for
identifying these solutions are pivotal in understanding these intricate systems. Despite recent advancements
in numerical methods for solving nonlinear PDEs, significant computational challenges persist for large-
scale systems. Specifically, the computational costs of employing Newton and Newton-like approaches are
often prohibitive for the large-scale systems encountered in real-world applications. In response to these
challenges . we propose an operator learning approach based on Newton's method to efficiently solve
nonlimear PDEs.

(1-3-2) Related works

Indeed, there are numerous approaches to solving partial differential equations (PDEs) using neural
networks. Broadly speaking, these methods can be categorized mnto two main types: function learning and
operator learning.

In function learning, neural networks are used to directly approximate the solutions to PDEs. Function
learning approaches aim to directly learn the solution function itself. On the other hand, in operator learning,
the focus 1s on learning the operator that maps input parameters to the solution of the PDE. Instead of
directly approximating the solution function, the neural network learns the underlying operator that governs
the behavior of the system.
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Function learning methods In function learning, a commonly employed method for addressing this
problem involves the use of Physics-Informed Neural Network (PINN)-based learning approaches, as
mfroduced by Raissi et al. and Deep Ritz Methods . However, in these methods, the task becomes
particularly challenging due to the ill-posed nature of the problem arising from multiple solutions. Despite
employing various imitial data and traiming methods, attaining high accuracy n solution learning remains a
complex endeavor. Even when a high-accuracy solution is achieved, each learning process typically results
i the discovery of only one solution. The specific solution learned by the neural network is heawily
influenced by the inifial conditions and training methods employed. However, discerning the relationships
between these factors and the learned solution remains a daunting task. the authors mtroduce HomPINNs for
learning multiple solutions to PDEs, where the number of solutions that can be learned depends on the
choice of “start functions." However, if the “start functions” are not appropriately selected, HomPINNs may
fail to capture all solutions. In this paper. we present an operator learning approach combined with Newton's
method to tramn the nonlinear solver. While this approach is not specifically designed for computing multiple
solutions, it can be emploved to compute them if suitable 1nitial guesses are provided.

Operator learning methods Various approaches have been developed for operator learning to solve PDEs,
including DeepONet , which integrates physical mformation , as well as techniques like FNO mspired by
spectral methods, and MgNO |, HANO | and WNO based on multilevel methods, and transformer-based
neural operators . These methods focus on approximating the operator between the parameters and the
solutions. Firstly, they require the solutions of PDEs to be unique; otherwise, the operator is not well-
defined. Secondly, they focus on the relationship between the parameter functions and the solution, rather
than the 1mitial data and multiple solutions.

(1-3-3) Review of Newton Methods to Solve Nonlinear Partial Differential Equations
To tackle this problem Eq. (1), we employ Newton’s method by linearizing the equation. For the Newton
method applied to an operator, 1f we aim to find the solution of F(u) = 0, the iteration can be written as:
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T((un)urwl = -(Fr(un)un - T(Hn) = Tj(un)ﬁu = _F(un)
where du = Upyq — Un.
In this context, F'(1)v is the (Frechet) derivative of the operator, which is a linear operator to v , defined as
follows :
To find F'(u) n X _ forany v € X |
| Flue+ ) = Flu) — F'(wvl
lim =
|v|—=0 ||

where | - | denotes the norm in X .
For solving Eq. (1), given any initial guess wg(x) , for i = 1,2,...,M . 1n the { — th iteration of Newton's
method, we have Ti(x) = u + Su(x) by solving
{{L’ —f'(W)du=—Lu+ fu),x €Q )
Su =10, x € 801
which is based on the fact that the (Frechet) derivative of £ — f(*) at wis £ — f"(u). If Eq. (2) has a unique
solution, then by solving Eq. (2) and repeating the process M times, we will obtain one of the solutions of
the nonlinear equation (1). Denoting the mapping for u and éu, the solution of Eq. (2) with parameter u, as
G(u) = du . we know that
lim (G + 1d)"™ (ug) = u*,
n—oo
where u* is one of the solutions of Eq. (1). For different initial conditions, this process will converge to
different solutions of Eq. (1), making this method suitable for finding multiple solutions. Furthermore | the
Newton method 1s well-posed, meaning that each initial condition ug will converge to a single solution of
Eq. (1) under appropriate assumptions (see Assumption 1). This approach helps to address the ill-posedness
encountered when using PINNs directly to solve Eq. (1). However, repeatedly solving Eq. (1) can be
computationally expensive, especially in high-dimensional cases or when a large number of discrete points
are mvolved. In this paper, we tackle these challenges by employing neural networks.

