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Abstract: In this paper, we consider the numerical method for the fractional differential equations.  It is based 

on the piecewise fractional interpolants (PFIs),  which is a new family of interpolants. We extend the technique 

to solve the Coupled system of fractional ordinary differential equations (FODEs) and present a 

predictor-corrector methods for the numerical solution of the coupled system of FODEs. By using the present 

method, we are able to solve efficiently the case that the solution of FODEs has lower smoothness. The stability 

and convergence of the present method is rigorously established. Some numerical examples are provided to 

confirm the theoretical claims. 
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I. Introduction: 
In recent years, fractional calculus has developed rapidly in various scientific fields, and plays an 

important role in signal processing, anomalous diffusion, physics and engineering (see[1][2][3][4][5]). 

Fractional differential equations can describe various complex physical and mechanical behaviors, and many 

phenomena in life can also be described by fractional differential equations, such as the problem of blood 

alcohol concentration, the problem of video tapes, and the problem of world population growth (see[6] and 

references therein ). So solving its numerical solution has practical significance. The exact solutions of many 

fractional differential equations cannot be obtained exactly, so the research on numerical algorithms of fractional 

differential equations has attracted much attention. At present, some progress has been made in the research of 

numerical algorithms for fractional differential equations, and they are gradually applied in different fields such 

as mechanics, viscoelasticity [7], biology [8], and simulated fluid flow [4] and so on. 

There are some existing methods for solving the coupled system of nonlinear fractional ordinary 

differential equations. For example, the methods in [9] constructed a Legendre spectral collocation method for 

coupled systems of nonlinear fractional differential equations. The linear incompatibility fractional differential 

equations with caputo derivatives two-dimensional coupled systems and corresponding inhomogeneous systems 

have been considered in [10]. It proposed a high-order scheme for numerical solutions of the coupled system of 

FODEs (cf. [11]). In [12], it proved the existence and uniqueness of a class of implicit nonlinear coupling 

systems of fractional differential equations under non-local conditions. In [13], it constructed legend-jacobi 

spectral configuration method to solve two point boundary value problems nonlinear systems with the fractional 

derivative orders at most two. It analyzed the stability and asymptotic stability of systems of nonlinear 

non-autonomous equations with generalized proportional caputo fractional derivatives in [14]. With the terminal 

problem of nonlinear systems of fractional differential equations, it was mentioned in [15], and so on. 

It is well known that the predictor-corrector method plays an important role in solving differential 

equations, such as, a new finite-difference predictor-corrector method was proposed in [16] to solve nonlinear 

fractional differential equations (FDEs) and further extended to the system of FDEs. In [17], it constructed 

second-order linear interpolation and third-order quadratic interpolation predictor-corrector methods to solve 

fractional-order nonlinear differential equations. A numerical method for predictor and corrector of fractional 

differential equations based on Newton interpolation was proposed in [18]. For a general right hand side 
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function, especially the function is nonlinear, it is usually difficult to obtain the analytical solution for systems of 

fractional differential equations. In addition, due to the singularity in some fractional differential equations, the 

polynomial cannot capture the singular term, especially when the solution has a low smoothness, which prompts 

us to propose a new numerical solution to solve this problem. 

The outline of the paper is as follows. In Section 2, we describe in detail the predictor-corrector 

algorithm based on PFIs. Then in Section 3, we give the stability and convergence analysis. In Section 4, we 

verify the feasibility of the method through some numerical examples. In Section 5 gives some concluding 

remarks. The final research questions of this paper are as follows 
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II. A new predictor-corrector Scheme 
2.1 Preliminary knowledge

 

Start with some simple knowledge points. 

The caputo fractional derivative is defined by 
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where (.)  is the Gamma function. 

Incomplete beta function  is defined by 
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here ( , )B a b  is the beta function. 

