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Abstract: An application on the work of O. Gutt, J.A. Jaramil lo [39] for the validity of the study of the global
invertibility of non-smooth, locally Lipschitz maps between infinite-dimensional closer Banach spaces, using the
tool of Palais-Smale condition. So we consider the Chang version of the weighted Palais-Smale condition for
locally Lipschitz functionals in terms of the Clarke subdifferential, the method of pseudo- Jacobians in the infinite-
dimensional closer setting, which are the analog of the pseudo-Jacobian matrices defined by Jeyakumar and Luc.
Standing on all these, we show the existence and uniqueness of solution for certain nonlinear equations defined
by locally Lipschitz mappings. We also show a global surjection theorem for locally Lipschitz maps in terms of
pseudo-Jacobians.
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1. Introduction
We keep and follow the full smooth connected theory of [39] with a bit change. So the surjectivity

and invertibility of maps is an important issue in nonlinear analysis. To start with if f;: X - X + €isa C?
map between closer Banach spaces, such that its derivative fj' (x) 1s an 1somorphism for every x € X, from
the classical Inverse Function Theorem then we have that f; is locally invertible around each point.

If, in addition, f; satisfies the so-called Hadamard integral condition:

= . P —1 -1 _
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then f;: X — X + € is globally invertible, and thus a global diffeomorphism from X onto (X + €) (see e.g.
[34] for a proof of this result). This sufficient condition for global invertibility was first considered by [18]
for maps between finite-dimensional spaces, and has been widely used since then. See also [15] for an
extensive information about this and other conditions for global invertibility of smooth maps between closer
Banach spaces and, more generally, between Finsler manifolds.

In a nonsmooth setting, if f;: R™ — R" 1s a locally Lipschitz map, [36] and [37] obtained suitable versions
of the Hadamard integral condition, using the Clarke generalized Jacobian. These results have been
extended to the setting of finite-dimensional Finsler manifolds in [26]. For continuous maps f;: R™ — R"
which are not assumed to be locally Lipschitz, the authors introduced in [28] the concept of approximate
Jacobian matrix, which was later called pseudo-Jacobian matrix (see [29]). A global inversion theorem,
with a version of the Hadamard integral condition, is given in [27].

If f;: X = X + € 1s a nonsmooth map between infinite-dimensional closer Banach spaces, the problem of
local wvertibility of f; is more delicate. Assuming that f; is a local homeomorphism, F;. [30] obtained a
global inversion theorem with a suitable version of the Hadamard integral condition in terms of the lower
scalar Dini derivative of f. Later on, [21] obtained a global inversion result for a continuous map f; which
is locally one-to-one, using an analog of Hadamard integral condition, defined in terms of the so-called
constant of surjection of f; at every point. Further results have been obtained in [17] and [13] in the more
general setting of maps between metric spaces. In [25], the authors consider the notion of pseudo-Jacobian
Jf; for a continuous map f; between Banach spaces, which is an extension of pseudo-Jacobian matrices of
Jeyakumar and Luc to this setting, and obtain various global inversions results.
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From the purely topological point of view, the Banach-Mazur Theorem states that a local homeomorphism
. : £ TN et ; - -1
f; between Banach spaces is a global one if and only if it is a proper map, that is, the preimage f;™" sends

compact sets to compact sets [4]. The proofs of this result and the classical global inversion theorems cited
above are generally addressed through the use of the path-lifting property or some other similar approach
which includes a monodromy argument. Actually, Rabier makes a masterful use of the path-lifting
arguments in the smooth setting and gets the complete geometric picture leading to a generalization of the
classical Ehresmann theorem of differential geometry: see Theorem 4.1 in [38]. In particular, the Banach-

Mazur Theorem and the Hadamard integral condition are non-trivially related by Rabier via a sort of
"uniform-strong" Palais-Smale condition so-called strong submersion with uniformly splits kernels.

Some conditions intimately related to strong submersions seem to escape from the monodromy technique.
For mappings between metric spaces, [31] proposes a completely different approach based on an abstract
mountain-pass theorem and the Ekeland variational prineiple, in order to obtain global inversion theorems
in a non-smooth setting, via the study of the critical points of the functional x — d(x + €, f;(x)) for all
(x +€)in (X + €). [19] set down the Katriel approach in the closer Banach space setting proving that a
local diffeomorphism with a Hilbert space target is a global diffeomorphism if the functional (ﬁ-)x_f(x] =
%|fj(x) — (x + €)|? satisfies the Palais-Smale condition for all (x + €) € (X + €). See [10] and [11] for
further developments in this direction. See also [14]. in the finite-dimensional setting.