(1-3-4) Neural Operator Structures

In this section, we introduce the structure of the neural operator to approximate the operator locally in the
Newton methods from Eq.(2), i.e., du := G(u), where du is the solution of Eq.(2), which depends on u. If we
can learn the operator G(u) well using the neural operator ((u; 8), then for an initial function u0, assume the
n-th iteration will approximate one solution, 1.e., (G + [d)™(ug) = w”.Thus,

(O + 1d)" (ug) = (G + 1d)™ (ug) =~ u*
For another initial condition, we can evaluate our neural operator and find the solution directly.
Then we discuss how to train such an operator. To begin, we define the following shallow neural operators

with p neurons for operators from X to U as
P

Ola; 8) = ZJI[- c(W;a+B;) VaclX (3)
=1

where W; € L(X,Y),B; € Y, A; € L(Y,Y) , and 6 denote all the parameters in {W;, A;, B},
Here | L(X, 1) denotes the set of all bounded (continuous) linear operators between X and Y, and g:— R
defines the nonlinear point-wise activation.
In this paper, we will use shallow DeepONet to approximate the Newton operator. To provide a more precise
description. in the shallow neural network, W; represents an interpolation of operators. With proper and
reasonable assumptions, we can present the following theorem to ensure that DeepONet can effectively
approximate the Newton method operator. The proof will be provided in the appendix. Furthermore, MgNO
1s replaced by W as a multigrid operator . and FNO 1s some kind of kernel operator; our analysis can be
generalized to such cases.

Before the proof, we need to establish some assumptions regarding the input space X < H2(f1) of the
operator and f(u) in Eq. (1).
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Assumption 1.
(1): For any u € X, we have that the linear equation (.L' - f'(u}}cﬁu = —Lu+ f(u) 1s well-posed for
solving fu.
(i1): There exists a constant F such that || f(x) | W2=(R) < F.
(111): All coefficients in £ are (! and 902 € (2.
(iv): X has a Schauder basis {b; }yr=, ., we define the canonical projection operator P, based on this basis.
The operator 7, projects any element u € X onto the finite-dimensional subspace spanned by the first n
basis elements {by, b,,..., b, }. Spectfically, for u € X, u = ¥ g apby . let B (u) = Xi=g ayby. where ay,
are the coefficients in the expansion of u with respect to the basis {b,,}. The canonical projection operator 7,
1s a linear bounded operator on X' . According to the properties of Schauder bases, these projections 7, are
uniformly bounded by some constant C.
Furthermore, we assume, for any u € X, € > 0 there exists a n such that

||u—_’Pnu||Hz(m =€, forallueX

a
X J X

Figure 1: The sketch of proof for Theorem 1.

Theorem 1. Suppose X =Y < H2({2) and Assumption 1 holds. Then, there exists a neural network
O(a; @) € Ep defined as

P
Epi=1 Y Ao (Wiu+ bi)o (wi -z +G) Wi € L(X,R™), b e R™ A e R™*™ 3 (4)

i=1
such that
P
sup 1S Ajo (Wiu+ b;) o (w; - = + &) — G(u) <Cim = +Ca(e+p 1), (5
ueX i=1 L2(Q2)

where ¢ 15 a smooth non-polynomial activation function, n 1s shown in Assumption 1 and contained m
W, €y 1s a constant independent of m, €, and p, (3 15 a constant depended on p,n and F (see in Assumption
1) 1s the scale of the P in Assumption 1. And € depends on n . n and € are defined in Assumption 1.

(1-3-5) Mean Square Loss
The Mean Square Error loss function is defined as:
1 My, M,
£5(6) = gz 2 2_ 16 (1) (k) — O (u;:0) (ww)|” ©®)
o SN mlk=]
where Uy, Up, ..., Uy, ~ @ are independently and identically distributed (iid) samples in X. and
Xq,Xg, ..., Xpy, are uniformly 11.d samples i £).
However, using only the Mean Squared Error loss function is not sufficient for traming to learn the Newton
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. . . 1M,
method, especially since in most cases, we do not have enough data {1;,§ (u}-)}u;‘.