It is well-known that the (1.1) is equivalent to 
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We investigate a new approach to problem (1.1). The predictor-corrector scheme is still used, but the 

difference from the classic predictor-corrector scheme is that we no longer use the original Lagrangian 

interpolation polynomial, but use a new fractional interpolation family, with the regularity behavior that is 

exactly adapted to that of the right-hand side of (1.1) near the initial point t=0. To construct the fractional 

interpolation function family, it is first necessary to know the singular exponent of the caputo fractional 

derivative, assuming that the vDuD t
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where ,j jd h  are some constant. The parameter ,j j   are called the singular exponent of the function f, g. 

According to ([19], Theorem 2.5), the equation system (1.1) has a singular exponent on the right side of the 

equation. In [20], a pre-algorithm method was proposed, which can accurately find 1 2 3 4, , ,     and 

1 2 3 4, , ,    . This paper is based on this pre-algorithm method to determine the singularity index of the 

),(t baI



Piecewise fractional interpolation with application to the Coupled System of Nonlinear .. 

DOI: 10.35629/0743-110497110                   www.questjournals.org                  99 | Page 

equation and then carry out related work. 

 

Piecewise fractional interpolation is the core idea of this paper, and the following piecewise fractional 

interpolation function is constructed. 

For 1[ , ],  1,2,..., -1j jt t t j n  , there is the following fractional interpolation function 
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For 0 1[ , ]t t t , there is the following fractional interpolation function 
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For [0, ]t T , ( ),  ( )f t g t  can be approximated by the following fractional interpolation function 

1 2( ), ( )n np t p t  respectively 

1 2

1 2

1 2

1 2

1 1

10 20 0 1

1

1 1

1 1 2 1 1

2 2

10 20 0 1

2

2 2

1 1 2 1 1

,      [ , ] 

( )

,     [ , ]  

,      [ , ] 

( )

,     [ , ]  

n

n n n n

n

n n n n

c t c t t t t

p t

c t c t t t t

c t c t t t t

p t

c t c t t t t

 

 

 

 

  

  

  


 
  

  


 
  

,                     (2.7) 
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and for 10 20,i ic c , it is necessary to solve the following equations separately 
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It is evident from (2.4) and (2.7) that the regularity behavior of 
1 2( ), ( )n np t p t  is exactly the same as that of the 

function ( ), ( )f t g t . 

 

2.2 Description of the predictor-corrector scheme 

We will use the piecewise fractional interpolation function defined above to construct a predictor-corrector 

algorithm for solving the numerical solution of (1.1). Let , , 0,1,...,j ju v j k  be the approximate solution of 

( ), ( )j ju t v t , and assume that ,k ku v  has been solved, now we discuss the solution process of 1 1,k ku v  . 
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an approximation to this definite integral 
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functions ( , ( ), ( ))jf u v    and ( , ( ), ( ))jg u v    on interval 1[ , ]j jt t   are approximations of functions 
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and for 10 20, , 1,2i ic c i  , need to solve the following equations to get 
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The coefficient , 1,2,  1,2ik
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Now, to arrive at an explicit scheme, we let the interpolation function used in the interval 1[ , ]k kt t   be the 

same as that used in the previous subinterval 1[ , ]k kt t , and an explicit scheme can be obtained as follows 
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( ) ( ) , 0,1,..., 1

( ) ( ) , 0,1,..., 1

k
k k k k

k k j j j j k k k k

j

k
k k k k

k k j j j j k k k k

j

u g t c H c H c H c H k n

v g t c H c H c H c H k n



   





   



      

      




    (2.18) 

Since (2.16) and (2.18) we can get a prediction-correction scheme to calculate 1 1, , 1,..., 1k ku v k n    . 

(1) Prediction stage 
1

1 1 1 1 1 1 1 1

1 1 1 1 1 2 2 1 1 1 2 1 2

0

1
2 2 2 2 2 2 2 2

1 2 1 1 1 2 2 1 1 1 2 1 2

0

( ) ( )

( ) ( )

k
p k k k k

k k j j j j k k k k

j

k
p k k k k

k k j j j j k k k k

j

u g t c H c H c H c H

v g t c H c H c H c H



   





   



    

    




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where the coefficient 1 2, , 1,2ip ip

k kc c i   is obtained by solving the following system of equations 

1 2

1 2

1 2

1 2

1

1

1
1 1 121 1

2

1

2
1 1 121 1

( , , )

( , , )

( , , )

( , , )

p
k k kkk k

p pp
k k kkk k

p
k k kkk k

p pp
k k kkk k

f t u vct t

f t u vct t

g t u vct t

g t u vct t

 

 

 

 

   

   

     
     
   

     
     
   

. 