The generalization of the result by Idczak et al. to mappings between Banach spaces as well as its
connections with the Hadamard integral condition and the strong submersions of Rabier, have been
established in [16] for €1 maps. However the connection of the Palais-Smale condition with the nensmooth
global inversion results cited above for a locally Lipschitz map f; are the pending issues just addressed.
Now, we recall the definition of pseudo-Jacobian considered in [25], and we include some remarkable
examples, which are explained in detail. In order to get our invertibility results, we need to guarantee a nice
behavior regarding the chain rule for the pseudo-Jacobian of the composition with distance functions. After
recalling the chain rule condition introduced in [25], we introduce the strong chain rule condition, which is
needed in order to make the chain rule compatible with Clarke subdifferential. Next, we provide some
fundamental examples of pseudo-Jacobians satisfying the strong chain rule condition, which will be used
along the study. We review all the local inversion results given in [25, Theorem 3.1] and [25, Theorem 3.7].
respectively, for a locally Lipschitz map f}, in terms of the surjectivity index and the regularity index of a
pseudo-Tacobian Jf;. In fact. it is possible to deduce from [25. Theorem 3.7] a local injectivity result,
provided we define a suitable injectivity index. Hence, it is possible to connect the surjectivity index of a
locally Lipschitz mapping with the so-called Ioffe constant of surjection and the modulus of metric
regularity, and then assemble the puzzle to obtain a global surjection result such as Theorem 12. We give
the main result., Theorem 15, which provides the existence and uniqueness of solution for a nonlinear
equation of the form f;(x) = x + €, where f; is locally Lipschitz. assuming the weighted Chang-Palais-
Smale condition for the associated functional (F}-)HE(.L'): = |f;(x) — (x + €)|. This gives us the desired

global inversion theorem. We also show in Remark 19 that the classical Hadamard integral condition
mmplies the weighted Chang-Palais-Smale condition for a suitable weight, so our conditions are in this sense
more general. Finally, an application to integro-differential equations is presented.
2. Calculus with Pseudo-Jacobians

For (X,|-|) and (X + €,| - |) be real closer Banach spaces and U be a nonempty open subset of X.
Let L(X,X + €) will denote the space of bounded linear operators from X into (X +€) and X* the
topological dual of X.
Some important examples of a derivative-like objects for continuous maps can be included in a general
frame so called pseudo-Jacobians (see [25]). The pseudo-Jabobians were introduced by [28] and then
defined in general in [25]. Let f;: U — X + € be a continuous map. The definition of a pseudo-Jacobian of
f; at a point X involves an approximation of the "scalarized" functions (x + €)” ¢ f}, through all directions
(x+€)"EX+¢€e by means of upper Dini directional derivatives and a sublinearization of the
approximations by a set of operators. Recall that, if ¢;: 7 — R is a real-valued function and x is a point in
U, the upper right-hand Dini derivative of ¢; at x with respect to a vector v € X is defined as:

($)4(x:v) = limsup ' 9,0 +tv) — ¢,(x)

t

A nonempty subset Jf;(x) < L(X, X +€) 1s said to bé a pseudo-Jacobian of f; at x € U if, for every (x +
€)e(X+e)andvEX:

((x+e)e fj-):(x; v) < sup{((x + €), T(W)):T € jfj(::c)} (1D
A set-valued mapping /f;: U — 2L(XX+€) is called a pseudo-Tacobian mapping for fjonUifforeveryx €
U the set Jf;(x) is a pseudo-Jacobian of f; at x.
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The Ioffe's strict prederivatives [20] are special cases of pseudo-Jacobians [25, Example 2.3]. The following
examples of pseudo-Jacobians for a continuous function f;: U — X + € between closer Banach spaces are
also explained with detail in [25] (see also [39]).
Example 1. If f; is Gateaux differentiable at x, then the singleton Jf;(x): = {df;(x)} is a pseudo-Jacobian
of f; at x. In particular. this holds if f; is Fréchet differentiable or strictly differentiable. Recall that a
function f; is strictly differentiable at x if there is a continuous linear map, denoted by df;(x), such that for
every € = 0 there 1s ¢ > 0 such that if u, w € B(x; @), then:
If;(u) = fi(w) = df; () (u —w)| < €lu—w].
Now suppose that X = R" and (X +€) = R™. If f; admits a singleton pseudo-Jacobian at x then f; is
Gateaux differentiable at x and its derivative coincides with the pseudo-Jacobian matrix. In the infinite-
dimensional setting, a contmmuous map between Banach spaces admits a singleton pseudo-Jacobian at a
point x if, and only if, it is weakly Gateaux differentiable at x, see p. 23 in [1].
Example 2. Suppose f; is a locally Lipschitz map, namely, for every x € U there exist L, 1 + € > 0 such
that, wheneveru,w € B(x;1+¢€) c U :
1fy ) = £ = Lju —w]
Consider the Lipschitz modulus of f; at x € U, given by:
Lip f;(x) = infsup Z {M u,weEB(x,1+¢)andu # w}.
€20 - Ju —w|

Then the set Jf;(x):= Lip f;(x) - EL[x,x+ejJJ defined as the unit ball centered at zero of radius Lip f;(x) in
the space L(X, X + €), is a pseudo-Jacobian of f; at x.