Furthermore, there are situations where we do not know how many solutions exist for the nonlinear equation
(1). If the data 1s sparse around one of the solutions, 1t becomes 1mpossible to effectively learn the Newton
method around that solution.

Given that £5(8) can be viewed as the finite data formula of e5_(0) , where
£5,(0) = Mﬂ};;_:g L &s5(0)
The smallness of £5_ can be mferred from Theorem 1. To understand the gap between £5 (0) and £5(0) , we

can rely on the following theorem. Before the proof. we need some assumptions about the data in £5(0) :

Assumption 2.
(i) Boundedness : For any neural network with bounded parameters, characterized by a bound B and
dimension dg, there exists a function ¥: L2(£1) — [0, o) such that

Gu)(@) < ¥(u),  sup |O@w6)(@) <U(w), sup |LO(u;8)(x)| < ¥(u)

#c[-B,Bde 8e[-B,B]%
for all u € X, x € {2 | and there exist constants £ ,x > 0, such that
U(u) < C (1 +||uflg=2)"- (7
(ii) Lipschitz continuity : There exists a function @: L%({2) — [0, ) . such that
O(u; 0) () — O(u; 0) ()| < (u) ||6 — 6] ®)

forallu € X, x €2, and @(u) < C(1+ ||u||32[ﬂjnjk- for the same constants €' ,x > 0 asin Eq. (7).

(111) Finite measure: There exists @ > 0 | such that

f eIl dp(u) < oo
H2(52)

Theorem 2. If Assumption 2 holds, then the generalization error 1s bounded by

sup  |E(Es(8) — Es.(0)) < C [— (1+ Cdolog(CBV/M,)*172) + dolog M. |
HE[—B,E]dO < WV J'tf,_, " \,’ l‘!z
where (' 1s a constant independent of B,dg , M, ., and M,, . The parameter i 1s specified in (7). Here , B
represents the bound of parameters. and dg 15 the number of parameters.

Remark 1. Assumption 2 is easily satisfied if we consider X as the local function set around the solution,
which is typically the case in Newton’s methods. This aligns with our approach and the working region in
the approximation part (see Remark 3). The error supge;_gge|E(s(0) — £5,(0))| suggests that the
network can perform well based on the loss function £5(0) . The reasoning 1s as follows: let 0, =
arg nlinBE[—B.E]de £s(0) and 05, = arg mmee[—a.s]“ﬁ £s,(0) - We aim for Ees, () to be small, which can

be written as:

E€sc(0s) < Esc(0s.) + E(Es(0s) — Esc(0s)) < Esc(0s.)+  sup  |E(Es(0) — Es:(8))],
0c[-B,B)%

where £5_(0s,) 15 small, as demonstrated by Theorem 1 when B 1s sufficiently large.

(1-3-6) Newton Loss

As we have mentioned, relying solely on the MSE loss function can require a significant amount of data to
achieve the task. However, obtaining enough data can be challenging, especially when the equation is
complex and the dimension of the mput space 1s large. Hence, we need to consider another loss function to
aid learning, which is the physical information loss function | referred to here as the Network loss function.
The Newton loss function is defined as:
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Ny, N.
1 — - ’ 2
En(O) = NN Z;Lz:l (L = f'(u;))O (uj; 0) (xr) + (Luj — f(u;)) ()] )]
J= =
where Up, Usz,-.., Uy, ~ V are mdependently and identically distributed (11.d) samples m X, and
X1, Xz,..., Xy, are uniformly 1.1.d samples in f2.

Given that ex(0) can be viewed as the finite data formula of £y_(8) . where
Ene(@)= _ lim Es(0).
ne(0) Nu,Nz—oc s(6)

To understand the gap between £y _(0) and £y(8) . we can rely on the following theorem:
Corollary 1. If Assumption 2 holds, then the generalization error is bounded by

1 - dg+/Tog N
sup  |E(Ex(8) - Eno(0)) < C [__ (1+ Cdolog(CBY/N,)*+1/?) + “’—g”] .
8c|-B.B|%e V];u VN,
where € is a constant independent of B,dg, N, and N, . The parameter k is specified in (7). Here , B
represents the bound of parameters, and dg 1s the number of parameters.