(2) Correction stage 
1

1 1 1 1 1 1 1 1

1 1 1 1 1 2 2 1 1 2 2

0

1
2 2 2 2 2 2 2 2

1 2 1 1 1 2 2 1 1 2 2

0

( ) ( )

( ) ( )

k
k k p k p k

k k j j j j k k k k

j

k
k k p k p k

k k j j j j k k k k

j

u g t c H c H c H c H

v g t c H c H c H c H



 





 



    

    




 

where the coefficient 1 2,i i

k kc c  is obtained by (2.14). 

Remark 2.1 The startup item 1 1,u v  should be calculated through the following steps 

(1) Let the initial predicted value 1 10, 0p pu v  . 

(2) Obtain 10 20, , 1,2ip ipc c i   by solving the following system of equations 

1

1 2

1

1 2

1

10
0

1
1 1 20

1 1 1

2

10
0

2
1 1 20

1 1 1

( , ( ), ( ))
1 0 lim

( , , )

( , ( ), ( ))
1 0 lim

( , , )

p

t
p

p p

p

t
p

p p

f t u t v t
c

t
t t c

f t u v

g t u t v t
c

t
t t c

g t u v


 


 









 
           

 

 
           

 

 

(3) Calculate the initial correction value 
1 10 1 10

1 1 1 10 10 20 20

2 20 2 20

1 2 1 10 10 20 20

( )

( )

p p

p p

u g t c H c H

v g t c H c H

  

  

 

(4) Obtain 10 20, , 1,2i ic c i   by solving the following system of equations 

1

1 2

1

1 2

1

10
0

1
1 1 20

1 1 1

2

10
0

2
1 1 20

1 1 1

( , ( ), ( ))
1 0 lim

( , , )

( , ( ), ( ))
1 0 lim

( , , )

t

t

f t u t v t
c

t
t t c

f t u v

g t u t v t
c

t
t t c

g t u v


 


 









 
           

 

 
           

 

 

We refer to the algorithms (1)-(2) above as predictor-corrector schemes. Next, the stability and error of the 

algorithm will be analyzed. 

 

III. Error estimation and stability analysis 
3.1 Auxiliary results 

We will mention some lemmas, which are essential for the analysis of stability and error. Let 

 1 2, ,...,n n     and  1 2, ,...,n n    , where n , are two different non-negative real 

numbers, and satisfy the following relationship 

1 2 1

1 2 1

0 ... ,   0 1,   1,..., -1

0 ... ,    0 1,    1,..., -1

n i i

n i i

i n

i n

    

    





       

       
.             (3.1) 

We define the space n  (or n ) of the continuous function on ([ , ], )nC a b  (or ([ , ], )nC a b  ) as 

follows 
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 1 1

1 2 1
([ , ], ) [ , ] | [ , ], ... ( ) [ , ]

n nnC a b f C a b t f C a b D D t f C a b
 

   

 

      . 

The operator , 0D f    is defined in [1] as 

1D f t f



  .                       (3.2) 

 

Lemma 3.1 (Discrete Gronwall Inequality, [21]) Let Niai 0, , be a sequence of non-negative real 

numbers satisfying 

,1,)(

11

0

NiajitMba j

i

j

ii 










 

where  0,10  M  is bounded independently of t , and Nibi 0, , is a monotonic increasing 

sequence of non-negative real numbers. Then 

,0),))((( NitiMEba ii  
 

 

where 




 


0

.
)1(

)(
k

k

k

z
zE




 

is the Mittag-Leffler function of order  . 