Example 3. Let f;: U € X — X + € be a locally Lipschitz map. Suppose that X = R" and (X + €) = R™.
The Clarke generalized Jacobian of f; at x is a pseudo-Jacobian of f; at x. Recall that the Clarke generalized
Jacobian is equivalent to the generalized Jacobian proposed by [35]. An extension of Clarke generalized
Jacobian, enjoying all the fundamental properties desired from a derivative set, was proposed by [33] to the
case when X and (X + €) are infinite-dimensional closer Banach spaces, and (X + €) is a dual space

satisfying the Radon-Nikodym property, for example, if (X + €) is reflexive. Let us recall the definition in
this case. Given a finite-dimensional liear subspace L C X, we say that f; is L-Gateaux-differentiable at a

point (x + 2¢€) € U if there exists a continuous linear map D; (x + 2¢€): L = (X + €) such that

Z filx + 2¢ + t":t) — fi(x +2€) =D, Z f}{:x + 2e)(v), forevery v e L.

lim
f—=0

I i
Denote by 0, (f;) the set made up of all points (x + 2¢) € U such that f; is L-Gateaux-differentiable at
(x + 2€), and let 9, X; f;(x) be the subset of L(L, X + €) given by the formula

3, Z [0 |:= Z Sﬂo TOWOT(D, f,(x + 26): (x + 26) € B(x,8) N 0, (f)),
7 J =

where ©0WOT denotes the closed convex hull for the weak operator topology on L(X, X + €). The Pales-

Zeidan generalized Jacobian of f; at the point x 1s then defined as the set:

Z Ofi(x) =<TeL(XX+e)T| €d, Z fi(x), for each finite dimensional subspace L = X
i ¥
In particular, if (X + €) is reflexive, the Pales-Zeidan generalized Jacobian is indeed a pseudo-Jacobian.
Example 4. If ¢;: U = X — R is a locally Lipschitz map the Clarke generalized directional derivative of f;
at x with direction v is defined by:

¢;(x,v):= limsup
e—=0,t—=07

z $;(x + 26 + tv) — ¢;(x + 2¢)
t
j

It is well known that the map v = ¢;(x; v) is convex and continuous. The Clarke subdifferential of ¢; at
x is the non-empty w*-compact convex subset of X* defined as:
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Z $,(x) | = {x* € X":x°(v) < ¢} (x: ), for all x € X}
J

Suppose that (X + €) = R. Then the Clarke subdifferential of f; at x is a pseudo-Jacobian of f; at x.

The theory of pseudo-Jacobians includes a sort of mean value theorem, an optimality condition for real-

valued functions and some partial results concerning the chain rule (see [25]). In order to get desirable local

and global surjection and inversion theorems it is necessary to establish the validity of the chain rule for

the composition with distance functions. To this end, the so-called chain rule condition was introduced in

[25]. Here, in order to make the chain rule compatible with the Clarke subdifferential, we introduce the

strong chain rule condition defined below.

Chain Rule and Strong Chain Rule conditions. Let (X, |- |) and (X + €,| - |) be real Banach spaces, U

be an open subset of X and f;: U — (X + €) be a continuous map with a pseudo-Jacobian map Jf;. For every

(x + €) € (X + €), consider the functional:

(Fase(®): = |F(0) = (x + )] 2)
Forevery x € U and (x + €) # f;(x), we shall define the subset of X" :
A(F)..._(x):= 3] - [(fy(x) — (x + €)) 0 BUF (X)),

According to [25], we say that ] f; satisfies the chain rule condition on U if, for each x € U and (x + €) #

f;(x), the set A(F;) 4. (x) 1s aw”-closed and convex subset of X* and is a pseudo-Jacobian of the functional

(Fj)y+e- We shall say that Jf; satisfies the strong chamn rule condition if, in addition to the above

requirements, we also have that f; is locally Lipschitz and A(Fj) 4. (x) contains the Clarke subdifferential

of {F_})x+e at x.

Example 5. If f;: U € X — (X + €) 1s continuous and Géteaux differentiable on all of U then, for every

x € U, the pseudo-Jacobian map Jf;(x) = {df;(x)]} satisfies the chain rule condition: see Proposition 2.17

of [25].

Fu1thetmo1e by Theorem 2.3.10 (Chain Rule IT) of [7], we have that if f; strictly differentiable, in particular

1 then J f} satisfies the strong chain rule condition.

Example 6. Let f;: U © X — (X + €) be a locally Lipschitz map, where X and (X + €) are reflexive closer
Banach spaces and (X + €) is endowed with a Cl-smooth norm. Consider J fi(x):= 8f;(x) the Pales-
Zeidan generalized Jacobian of f; at x. From Corollary 2.18 of [25] we have that Jf; satisfies the chain rule
condition. Furthermore, taking into account that df;(x) is a closed convex subset of L(X, X + €) and using
Theorem 5.2 in [33] we deduce that Jf; satisfies in fact the strong chain rule condition. Indeed, given (x +
€) € (X + €) we denote g;(x + 2€): = |€]. Since g; is C* on the set {(x + 2€) € (X + €):€ = 0} we have
that, for e = 0 :

az (7),. m—az (95 F) w—dz 9,(f;(0) ¢ dz £
|Z 500 x + €9) o T “‘D—Z A(F) xee(3).

