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In this article we introduce the new class of operators in Banach space with the main properties of normal 

operators in Hilbert space.  

Earlier, In [1] it was introduced and researched the class of self-adjoint operators in Banach space. 

 

Previously, we give some definitions and notions. 

If for some Вy  at all BDx A   and  any real numbers t  the following equality  

2222
tzxtyAxtzxtyAx                                       (1) 

is true , then we have the operation when the element y В  is matched the element  Вz  [1]. 

 

Theorem 1.  If operator A is defined on everywhere dense  set in B , then the matching, defined above, 

is definitely defined. 

Proof.[1] Let be the statement of Theorem 1 is incorrect, then for some element y  there are such two elements

1z   and .2z   that the following  ratios   

 

Ax ty x tz Ax ty x tz      
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and 

Ax ty x tz Ax ty x tz      
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       (3) 

 

are true at all BDx A    and real numbers t . 

 Subtracting from (2) the ratio (3), we have 

 

x tz x tz x tz x tz      
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 Because (4) is correct for all  x , then, assuming 1tzx    we have,     
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2

21

2

14 zzzzz     (5) 

 

and, assuming 2tzx  , we have 
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    21

2

21

2

24 zzzzz     (6) 

 

Compare (5) and (6), then we get 

21 zz    (7) 

 

 Further, from (5), taking into account  (7),   

 

 
22 2 2 2

1 2 1 1 2 1 1 24 4z z z z z z z z        
    and  

1 2 0z z 
    or 

1 2z z  

 

Definition 1. 

This operation is called an adjoint operator to the operator A  and it is denoted  A
 . 

Definition 2. 

If A A ,and
2 2 2

AAx ty x tAy Ax ty x tAy        (8)  

then operator A  ts called  a self-adjoint operator in Banach space. 

  

The expression
22 2 2

Ax y x Ay Ax y x Ay        (9) 

 is an equvalent to the definition (8). 

Definition 3.  If A
 is am  adjoint  operator  to the operator A   , accord to the Definition 1 , then operator A

A is called the normal operator in Banach space  if AA A A  and 

2 22 2
Ax ty x tA y Ax ty x tA y        (10) 

The definition of adjoint operator , given by the formula (10), is an equivalent of the  definition of adjoint 

operator, given by the formula  

2 22 2
Ax y x A y Ax y x A y        (11) 

Later, when proving subsequent theorems, we use any of the definitions for the sake of convenience. 

Theorem 2 . Norms of operators A  and its adjoint operator *A  ,defined with help of formula  (10)   in  

Banach space, coincide. 

Proof. The formulas 

2 2 2 2
AA x ty A x tAy AA x ty A x tAy                               (12)  

2 2 2 2

AA x ty A x tA y AA x ty A x tA y            (13) 

are true. Subtract   equality (13) from (12) , then we get  

2 22 2 2 3[(1 ) (1 ) ] [(1 ) (1 ) ]t t A x t t Ax        
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or A x Ax   

Last means the norms of operator A  and its adjoint operator A
 coincide. 

Theorem 2 is proven. 

 

Theorem 3.The whole n degree of a normal operator in Banach space is a normal operator.  

Proof. We carry out the proof by the method of mathematical induction.  Let be  first 2n  .So operator A  

is a normal, then 

   
2222

ytAAxtyAxAytAAxtyAxA      (14) 

         and also 
2

2
22

2
2

)()( yAtxytAAxyAtxytAAx    (15) 

Substituted into (14) expression for  
2

ytAAAx   from  (15), we get 

 
22

2
22

2

22
2

22
2

22

ytAxtyxAytAxtyxA

ytAAxtyxAytAxytAxytAAxtyAxA









    (16) 

Further, we suppose that our statement is fair for mk  , then we proof the validity of this statement  for 

1mk  by the manner, described above.  

Let the bounded inverse  operator
1A  to the operator A  exists  . Put in formula 

2222
ytAxtyAxytAxtyAx    

,zAx  and ryA 
,then 

2 2 2 2
1 1 1 1( ) ( )z t A r A z tr A z tr z t A r             

 Thus any whole degree of normal operator is the normal operator.  

Theorem 3 is proven. 

Theorem 4. The product of two normal commuting operators A and B  in Banach space is the normal 

operator,or   

222
yAtBxtyxAByABtxtyABx    

Proof. From the conditions of the Theorem 4 

we have

2222
ytAxtyAxytAxtyAx    

2222
ytBxtyBxytBxtyBx   and AB BA  

Besides, sequentially  using the normality andalso commutation of these operators
A

 and B , we have 

222
ytAxBtyxAByAtBxtyABx   (17) 

222

yAtBxytAxByAtBxytABx   (18) 
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Taking into account (18) in (17) and   commutation  of operators A  and B , we get, that 
)(AB is  an 

adjoint  operator to the operator AB    .Besides, this product AB is a normal operator. 

222
yAtBxtyxAByABtxtyABx   .  

The operator 

( )AB 
 is also the  adjoint operator to the operator AB

222
yAtBxtyxAByABtxtyABx

ba    

Further, ( ) ( )AB AB AB AB   

Because these  operators A and B are commuting, their product АВ  is a normal operator.  Theorem 4 is 

proven. 

The statement of Theorem 3 follows from the results of the Theorem4. 