In particular, when 1 , (3.4) becomes .0),exp( NitMiba ii   

 

3.2 Error Analysis 

In the error analysis, we assume that equation system (1.1) satisfies the following Lipschitz condition with 

respect to the second and third variables: that is, there exists a constant L that satisfies the following conditions 

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

| ( , , ) ( , , ) | (| | | |)  , , ,

| ( , , ) ( , , ) | (| | | |)   , , ,

f t u v f t u v L u v u v u v u v R

g t u v g t u v L u v u v u v u v R

      

      
          (3.6) 

Let  3 1 2 3, ,     and  3 1 2 3P , ,    be real numbers satisfying (3.1), and assuming that the 

right-hand function of equation group (1.1) satisfies 3( , ( ), ( )) ([0, ], )f t u t v t T   and 

3( , ( ), ( )) ([0, ],P )g t u t v t T  , and combined with (3.6), the predictor-corrector scheme proposed in this 

paper has the following error estimates 
 3min 2,2( )

1 1| ( ) | ,       1,..., -1k ku t u Cn k n
  

    ,                 (3.7) 

 3min 2,2( )

1 1| ( ) | ,        1,..., -1k kv t v Cn k n
  

    ,                 (3.8) 

where C  is a constant independent of k ， n  and grid size. 

Rremark 3.3 The proof of (3.2) is easily obtained from ([20], Theorem 2). For a better understanding, the 

following will briefly introduce. 

 Let: 
1 1

1 2

1 1 1 1| ( ) |,  | ( ) |, 0,1,..., 1
k kk k k ke u t u e v t v k n
          , we have: 

1

1

1

1 1

1
0

1
1 1 1 1 1 1 1 1

1 1 2 2 1 1 2 2

0

1

1
0

1 1 1 1 1 1 1

1 1 2 2 1 1 2

0

1
| ( ) ( , ( ), ( ))

( )

    ( ) ( ) |

1
    | ( ) ( , ( ), ( ))

( )

    ( ) | | (

k

k

k

t

k

k
k k p k p k

j j j j k k k k

j

t

k

k
k k k

j j j j j j j

j

e t s f s u s v s ds

c H c H c H c H

t s f s u s v s ds

c H c H c H c





























 


   

 


   








1 1

1 1 1 1 1

2 1 1 2 2

0 0

1 1 1 1 1 1 1 1

1 1 2 2 1 1 2 2 1 2 3

) ( ) |

    | |:

k k
k k k

j j j j j

j j

k k p k p k

k k k k k k k k

H c H c H

c H c H c H c H I I I

 

 

 

      

 

(3.9)

 From([20], 



Piecewise fractional interpolation with application to the Coupled System of Nonlinear .. 

DOI: 10.35629/0743-110497110                   www.questjournals.org                  104 | Page 

lemma 1) we know: 
 3min 2,2( )

1 1I C n
  

 . 

 Using (2.8), (2.9), (2.14), (2.15) and the Lipschitz conditions of f , g  with the Lipschitz constant 0L  , 

the following results hold 

2 1

1 2 1 2 1
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1
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 | | (| | | |) |
( )

k
k k k

j j j

j

k p k p k

j j j k k k k k k

k k k
j

j

I I

c c H c c H c c H

c c H c c H c c H
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 
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

 

 




     

     

 
  
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


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1 2 1 2 1
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1 2 1 2 1 1 2 1 2 1
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1

2

| (| | | |)
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( ) ( )

|
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k
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H t H t H H
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t t t t t t

H t H

 
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   

         

 





 



 


    
   








 
   

 






1 11 2 1 2 1

1 1

1

1
1 1

1 1

1 2

, 1 max 1 1

1

| (| ( ) | | ( ) |)
( )

(| | | |) (| ( ) | | ( ) |)

k k

k k

k
p pk

k k

k k k

k
p p

j k j j k k

j

u t u v t v
t t t

L M e e C u t u v t v

    



 

 

  

 



  




   

 

 
      

 


.   (3.10) 

The coefficient , 1j kM 

 $ is defined in [20]. 