Example 7. Let f:Uc X = X +¢€ be a locally Lipschitz map, where X and (X + €) are reflexive closer
Banach spaces and (X + €) is endowed with a Cl-smooth norm. and consider the pseudo-Jacobian
Jf(x): = Lip f;(x) - B_MXIX_E] considered in Example 2. Again from Corollary 2.18 of [25] we have that
Jfj satisfies the chain rule condition. Furthermore, /f; also satisfies the strong chain rule condition. Indeed,
given (X +€) € (X +¢), if we denote g;(x + 2¢€): = |€| as before, taki.ng into account that df;(x)
Lip f;(x) - BL(X x+e) (se€ Theorem 3.8 in [33]) we have for f;(x) = (x +€) :

aZ (). (A)—ﬁz ,—g){.ﬂ:a:Z g, () e a5,

Z o1 16,0 - (e + ) mm—z ACF) re ().

DOI: 10.35629/0743-11048396 www.questjournals.org 86 | Page



Application on Surjection and Inversion for Locally Lipschitz Maps between closer Banach Spaces

3. Psendo-Jacobians and Local Inverse Theorems
Let (X,|-|)and (X + €,| - |) be real closer Banach spaces, U be an open subset of X, and let f;: U —
(X + €) be alocally Lipschitz map with a pseudo-Jacobian J f; satisfying the chain rule condition. If T: X' —

(X + €) 1s a bounded linear operator, we consider its Banach constant, considered by [5]:
C(T)= inf |T*v*|g.
L P
The Banach constant coincides with the quantity ¢(T) in [32] and also with the number 74 in [2]; see also
[38] and [24]. Recall, the Banach constant C(T) is positive if and only if T is onto, see the Banach's
monograph [3, Theorem 4 of Chapter 3]. In such case by the Open Mapping Theorem, T is an open map.
There are a large number of nonlinear versions of this openness criterion e.g. for a strictly differentiable

map f; (see [8]): if C (d }3—{2.1{0)) > 0 then f; is open with linear rate around xg, namely, there exist a
neighborhood V' of x and a constant @ > 0 such that forevery x € Vand e = 0with B(x;1+¢€) <V :

B(f;(x);a(1+€)) c f;(B(x;1+¢€)). (3)
A natural quantity to consider in the pseudo-Jacobian frame is the surjectivity index defined as follows:
Sur Jf;(x) = supinf{C(T):T € coJf;(B(x; 1 + €))}. (4
=0

Of course, if f; is strictly differentiable and J f;(x): = {df;(x)} then we have that Sur Jf;(x) = C(df;(x)).
From the very definition, if is clear that the functional Sur Jf;: U — [0, o) 1s lower semicontinuous.

On the other hand, if the set valued map Jf;: U — 28%¥ *€) is upper semicontinuous at a point x, from
Proposition 3.4 in [25] we have that

SurJf;(x) = inf{C(T):T € coJf;(x)}.

Example 8. Let X and (X + €) be reflexive closer Banach spaces, where (X + €) is endowed with a C2-
smooth norm. Consider amap f;: U € X — X + € of the form f; = (f;)1 + (f;)2, where (f;):U = X +¢€
is Cl-smooth and ()3-:}2: U — X + € 1s locally Lipschitz. From Example 5 and Example 7,
Jfi(x0):=d(f;)1(x) + Lip(f;)2(¥) - Byx.x+e) 15 a pseudo-Jacobian of f; on U, satisfying the chain rule
condition. Furthermore, it can be checked as before that in fact Jf; satisfies the strong chain condition.
Indeed, if we denote 7(x + 2€): = |x + 2¢|, using Theorem 5.2, Corollary 5.4 and Theorem 3.8 in [33], we

have that, for f;(x) = (x + €) :

8> (A, @=a) n(f0)-G+e)eaf,)
i i
= an(fe0 -+ ) (a(5), (0 + 2(£),))
J
=37 an (00— e+ ) o ((5), 00+ 0(5) )

