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In this article we introduce the new class of operators in Banach space with the main properties of normal
operators in Hilbert space.

Earlier, In [1] it was introduced and researched the class of self-adjoint operators in Banach space.

Previously, we give some definitions and notions.

If for some Y € B atan Xe DA _ B and any real numbers t the following equality
| Ax -ty + [~z =l Ax —ty] "+ [x+ 2] W

is true , then we have the operation when the element Y € B is matched the element Z € B [1].

Theorem 1. If operator A is defined on everywhere dense set in B , then the matching, defined above,
is definitely defined.

Proof.[1] Let be the statement of Theorem 1 is incorrect, then for some element Y there are such two elements

Zl and 22- that the following ratios

HAx + l‘yH2 +Hx — tZlH2 :HAx — tyH2 +Hx +If21H2 2)
and
lax +off | 2, =ax —of +]x 2z ®

aretrue atall X € DA < B and real numbers t .
Subtracting from (2) the ratio (3), we have

2

2 2 2
Hx +z‘zl‘ —Hx —2‘22H = Hx +l‘ZIH —Hx +t22H (4)

Because (4) is correct for all X | then, assuming X = tzl we have,

-4 Hzl‘z =H21—22H2 |z, +7,| 5)

and, assuming X = 1Z,,  we have
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~4]zf =la -z ~la+z] ©)
Compare (5) and (6), then we get
|z =]

Further, from (5), taking into account (7),

Z,| )

|2~ 2| =4z +]z+ 2| <-4z | +(Ja] +]2])

|z~ 2] =0
or

Definition 1.

This operation is called an adjoint operator to the operator A and it is denoted A"
Definition 2.

t A= A" || Aty +H x—tAyH =|| Ax—ty|* +| x+tAy[ @

then operator A ts called a self-adjoint operator in Banach space.

The expression H AX+ sz +H X—= AYHZ = H AX — YHZ +H X+ AYHZ 9)
is an equvalent to the definition (8).

Definition 3. If A isam adjoint operator to the operator A , accord to the Definition 1, then operator A
k %k
. is called the normal operator in Banach space if AA — A A and
2 « |2 2 « |2
|AX+ty| +Hx—tA yH =| Ax—ty]| +Hx++tA yH (10)

The definition of adjoint operator , given by the formula (10), is an equivalent of the definition of adjoint
operator, given by the formula

2 . |2 2 . ||2
|AX+Y]| +HX—A yH =||Ax—y| +Hx+A yH (11)
Later, when proving subsequent theorems, we use any of the definitions for the sake of convenience.

Theorem 2 . Norms of operators A and its adjoint operator A* ,defined with help of formula (10) in
Banach space, coincide.
Proof. The formulas

H AA™X +tyH2 +HA x—tAyH2 = H AA"‘x—tyH2 +| A x+tAy||2 (12)
AA™X +ty 2 +H A'x—tA"y AA"‘x—tyH2 +H A*x+tA*yH2(13)
are true. Subtract equality (13) from (12) , then we get

[(W+)? ~ @t A% =[@+t)? @] Ax

2
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or

A =1A¥]

*
Last means the norms of operator A and its adjoint operator A coincide.
Theorem 2 is proven.

Theorem 3.The whole N — degree of a normal operator in Banach space is a normal operator.

Proof. We carry out the proof by the method of mathematical induction. Let be first N = 2 .S0 operator A
is a normal, then

|AGA)+ty Aty = A(A) -ty +|Ax Aty g

o [Ax =t y| 4t (A Y[ =[xty x-ta) Y
Substituted into (14) expression for HAAX —tA” sz from (15), we get

HA(AX)thyH2 + HAX +tA'y

[ fpertaty] ol < fatx-of + faxeny

‘2

[ fpe-taryl <[ atx o+ ey

Further, we suppose that our statement is fair for k=m , then we proof the validity of this statement for

k=m+1 by the manner, described above.

Letthe bounded inverse operator A tothe operator A exists . Put in formula
A=ty o+ [ Ay =[x+ ]+ x-tacy]

AX=1Z, ag A'Y=T nen

T ey

Thus any whole degree of normal operator is the normal operator.
Theorem 3 is proven.

Theorem 4. The product of two normal commuting operators Aand B in Banach space is the normal
operator,or

|ABX +1y| +[x—tB"A"y| = AB x—ty| +| x+tB A’y
Proof. From the conditions of the Theorem 4

we have | AX — ty +Hx +tA*yH2 = Ax +ty| + Hx —tA"y

‘2

‘2

[Bx—ty| +[x +tB°y| =|Bx-+ty|* +|x—tB"Y| e AB = BA

Besides, sequentially using the normality andalso commutation of these operators and B , we have

|ABx +ty[" +|[Bx—tA'y| = AB x—ty|* +| B x+tA*yH2 -

HBx—bA*yerHB*A*y ‘2 +H x—tB*A*yH2 (18)

‘=HB X+tA"y
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Taking into account (18) in (17) and commutation of operators A and B , We get, that (AB) is an

adjoint operator to the operator AB .Besides, this product AB is a normal operator.

|ABx +tyf +[x—tB*A'y| =] AB x—ty[f +]| x+tB*A'Y|

The operator

(AB)* is also the adjoint operator to the operator AB
|ABx +ty[" +|x—tB*A'y|=|AB x—ty| +| x+tBA'Y[

Further, (AB)* AB = AB(AB)*

Because these operators A and B are commuting, their product AB is a normal operator. Theorem 4 is
proven.

The statement of Theorem 3 follows from the results of the Theorem4.