 Assume 3 3   (the assumption here does not affect the numerical results), from ([20], Theorem 2), we 

have 
 3min 2,2( )1 2| | | | ,   1,...,j je e Cn j k

  
   ,               (3.11) 

3

1 1

min{2,2( )}

1 1| ( ) | | ( ) |
k k

p p

k ku t u v t v Cn
 

 

 

     .             (3.12) 

 From (3.10), 3.11), (3.12) and the analysis of the coefficient , 1j kM 

  in [20], the following error estimates 

are obtained 
 3min 2,2( )

1 1| ( ) |k ku t u Cn
  

   .                 (3.13) 

In a similar way, we can derive 
 3min 2,2( )

1 1| ( ) |k kv t v Cn
  

   .                 (3.14) 

 

3.3 Stability Analysis 

For the convenience of stability analysis, we note that 

2 1
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1 2 1 2 1

2 1 2 1

1 2 1 2 1 1 2 1 2 1

1 1

1 10 1 20
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| | | |   1,...,
( ) ( )

           

k k

t

k k k k

j j j j j j
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   
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

 

 

   
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 


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 
  

 
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 
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
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 






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

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,            (3.15) 
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   

         

 

   

   

 
















  

 
 

.          (3.16) 

In same way, the definitions of , 1j kQ

  and 
, 1j kQ 

 similar to , 1j kN 

  and , 1j kN  , i.e. replace f,  in 

, 1j kN 

  and , 1j kN   with g,  respectively, we won't go into detail here, then the algorithm format can be 

rewritten as follows 

(1) Prediction stage 

1 1 , 1

0

( ) ( , , )
k

p

k j k j j j

j

u g t N f t u v 



  ,                 (3.17) 

1 2 , 1

0

( ) ( , , )
k

p

k j k j j j

j

v g t Q g t u v 



  .                 (3.18) 

(2) Correction stage 

1 1 , 1 1, 1 1 1

0

( ) ( , , ) ( , , )
k

p p

k j k j j j k k j k k

j

u g t N f t u v N f t u v 

     



   ,        (3.19) 

1 2 , 1 1, 1 1 1

0

( ) ( , , ) ( , , )
k

p p

k j k j j j k k j k k

j

v g t Q g t u v Q g t u v 

     



   ,        (3.20) 

where 1,..., 1k n  . 

 

Similar to the analysis of coefficient , 1j kM 

  in [20], we can get that 

1 1 1

, 1 1 1 1 1 1( ( ) ( ) ) ( ( ) )j k j k j j k j j k jN C t t t t C t t       

           ,      (3.21) 

1 1 1

, 1 1 1 1 1 1( ( ) ( ) ) ( ( ) )j k j k j j k j j k jN C t t t t C t t      

           ,      (3.22) 

where ,,,1 kj  , for ,1 kj  we have 

.)( max11,1
 CttCN kkkk  


                  (3.23) 

Similarly, , 1j kQ

  and 
, 1j kQ 

 satisfy the following relationship 

1

, 1 1( ( ) )j k j k jQ C t t  

   ,                       (3.24) 

1

, 1 1( ( ) )j k j k jQ C t t  

   ,                       (3.25) 

where ,,,1 kj  , for ,1 kj , we have 

.)( max11,1
 CttCQ kkkk  


                   (3.26) 

For the convenience of discussion, we transform the right-hand side of (1.1) into an equivalent model, as 

follows: 
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( , ( ), ( )) : ( )

( , ( ), ( )) : ( )

f t u t v t u t

g t u t v t u t








,                     (3.27) 

where   and   are real numbers. 

Theorem3.4 Let 10  , for f  and g  given by (3.27), the algorithm (3.19), (3.20) is stable with 

respect to the initial value, that is, it satisfies 

0 1| |  ,     | |  ,    1,..., -1j ju Cu v Cu j n   ,          (3.28) 

where C  only depends on   (or  ),   and T . 