Remark 2. If we only utilize £5(0) as our loss function, as demonstrated in Theorem 2, we require both M,
and M, to be large, posing a significant challenge when dealing with complex nonlinear equations.
Obtaming sufficient data becomes a critical issue in such cases. In this paper, we integrate Newton's
information mto the loss function, defining it as follows:

£(0) := AEs(0) + En(9), (10)
where £y(0) represents the cost associated with the unsupervised learning data. If we lack sufficient data for
£:(0) , we can adjust the parameters by selecting a small 4 and increasing N, and N, . This strategy enables

effective learning even when data for £5(0) 1s limited. We refer to this neural operator, which incorporates
Wewton information, as the Newton Informed Neural Operator.

In the following experiment, we will use the neural operator established in Eq. (3) and the loss function in
Eq. (10) to learn one step of the Newton method locally, 1.e.. the map between the input u and the solution
du 1n eq. (2). If we have a large dataset . we can choose a large 4 in £(0) (10) ; if we have a small dataset,
we will use a small A to ensure the generalization of the operator 1s minimized. After learning one step of the
Newton method using the operator neural networks, we can easily and quickly obtain the solution by the
initial condition of the nonlinear PDEs (1) and find new solutions not present in the datasets.

(1-3-7) Experimental Settings

We introduce two distinct training methodologies. The first approach employs exclusively supervised data.
leveraging the Mean Squared Error Loss (6) as the primary optinuzation criterion. The second method
combines both supervised and unsupervised learning paradigms. utilizing a hybrid loss function 10 that
integrates Mean Squared Error Loss (6) for small proportion of data with ground truth (supervised tramning
dataset) and with Newton’s loss (9) for large proportion of data without ground truth (unsupervised training
dataset). We call the two methods method 1 and method 2. The approaches are designed to simulate a
practical scenario with imited data availability, facilitating a comparison between these training strategies to
evaluate their efficacy in small supervised data regimes. We chose the same configuration of the neural
operator (DeepONet) which is aligned with our theoretical analysis.

Case 1: Convex problem

We consider 2D convex problem L(u) — f(u) = 0 , where L(u):= —du, f(u): —u® +sin 5u(x + y)
and u =0 on 4] . We investigate the framing dynamics and testing performance of neural operator
(DeepONet) trammed with two methods, focusing on Mean Squared Error (MSE) and Newton’s loss
functions. For method 1, we use 500 supervised data samples (with ground truth), while for method 2, we
use 5000 unsupervised data samples (only with the initial state) along with supervised data samples,
employing the regularized loss function as defined in Equation 10 with 4 = 0.01.
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(a) Training and testing errors using Method (b) Comparison of models trained using
1 (MSE loss for 500 supervised data) Method 1 (deepONet-MSE) and Method 2

(deepONet-Newton)

Figure 2: Training and testing performance of DeepONet under different conditions.
MSE Loss Training (Fig. 2(a)): In method 1, Effective training is observed but exhibits poor generalization.
The significantly larger testing error compared to the training error suggests that using only MSE loss is
msufficient. Performance Comparison (Fig. 2(b)): DeepONet-Newton model (Method 2) exhibits superior
performance i both L, and H; error metrics, highlighting its enhanced generalization accuracy. This study
shows the advantages of using Newton’s loss for tramning DeepONet models. illustrating that mcreasing the
number of unsupervised samples via introducing Newton’s loss leads to a substantial improvement in the test

L, error and H, error.

Case 2: Non-convex problem with multiple solutions
We consider a 2D Non-convex problem,

{—Au(x,y) —u?(x,y) = —ssin(mx) sin(ry) inQ an

u(x,y) =0 in aQ

where 2 = (0,1) x (0,1) . In this case, L(u):= —A(u) . f(u) :=u? — ssin(nx) sin(y) and it has
multiple solutions (see Figure 3 for its solutions).
In the experiment, we let one of the multiple ground truth solutions rarely touched in the supervised training
dataset such that the neural operator trained via method 1 will saturate in terms of test error because 1t relies
on the ground truth to recover all the patterns for multiple solution cases (as shown by the curves i Figure
3). On the other hand, the model trained via method 2 is less affected by the limited supervised data since the
utilization of Newton’s loss. One can refer to Appendix A for the detailed experiment setting.