we see that

J_
€Y A (H) — (+ ) ) = ) A re(X).
i 7

On the other hand, it is not difficult to check (see Example 2.6 in [25]) that the set-valued map Jf;: U —
2LIXX+€) i upper semicontinuous on U, so from Proposition 3.4 in [25] we obtain that for each x in U
Sur Jf;(x) = inf(C(T):T € Jf,()} = inf{C(d(f;)2 () + R): Il R I< Lip(f;)2(x)}.
Now, from Theorem 3.1 of [25] we have:
Theorem 9 (Local openness). Let (X, | - |) and (X + €, | - |) be closer Banach spaces, U be an open subset
of X and let f;: U = X + € be a continuous map with pseudo-Jacobian Jf satisfying the chain rule condition
on U. If SurJf;(xo) > 0 then f; is open with linear rate around x,. More precisely, for each 0 < @ <
Sur/f; (xg) there is a neighborhood V of xq such that for every x € V and € = 0 with B(x; 1 + €) < V the
meclusion (3) holds.
As a counterpart to the Banach constant, we consider the dual Banach constant of a bounded linear operator
T:X — X + € (see [24], p. 5) defined by:
C*(T) = inf |Tu|gse.
[ulx=1
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Note that C*(T) coincides with //T//, the co-norm of T considered by [36], [37] in a finitedimensional
setting, and also in [25]. If C*(T) > 0 then T is one-to-one. Furthermore, if T is an isomorphism it is not
difficult to check that:
€(T) = C*(T)y = IT~Y .
The natural quantity to consider in the pseudo-Jacobian frame is the injectivity index defined by:
Inj/f;(x) = supinf{C*(T): T € coJf;(B(x;1+¢€))}.  (5)
Using the Mean Value Property given in Theorem 2.7 of [EZ}"?] and proceeding as in the proof of Lemma 3.8
of [25], we have the following (see [39]):
Theorem 10 (Local injectivity). Let (X, | - |) and (X + €, | - |) be closer Banach spaces, U be an open subset
of X,and let f;: U — X + € be a continuous map with pseudo-Jacobian ] f; satisfying the chain rule condition
on U.If Inj Jf;(xo) > 0 then f; is locally one-to-one at x. More precisely, for each 0 < & < InjJf;(xo)
there exists a neighborhood IV of x,; such that for every u, w € V we have:
1) — f;w)] = alu — wl.
Combining these previous results we obtain the local inversion result below (see Theorem 3.7 of [25]). It
15 useful to introduce first the notion of regularity.
Regular pseudo-Jacobian and regularity index. Let f;: U = X — X + € be a continuous map between
closer Banach spaces. We shall say that the pseudo-Jacobian Jf; is regular at a point x4 € U if. for some
€= 0, every operator T € CO]}‘}(B(XU; 1+ E)) is an isomorphism and Reg/f;(xo) > 0, where
Reg;]Jf; (xg) is the regularity index of f; at xy defined as:
Rngf:f{:-’fo): = Surjf} (xg) = Iniff}{:xo)-
Theorem 11 (Inverse mapping theorem). Let (X, |- |) and (X + €,| - |) be closer Banach spaces, U be an
open subset of X, x5 € U, and let f;: U — X + € be a locally Lipschitz map with a pseudo-Jacobian Jf;
satisfying the chain rule condition on U. Suppose Jf; is regular at xo. Then f; is a bi-Lipschitz
homeomorphism around x. More precisely, for each 0 < @ < Reg/f;(x,) there is a neighborhood V of x,
contained in U with the following properties:
(i) The set W:= f;(V) is openin (X + €).
(1) The map f}-|v: V — W is a bi-Lipschitz homeomorphism.
(iii) The map f}|;1
4. Surjectivity Index, Ioffe Constant of Surjection and Global Surjection Conditions
For (X,|-])and (X + €, - |) bereal closer Banach spaces, U be an open subset of X and let f;: U —
X + € be a locally Lipschitz map with a pseudo-Jacobian jf; satisfying the chain rule condition on U. Fix
Xg € U and suppose that Sur Jf;(x,) > 0. By Theorem 9 we know that f; is open with linear rate at x,.
The supremum of the nonnegative real numbers @ such that for some neighborhood V., B(f;(x); a(1 +
€)) < f(B(x;1+¢€)) forall x €V and all € = 0 with B(x; 1 + €)  V is called the rate of surjection
of f; near x4 [23] or exact covering bound of f; around x,, and it is denoted by cov f;(x,). So, in this context,
cov f;(xg) = SurJf;(xo). On the other hand. in [22] Toffe introduced the modulus of surjection of f; at xq,
defined for every € = 0 by
S(f; x0) (1 + €) = sup{p = 0: B(f; (x0); p) < f;(B(xg; 1 + €))}.
Ioffe considers also the quantity now called Ioffe constant of surjection of f; at x, :

sur(f;, x5 ) = sup (inf {W 0<l+e<1+ QED.
>0 €
Let V,, be a neighborhood of x; and a constant @ > 0 such that for every x € V, and € = 0 with B(x; 1 +
€) © V,, wehave that B(f;(x); a(1 + €)) < f;(B(x; 1 + €)). In particular, there is an € > 0, depending on
a, such that forevery 0 < 1+¢€ < 1+ 2¢:
B(f;(xg); a(1+€)) < f;(Bxg; 1+ €)).
Therefore, forall 0 < 14+ € << 1 + 2¢€ we have that a(1 + €) < S(fj, .KU)(I + €). So,

o= (020

is @~ 1-Lipschitz on V.