Proof: First prove that 0| | ,    1,..., -1ju Cu j n  , 

we can easily know that )(1 tg  satisfies 

            

1
( )

1 0 0 0

0

| ( ) | | | exp( ) exp( )
!

kn
k

k

t
g t u u t u T

k





   .               (3.29) 

Substituting (3.29) into (3.17), noting the definition of f  in (3.27) and the estimation of the coefficients in 

(3.22), we derive 

1 1 , 1 0

0

1

1

0

| | | ( ) | exp( )

        | | ( ) | |

k
p

k j k j

j

k

j k j j

j

u g t N u Cu T

C t t u



 

 









  

 




               (3.30) 

From ([22], Lemma 3.1, 3.2) we know that 
1

1

0

( ( ) )
k

j k j

j

t t  





  is bounded when 0 1  . Then we 

have 
1 1 1 1

1( ( ) ) ( 2 ) ( 1 ) ( 1) ( 1)j k jt t C k j k j j C k j       

           .   (3.31) 

Substituting (3.31) into (3.30) yields 

1

1 0

0

| | exp( ) | | ( 1 ) | |
k

p

k j

j

u Cu T C k j u 





    ,            (3.32) 

applying the discrete Gronwall Lemma 3.1 to (3.33) gives 

 
1 0| |p

ku Cu  .                         (3.33) 

Substituting (3.33) into (3.19) and paying attention to (3.21), (3.23) and (3.32) we have 

 

1 1 , 1 1, 1 1

0

0 , 1

0

1

0

0

| | | ( ) | | | ( ) | | | | ( ) | |

        (exp( ) ) | | ( ) | |

        (exp( ) ) | | ( 1 ) | |

k
p

k j k j k k k

j

k

j k j

j

k

j

j

u g t N u N u

u T C N u

u T C C k j u

 

 

 

 

    













  

  

    







.         (3.34) 

Applying the discrete Gronwall Lemma 3.1 to (3.34) gives 

1 0| |ku Cu  .                       (3.35) 

In a similar way, we can derive 

1 0| |kv Cu  .                       (3.36) 

 

IV. Numerical results 
In this section, we will verify the accuracy of the predictor-corrector scheme proposed in this paper through 

numerical examples, and define the error and convergence order by 
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1
1 1

1 1 10 1

2
2 2

1 1 20 1

1
max | ( ) |   ,  ln / ln 1

1
max | ( ) |   ,  ln / ln 1  

n
n k k n

k n
n

n
n k k n

k n
n

e
e u t u R

e n

e
e v t v R

e n

 
  

 
  

   
      

  

   
      

  

 

In order to calculate the singularity index of the right-hand function of (1.1) more conveniently, we design its 

exact solution as 

31 2 4

31 2 4

1 2 3 4

1 2 3 4

( ) ,   0

( ) ,    0

u t t t t t

v t t t t t

  

  

   

   

        


       
, 

where , , 1,2i i

n ne R i   is the experimental error and the experimental convergence order, in addition, we 

denote , 1,2iR i   as the theoretical convergence order. 

Example 1: Consider (1.1)  with 10  , we set the right-hand function of (1.1) as (4.1). 




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1
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ttttvtutf
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Figure 1: Comparison of experimental error and theoretical error of Case I (left) and Case II (right)  for 

Example 1. 

 

Figure 2: The comparison of the experimental convergence order and the theoretical convergence order of 

case I (left) and case II (right) under different $n$ for example 1. 
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We design two cases for different singularity exponents 

Case(I), 
1 2 3 4

1 2 3 4

0.5 ,      0.6 ,     0.65 ,    1.35

0.4 ,     0.7 ,    0.9 ,      1.45

   

   

   


   
 

Case(II), 
1 2 3 4

1 2 3 4

0.4 ,      0.5 ,     0.6 ,    1.3

0.5 ,     0.55 ,    0.75 ,      1.35

   

   

   


   
 

In Fig.1, the experimental error ( ), 1,2i

nLog e i   and the theoretical expected  error ( ), 1,2i

nLog e i   

of Case(I) (left) and Case(II) (right) under different n  are compared, It is easy to see that the experimental 

error 
1 2,n ne e  of case(I) and case(II) decays to 1( )

R
O n


 and 2( )

R
O n


, respectively, which meets the 

theoretical requirements. In addition, we show in Fig.2 that the experimental convergence order , 1,2i

nR i   of 

Case(I) and Case(II) gradually approaches the theoretical convergence order , 1,2iR i   with the change of 

n . We observe that the experimental convergence order agrees with our theoretical results. 