— 1.2 test error deepPOD-12

0l
: — M1 test error deepPOD-12
¥ L2 test errar deepPOD-Newton
- M1 test arror deepPOD-Newton
T

H
’
]
o 200 40

(a) Solutions of 2D Non-convex problem (11) (b) Method 1 VS Method 2

Figure 3: Solutions of 2D Non-convex problem (11)
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Efficiency This case study highlights the superior efficiency of our neural operator-based method as a
surrogate model for Newton’s method. Both methods parallelize operations to solve 500/5000 Newton linear
systems simultaneously, each with distinet initial states. The key advantage of the neural operator lies in its

ability to batch the computation of these independent systems efficiently.

By efficiently batching and sampling a wide variety of initial states, the neural operator improves the
likelihood of discovermng to multiple solutions, particularly in nonlinear PDEs with complex solution
landscapes. Consequently, while Newton’s method alone does not mherently guarantee finding multiple
solutions, the combination of rapid computation and extensive initial condition sampling enhances the

chances of identifying multiple solutions.

For a fair comparison, the classical Newton solver was also parallelized using CUDA on a GPU. However,
the neural operator naturally handles large batch sizes during inference, allowing 1t to process all systems in

one go.

Parameter Newton’s Method NINO
Number of Streams 10 -

Data Type float32 float32
Execution Time for 500 linear Newton systems (s) 31.52 1.1E-4
Execution Time for 5000 linear Newton systems (s) 321.15 1.4E-4

Table 1: Benchmarking the efficiency of Newton Informed Neural Operator. Computational Time
Comparison for Solving 500 and 5000 Initial Conditions.

Case 3: The Gray-Scott model
The Gray-Scott model describes the reaction and diffusion of two chemical species, 4 and S | governed by
the following equations:
dA s
E_ DAﬂA—.SA + (Ii.«( +{J:]A,
as o .
o7 = DsAS + 547 = p(1-5),
where Dy and Dg are the diffusion coefficients, and u and p are rate constants.
Newton’s Method for Steady-State Solutions :
Newton’s method is emploved to find steady-state solutions (3—f =0 ,z—f = 0) by solving the nonlinear

system:
{u = DaAA — SA% 4+ (u+ p)A,

12
0= DsAS + 8542 — p(1-5), (12)

The Gray-Scott model 1s hughly sensitive to tmtial conditions, where even minor perturbations can lead fo
vastly different emergent patterns. Please refer to Figure 4 for some examples of the patterns. This sensitivity
reflects the model’s complex, non-linear dynamies that can evolve info a multitude of possible steady states
based on the initial setup. Consequently, training a neural operator to map nitial conditions directly to their
respective steady states presents significant challenges. Such a model must learn from a vast functional
space, capturing the underlying dynamics that dictate the transition from any given iitial state fo its final
pattern. This complexity and diversity of potential outcomes 1s the inherent difficulty in training neural

operators effectively for systems as complex as the Gray-Scott model.
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(a) An example demonstrating how the neural operator maps the initial state to the steady state in a iterative

manner
\“«“—h Training loss L2 test error
hiu A

0.012 —mean L2 error
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0.008

L2 error
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0.006
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v uwavoad”

0.002 g -
0 1 2 3 4 5 6 % b
The number of Neural Operator iteration o 200 400 600 800

(b) Average convergence rate of NINO. (c) Training via method 2
Figure 4: The convergence behavior of the Neural Operator-based solver.

In subfigure (a). we use a ring-like pattern as the initial state to test our learned neural operator. This pattern
does not appear in the supervised tramming dataset and lacks corresponding ground truth data. Instead, it is
present only in the unsupervised data (Newton’s loss). 1.e.. some data in Newton’s loss will converge to this
specific pattern. Despite this. our neural operator, trained using Newton’s loss, can effectively approximate

the mapping of the initial solution to its correct steady state. we further test our neural operator. utilizing 1t as

a swrogate for Newton’s method to address nonlinear problems with an initial state drawn from the test
dataset. The curve shows the average convergence rate of || u — u; || across the test dataset. where i
represents the prediction at the i-th step by the nmeural operator. In subfigure (c), we compare the Training
Loss (Rescaled Newton’s Loss) and Absolute L2 Test Error. The magnitudes are not directly comparable as
they represent different metrics; however, the trends are consistent. indicating that the inclusion of

unsupervised data and tramning with Newton’s loss contributes to improved model performance.
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