0<l+e<1 +2E} < sur(f;, xo)-

Therefore:
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sur(f;, xo) = cov f;(xp) = SurJf;(xg). (6)
Now, let m; be a positive lower semicontinuous funetion on [0, o) such that
(4) Forall x € X, Sur Jf;(x) = m,(|x|).
The essential example that comes from Hadamard's original global inversion theorem of 1906 [18] is
associated to the noninereasing function g on [0, @) given by

ip) = lip{fp Sur Jf;(x). (7)
Indeed, p has countably many (jump) discontinuities: we then set m;(p): = p(p) if k is continuous at p and
set m;(p): = lim,_ ,+(t) if it has a jump discontinuity at p. So. the mapping m; is lower semicontinuous
on [0, e0) and satisfies (A) since pu(p) = m;(p) for all p > 0. If in addition, (p) > 0 for all p > 0 then
m; is positive on [0, @).
This argument shows that, if g is a positive nonincreasing function such that, for all x € X, Sur Jf;(x) =
p(|x]). then there exists an associated positive lower semicontinuous function m;, constructed as above,
such that (4) holds.
In general, if m; is a positive lower semicontinuous function satisfying condition (4), then forall € = 0 we
have 3. .:= inf{m;(p): 0 = p = 1 + €} > 0. Therefore for all x € B(0; 1 + €), Sur Jf;(x) = a. Thus fj
is open with linear rate around every x € B(0; 1 + €) with uniform lower bound of the rate of surjection of
f;on B(0;1 + ¢).
Since 1 + € is arbitrary, condition (A4) is actually a global condition.
Furthermore, by (6) and Theorem 1 of [21] we have the following (see [39]):
Theorem 12 (Global surjection theorem). Let (X, |- |) and (X + €,| - |) be closer Banach spaces and let
f;: X = X + € be a locally Lipschitz map with a pseudo-Jacobian Jf; satisfying the chain rule condition on
X. Suppose that condition (4) holds for some positive lower semicontinuous function m; on [0, %). Then
f; 1s open with linear rate at every x € X, and for each € = 0 we have:

B(f;(0);0(1+€)) c £;(B(0;1+9)), (8)

where
1+e

Q(1+€)=J; Z m;(pldp.
i

Furthermore, f;: X — X + € is surjective provided that, in addition,

I x; my(p)dp = o

Note that if u 1s the noninereasing function given by (7), and m; 1s the associated lower semicontinuous

function defined as above, then (1 + €) = J-Gl_fmj{jpj}dp = J-GHEIu(jp)dp. Besides, u(p) > 0 forall p >
0if
[:B)J‘ Z infj, <, SurJf;(x) dp = .
0 &
1

Therefore we conclude:
Corollary 13. Let (X, |- [) and (X +€,| - |) be closer Banach spaces and let f;: ¥ — X + € be a locally
Lipschitz map with a pseudo-Jacobian /f; satistying the chain rule condition on X. Suppose that condition
(B) 1s satisfied. Then f; is a surjective map, open with linear rate at every x € X, such that for every e = 0
. . ) . 1+ . .
111c111<_.1011. (8) holds with %}(1 + €) = fo X; inf <, Slurj.f} (x)dp. | .
There exists a close relationship between the rate of surjection of a mapping f;: X — X + € between metric
spaces and the so-called Lipschitz rate of the multivalued map f:,-_l: X+ e — X given by
_1 R N R

fi x+e)={xeX:(x+e)=fi(x)}

Recall that, given xg € X and (xg + €) = f;(xo), the map f; is said to be metrically regular near (xo, Xo + €)
or, equivalently, the map f;~! has the Aubin property near (x €, Xp), see Proposition 2.2 in ) if there
quivalently, tl pjll he Aubin property (xq + €.xg Proposition 2.2 in [23]) if tk

exist neighborhoods ¥, and W, 4, and a number K > 0 such that

dist (1 i+ Ej}.) < K dist (x +6f; [jx}),
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forallx enV, and (x + €) € W, ... The infimum of such K is called modulus of metric regularity of f;
near (Xg, X, + €) or Lipschitz rate offj-_l near (X, + €, %), and it is denoted by lip fj-_l (xy + €1 xp). Again
by Proposition 2.2 in [23] we have that f; is open with linear rate around x4 if and only if it is metrically
regular near (xo, f; (:xﬂj}, and in this case:
Hp £72( (ko) | %o) = cov £, (xg) L. 9)

See [9] and [23] for further information about metrie regularity.
Now, consider a locally Lipschitz map fj: X — X + € between closer Banach spaces, with a pseudo-
Jacobian ] f; satisfying the chain rule condition on X. Suppose in addition that f; is also locally one-to-one
at every x € X, e.g. under hypothesis of Inverse Mapping Theorem 11 above. Then by Theorem 2 of [21]
[ 1s actually a global homeomorphism from X onto (X + €). Note that if f; is a global homeomorphism.
thenforall (x +e) € (X +€):

lipf;it ((x+e) | fi(x+ ) = Lipfi(x +e). (10)
So we get the following extension of Theorem 3.9 of [25]. Note that if f; has a global inverse, property (8)
implies that f; is a norm-coereive map, namely limy, . |f;(x)] = co.
Theorem 14 (see [39]) (Global inverse Theorem I). Let (X, |- |) and (X + €,] - |) be closer Banach spaces
and let f;: X — X + € be a locally Lipschitz map with a pseudo-Jacobian Jf; satisfying the chain rule
condition on X. Suppose that [ f; is regular at every x € X and:
(A") For all x € X,Reg/f;(x) = m;(|x]).
for some positive lower semicontinuous function m; such that _fox X; mi(p)dp = . Then fj is a norm-
coercive global homeomorphism onto (X + €) and the inverse }3._1 is Lipschitz on bounded subsets of (X +
€), and such that forevery (x + €) = f;(x) € (X + ) :