Theorem 5. The eigenvectors corresponding to eigenvalues with different modules of the normal in Banach

space operator A are orthogonal in the described below sense. (Elements X’ y of Banach space B are

orthogonal if for all t(—oo <t< oo) . ||X+ty|| = ||X —ty||

Proof. The proof of this Theorem 5 is similar to the proof of the similar statement for the self-adjoint analoque
operator in Banach space.[1].

Let be A and ,U two eigenvalues of normal in Banach space operator A with different modules |
AX = AX

AY = L1Y and for all real numbers t :

[Ax -ty +[x—tay| =] Ax—ty] +[x—tay
[ ty]” +x =t =[x —ty]" +|x+ta

2

or, if insteadof y we put /1y , then
A% + ﬂtsz +[x - t/lyyH2 =[x - /"ttyH2 +[x+ t/lyH2

AP sy et = et -t
simien. |22 [ {x -y~ |x ] =y + 2uax oy — Auox’

Then, taking into account last equality, we get
A _Ix gyl —lxtaaylf _ estitaty] —e-2uty|

i Ity + 2o~y —2ux [tauy + x| ~[tapey —duxf

B R e N R N S

I R e
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1 2
for ﬁ ’u and N the following evalution for Q

1z
2 ‘2

|ﬂ,|2 B X+t/1”+1,u”+1y _ X—tﬂ,nﬂ/,lnﬂy

Py + A~y - )
B (X-l—tﬂml,unﬂ ‘_ X—t/lnﬂ,unﬂym‘x+tﬂn+lﬂn+ly‘+ul _tzn+lﬂn+ly )
7l + el [ty — o)
are fair,
O T e e A )
1y 2~y - 2
e T 1)
2 — 2 2
" 1 Ny + A"~y — 200
2 2
Expression % may be finite, then and only then when at all real numbers t
y7,
[x+ty] =[x-ty]
Really , for some real t denominator in % is not equal to zero, then at |,U| < |ﬂ«| <1

H|

2

2
Vv‘ <1 in (19) ,and |,U| < |ﬂ~| (|i| > 1) in (20) expression :ﬂ is less any given little number. Last
Y7

statement is not possible because A , 4 are finite numbers. Consequently, the right parts of unequalities
(19) abd (20) cannot be e in any proximity to zero . Last means that the statement of the Theorem 5 is proven.

2
Theorem 6 . If HGH =1and A isanormal operator in B, then, HA (e)H SHAZGH

Proof. In [1] the case of self-adjoint operator acting in Banach space is considered.

Let be A is a normal operator in Banach space. We have the following equalities
HAA*e + eH2 +[Ae— Aee||’ = HAA*e —eH2 +] Ae+ Aee|

or| AA'e + eH2 =|Ane —eH2 +|Ae+ Aee|’

Further

4| Ae| :(HAA*e+eH+HAA*e—eH)(H(AA*e+eH —H(AA*e—eH)HAA*e <4

A Ae| ] = 4| A%]

So the norms of normal operator A and its adjoint operator A* on any element of Banach space
coincide,then, that isthus, HA* (Ae)H = HA(AG)H = HAZEH
Theorem 6 is proven.
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Definition 4. Maximum unit vector f of bounded operator A in Banach space is called such unit vector f
for which the maximum value of operator A on unit vectors is reached HA f H = |M | ,where
A=l
Theorem 7. In Banach space each normal completely continuous operator A has a maximum vector.
Proof. The proof is similar to the proof of similar statement in Hilbert space.
We choose a convergent sequence, yn = AXn ,  Where ”Xn || = 1, n= l, 2, ...such that
lim|[Ax, = | Al
|
. Z=77). . . A
We substitute that vector M " is the desired maximum vector. Because, operator A is bounded
Yn

AX
Az = == n
im A )= Im Ay

(1)

Ax
. AX M
Vectors M belong to the unit sphere , consequently, their legth A( M”j is not more than | | . Taking

into account the statement of the Theorem 6 we get, that

A ) 1
B = B

Compare (22) and (21), we have, that Z is maximum vector of operator A .
Theorem 7 is proven.

‘ APX

1 2
2 || A%, [ —[M] (22)
M|

A - th the e ?
Theorem 8. If the operator has eigenvector with the eigenvalue M , then operator A has the
eigenvector with the eigenvalue ‘|‘M and —M .

2 2
Proof. The A €= M e may be written in the form
(A+ ME)(A— ME)e = O( E - unit operator).

If (A_ ME)e =17 , then Z is eigenvector of operator A with eigenvalue —M . f
2 2
A €= M € s written in the form (A_ ME)(A+ ME)e = 0 ,then operator A in Banach

space has the eigenvalue + M .Thus at conditions of the Theorem 8 operator A has the eigenvalues + M

and _M-

Remarks. Theorem 6 and Theorem 8 are the generalizations of similar results for self-adjoint operators in
Hilbert space [2](pp.195) .

n
The example of normal bounded analoque operator in direct sum 11 of n copies of Banach space |1, defined

by the matrice
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0 0 1
1 0 0
A= 1 0 0

.. . .. 0
0 00 .10
X:(Xj[!"'!Xn)’ y:(yli""yn)

The adjoint operator to the operator A has the form

010 .. 0
001 .. 0
A°=/0 0 0 1. 0

1 0 0 .. O

It is not difficult to state that AA = A" A amd (11) is fulfilled.

Really, AX+1Y =(X, +1Y3, X, +15,.00, X5 +1Y,)

X +tA*y:(X1 +ty2, X2 +ty3, vy Xn +ty1) , and, consequently,
. 112 2 « 112

[Axty]” =[x+ tA"Y[ . simier|AX =ty =[x —tA"y]["

In conclusion | would like to thank my collegue N.Q. Vagabov for his advice to continue my research from [1],
and tointroduce the class of normal operators in Banach space. | also thanked him for interesting discussion of
results.
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