 

 Table 1 The comparison of the experimental convergence order and the theoretical convergence order of 

Example 1 . 

3  
0.8 0.9 1 1.05 1.1 1.15 1.2 1.25 

3  
1.25 1.2 1.15 1.1 1.05 1 0.9 0.8 

1

nR
 

1.6050 1.8114 2.0242 2.0168 2.0131 2.0098 2.0074 2.0060 

1R
 

1.6 1.8 2 2 2 2 2 2 

2

nR
 

2.0120 2.0146 2.0183 2.0220 2.0251 2.0172 1.8077 1.6033 

2R
 

2 2 2 2 2 2 1.8 1.6 

In Table 1, we analyzed the experimental convergence order and theoretical convergence order of the 

equation group (1.1) under different 3  and 3  conditions in Example 1 when 500,600n  , and it can 

be seen from the table that the respective experimental convergence order of the equations at this time the order 

of convergence matches the theoretical order of convergence. 

 

Example 2: Consider (1.1)  with 10  , we set the right-hand function of (1.1) as 4.2. 

2 2

4 4
-

1 1

4 4

1 1

4 4
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1 1

)

(1 )
( , ( ), ( )) sin( ) sin( ( ))
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                     - ( ) ( ( ) -

(1 )
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i i
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i ii
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 
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 
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 
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 
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 
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 
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 

 

 
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2 2
4 4

1 1

- )           ( ) ( ( ) -i i
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tv t t t tu t t t 
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






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




  

 

where 
1 2 3 4

1 2 3 4

0. 62,      0.65 ,     0.8 ,    1.5

0.65 ,     0.7 ,    0.9 ,      1.5

   

   

   


   
 and 0.6  . 
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Figure 3: Comparison of error(left) and convergence order (right) for Example 2. 

 

In Fig.3 (left), the experimental error ( ), 1,2i

nLog e i   and the theoretical expected error 

( ), 1,2iR
Log n i


  of example 2 under different n  are compared, It is easy to see that the experimental 

error 
1 2,n ne e  of example 2 decays to 1( )

R
O n


 and 2( )

R
O n


 respectively, which meets the theoretical 

requirements. In addition, we show in Fig.3 (right) that the experimental convergence order , 1,2i

nR i  $ of 

example 2 gradually approaches the theoretical convergence order , 1,2iR i   with the change of n  We 

observe that the experimental convergence order agrees with our theoretical results. 

 

 Table 2 The comparison of the experimental convergence order and the theoretical convergence order of 

Example 2. 

3  
0.75 0.85 0.95 1.05 1.1 1.15 1.2 1.25 

3  
1.25 1.2 1.15 1.1 1.05 0.95 0.85 0.75 

1

nR
 

1.5028 1.7054 1.9115 2.0015 2.0015 2.0019 2.0025 2.0032 

1R
 

1.5 1.7 1.9 2 2 2 2 2 

2

nR
 

2.0066 2.0056 2.0047 2.0040 2.0037 1.9054 1.7027 1.5031 

2R
 

2 2 2 2 2 1.9 1.7 1.5 

In Table 2, we analyzed the experimental convergence order and theoretical convergence order of the 

equation group (1..1) under different 3  and 3  conditions in Example 2 when 500,600n  , and it can 

be seen from the table that the respective experimental convergence order of the equations at this time the order 

of convergence matches the theoretical order of convergence. 

 

V. Concluding remarks 
In order to better handle the low regularity of the solutions of coupled system of fractional differential 

equations, we use a new interpolation family, namely fractional interpolation, which is applied to construct a 

new predictor-corrector scheme to solve coupled system of fractional differential equations. The analysis of 

error and stability of the proposed scheme are carried out, and some numerical examples are given to verify the 

theoretical results. In the future, we will use this scheme to solve coupled system of fractional partial differential 

equations. 
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