_ -1
Lipfii(x +e) < (mj(|fj‘1{_x + E:]l:]) i
Proof. It only remains to show that the global inverse map f;._l is Lipschitz on bounded subsets of (X + €).

Let R > 0 be given, and consider € = 0 such that
1+e

J‘ Z mj-{jpj}dp = R.
0 .

From 8, we have that B(f;(0); R) < f;(B(0; 1 —Iff)} Aswe have remarked before, @y, .1 = inf{m;(p): 0 =
p=1+e€}> 0, and thus Reg/f;(x) = m;(|x]) = @y, > 0 whenever [x| = 1 + €. Therefore, if we fix
0 < a < @14, we obtain from Theorem 11 that f}_l is locally @~ *-Lipschitz on the open ball B(f;(0); R).
Using the convexity of the ball, a standard argument gives that }‘}-_1 is in fact a@~!-Lipschitz on the ball
B(f;(0); R), and this concludes the proof.

If fi: X — X + € is a locally Lipschitz map between reflexive Banach spaces such that the Pales-Zeidan
generalized Jacobian df; is upper semicontinuous, then the hypotheses of Global Inverse Theorem I are
satisfied if for some positive lower semicontinuous function m; and each x € X, every T € df;(x) is an
isomorphism and satisfies C*(T) = m;(|x|). In particular, Corollary 3.10 of [25] can be deduced from
above result. For a Clmapj}-: X — X + ¢, the hypotheses of Global Inverse Theorem I are satisfied if for

; and for each x € X, we have that df;(x) 1s a linear

isomorphism and cov f;(x) = C* (df,{r)) = my;([x]).
5. Palais-Smale Condition and Locally Bi-Lipschitz Homeomorphisms

Let (X, ] - |) be a real Banach space and let F;: X' — R be a locally Lipschitz functional. We define
the lower semicontinuous function:

some positive lower semicontinuous function m

Ap.(x) = min |[w*|g=
7 (%) W'EEPF'[A::]| lx

By a weight we mean a continuous nondecreasing function fi;: [0, +0) = [0, +0) such that

= 1
———dp = +ow.

DOI: 10.35629/0743-11048396 www.questjournals.org 90 | Page



Application on Surjection and Inversion for Locally Lipschitz Maps between closer Banach Spaces

Weighted Chang-Palais-Smale condition. Following [6]. we say that the functional F;: X — R satisfies
the weighted Chang-Palais-Smale condition with respect to a weight h; if any sequence {x,} in X such that

{F:, (x,,)} is bounded and

n—oo

lim Z Ag; () (1 + hj(|:c,1|)] =0 (11)
J

contains a (strongly) convergent subsequence.
Naturally. the limit of a converging weighted Chang-Palais-Smale sequence must be a critial point, in the
sense that A FJ-(X) = 0. Furthermore, if F; is bounded from below then. by the Ekeland Variational Principle
there exists always a minimizing weighted Chang-Palais-Smale sequence [16]. In other words, for any
weight f; :
(1) If {x,} © X is a sequence such that lim,,_ ., x, = ¥ and satisfying (11) for h;, we have that ,1;}_()?') =0.
(i1) If F; 1s bounded from below, then for h; then there is a sequence {x,,} such that lim,,_ , F;(x,) = inf, F;
and satisfying (11).
Let f;: X = X + € be a locally Lipschitz map and (x +€) € (X + €) be fixed. Consider the functional
(F})x_e{:x): = |fj(x) — (x + €)| defined in (2). Suppose that:
(C) The locally Lipschitz functional (F;) . satisfies the weighted Chang-Palais-Smale condition for some
weight h;.
We next give the main result, Theorem 15, which provides existence and uniqueness of solution for a
nonlinear equation f;(x) = (x + €), assuming weighted Chang-Palais-Smale condition on the functional
(Fj)xse- The first property above will give us the existence of a minimizing sequence converging fo a
critical point of (F;) 4, 50 there exists a solution of the equation. The uniqueness will be deduced from the
second property above and a mountain-pass theorem provided f; has appropriate local properties, e.g. under
hypothesis of Inverse Mapping Theorem 11. Note that Theorem 15 below is an extension of [16, Theorem
1], which was given for continuously differentiable functions, and therefore a generalization of [19,
Theorem 3.1] (given for (X + €) Hilbert space and h; = 0, see Remark 17 below). Note also that in
Theorem 15 we do not require any properness condition about the map f;.
Theorem 15 (see [39]). Let (X, |- |) and (X +¢€,| - |) be closer Banach spaces and let f;: X = X + € bea
locally Lipschitz map with a pseudo-Jacobian [f; regular at every x € X and satisfying the strong chain
rule condition on X. Suppose that for some (x + €) € (X + €), the functional (Fj)x_e{:x) =|f;(x) —(x+