Theorem 5. The eigenvectors corresponding to eigenvalues with different modules  of the normal in Banach 

space operator А are orthogonal in the described below sense. (Elements ,x y   of  Banach space В  are 

orthogonal if for  all   tt .
x ty x ty  

 

Proof. The proof of  this Theorem 5 is similar to the proof of the similar statement for the self-adjoint analoque 

operator in Banach space.[1]. 

 Let be  and    two eigenvalues  of normal in Banach space operator А with different  modules  ,  

Ax x  

Ay y  and for  all  real numbers t : 

2222
ytAxtyAxytАxtyAx    

2222
ytxtyxytxtyx 


  

or, if insteadof y  we put y , then 

  22222

2222

ytxytxtyxtyx

ytxtyxytxtyx








 

 Similarly,       22222

xtyxtytyxtyx    

Then, taking into account last equality, we get

   

2 22 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2
2 2 2 2 2 2 2 2

2 2 2 22 2 2

x t y x tyx t y x t y

ty x ty x t y x t y x

x t y x ty x t y x t y

ty x ty x ty x ty x

     

      

       

    

    
  

     

     
 

     
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for  ,


and n   the following evalution  for 2

2




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









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
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
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are fair, 

 
222

1111

2

2
222

xtyxty

ytxt
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nnnn


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
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     (19) 

 

 
 222

11

2

2
222

xtyxty

ytxx

n

nn
















   (20) 

Expression  2

2




  may be finite, then and only then when at all real numbers t  

tyxtyx   

Really , for some real t  denominator in  

2

2




 is not equal to zero, then at 1    

1   in (19) ,and ( 1)    in (20) expression

2

2




   is less any given  little number. Last 

statement is not possible because   ,   are finite numbers. Consequently, the right parts  of unequalities 

(19) abd (20) cannot be е in any proximity to zero . Last means that the statement of the Theorem 5 is proven. 

Theorem 6 . If 1e  and A    is a normal operator in  В, then, 
2

2( )A e A e  

 Proof. In [1] the case of self-adjoint operator acting in Banach space is considered.  

Let be A is a normal operator in Banach space. We have the following equalities 
2 22 2

AA e e Ae Aee AA e e Ae Aee         

or
2 2 2

AA e e AA e e Ae Aee       

Further

2 24 ( )( ( ( ) 4 4Ae AA e e AA e e AA e e AA e e AA e A Ae e A e             

 

So the norms of normal operator A  and its adjoint operator A
on any element of Banach space 

coincide,then, that isthus,     2A Ae A Ae A e    

Theorem 6 is proven. 



Normal operator analogue in Banach space 

DOI: 10.35629/0743-11053945                                  www.questjournals.org                                           44 | Page 

Definition 4. Maximum unit vector f  of bounded operator A  in Banach space is called such unit vector f  

for which the maximum value of operator A  on unit vectors is reached A f M ,where

A M . 

Theorem 7. In Banach space each normal completely continuous operator A has a maximum vector. 

Proof. The proof is similar to the proof of similar statement in Hilbert space. 

We choose a convergent sequence, n ny Ax , where 1nx  , 1,2,...n  such that

lim nAx A  .  

We substitute that  vector  
z
M
y

1

 is the desired  maximum vector.  Because, operator A is bounded 

 




















 M

Ax
A

M

y
AAz n

n

n

n
limlim

    (21) 

 

Vectors  

Ax

M
n

 belong to the unit sphere , consequently, their legth 
nAx

A
M

 
 
 

 is not more than M  . Taking 

into account the statement  of the Theorem  6 we get, that 

221 1n
n n

Ax
M A x Ax M

M M M

 
    

 
            (22)  

Compare (22) and (21), we have, that z   is maximum vector  of operator A   . 

Theorem 7 is proven.  

Theorem 8. If the operator 
2A  has eigenvector with the eigenvalue 

2M , then  operator A  has the 

eigenvector   with the eigenvalue M  and  M  . 

Proof. The
2 2A e M e   may be written in the form   

( )( ) 0A ME A ME e   ( E  – unit operator).  

If ( )A ME e z  ,  then z  is eigenvector of operator A   with eigenvalue M . If

2 2A e M e is written in the form ( )( ) 0A ME A ME e    ,then operator A  in Banach 

space has  the eigenvalue M .Thus  at conditions of the Theorem 8 operator A has the eigenvalues M

and .M  

Remarks. Theorem 6 and Theorem 8 are the generalizations of similar results for self-adjoint operators in 

Hilbert space   [2](pp.195) .  

The example of normal bounded analoque operator in  direct sum 
nl1 of n  copies of Banach space 1l , defined 

by the matrice 
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























01..000

0......

0...010

0...001

1...000

A
. 

),,...,( 1 nxxx  ),...,( 1 nyyy   

The adjoint operator to the operator A has the form 

























0...001

.......

0..1000

0...100

0...010

A
. 

It is not difficult to state that AA A A  amd (11) is fulfilled. 

Really,  nnn tyxtyxtyxtyAx  1211 ,...,,  

),...,,( 13221 tyxtyxtyxytAx n  
, and, consequently,  

22
ytAxtyAx  . Similar

22
ytAxtyAx  . 

In conclusion I would like to thank my collegue N.Q. Vagabov for his advice to continue my research from [1], 

and tointroduce the class of normal operators in Banach space. I also thanked him for interesting discussion of 

results.  
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