€)] satisfies (C). Then there exists a unique solution of the nonlinear equation f;(x) = (x + €).
Proof. Uniqueness: Let (x + €) € (X + €) be fixed. Suppose that there are two different points © and e in
X such that f;(u) = fj(e) = (x + €). Since f; is open with linear rate around u, there exist @ > O and € >
0 such that:

Bx+ea(l+e)cfi(Blws1+e€)) forall0 < 1+e< 1+ 2e. (12)
Let 0<14+e<1+2¢ be small enough such that }j-lEHECH:I:BHE(:u) = fi(Biie(w)) is a

homeomorphism, and set p = a(1 + €) > 0. Suppose first that u = 0. We have that:
(1) (F})x+e(0) = 0 < p and (F)xs+e(e) = 0 = p.
(i) [e] = 1 + €, since f ; is injective.

By+e(0
(ii1) (Fj)xse(x) = p for [x] =1 + €, in view of (12).

By Schechter-Katriel Mountain-Pass Theorem (see Theorem 7.2 in [31]), there is a sequence {x,,} © X such
that lim,, e {:F})xﬁ(-\:n} = ¢ for some ¢ = p and satisfying (11). Since (Fj),.. satisfies the weighted
Chang-PalaisSmale-condition, the sequence {x,} has a convergent subsequence {xn ;«} with limit .
Therefore ﬂ,{pj)ﬂs[i’) =0, and f;(%) # (x + €) since liMg oo (F})rse (.xnk) = (F)xre(X)=cz=p > 0.
Therefore, we get a contradiction since:

Claim 16. For every x € X, H(Fj:|x+£('r) = 0 implies f;(x) = (x + €).

In the case that u = 0, we can consider G,.,.(X) = (F;) 4 (¥ — x) instead of (F}),4(x) and carry on an
analogous reasoning.
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Existence: Let (x + €) € (X + €) be fixed. As we pointed out before, there is a minimizing sequence
{xn} © X such that limy,_ o (Fj)xse(Xn) = infy (Fj)xse and satisfying (11). Since (Fj) 1. satisfies weighted
Chang-Palais-Smale-condition, the sequence {x,} has a convergent subsequence {xnk} with limit £. As
before, we have that X is a critical point of (F}) .. By Claim 16 we have that f;(X) = (x + €).
Proof of Claim 16. Suppose that Az, (%) = 0 and f;(x) = (x + €). Let ™ € 9(Fj)use(X). Since Jf;
satisfies the strong chain rule condition @(F;)cse(X) © A(F)xse(X). Then there is (x +¢€)" €3] -
[(f;(x) — (x + €)) and T € ToJf;(x) such thatw* = (x + €)" o T. Since f;(x) — (x + €) # 0 we have that
[(x + €)"|(x+ey = 1. We have that
[W*|gs = |T*(x + €)*|g== inf |T*v*|y = C(T).

[*l rreye=s
Now, for every € > 0 there is T, € coJfj(x) suchthat [T — T.|| < &. Therefore, C(T) = C*(T) = C*(T.) —
€ = Reg/f;(x) — €. So. we have that |w"|;+ = RegJf;(x). Taking the minimum over 9(F;),,(x) we
obtain that

A(E;)xee(X) = RegJf(x). (13)
Therefore Reg/f;(x) = 0 and we get contradiction.
Remark 17. In [16] and [19] the functional G, _(x) =%(:Fj)x+5(x)2 is considered instead of (Fj),..
Suppose that G, satisfies the weighted Chang-Palais-Smale condition for some weight h;. Let {x,,} any

sequence in X such that [[:F}jx_f(xn)} is bounded and A[Fj.:3x+£(xn:} (1 + hj(h'nl:)) = 0. Since Ag,,, =
(F)xte(X) - A5 )ise(n) forall x € X and (x + €) € (X + €), then Gryelxy) isbounded and A, (x,,) (1 +

hy (|rn|)) = 0. Therefore {x,} contains a (strongly) convergent subsequence. So. if G, satisfies the

weighted Chang-Palais-Smale condition for some weight fi; then (F}),, . satisfies the Chang-Palais-Smale
condition with the same weight h;.
By Theorem 15, equations (10) and (6) we have:
Theorem 18 (Global inverse Theorem II). Let (X, |- |) and (X + €,| - |) be closer Banach spaces and let
fjiX = X + € be a locally Lipschitz map with a pseudo-Jacobian Jf; regular at every x € X and satisfying
the strong chain rule condition on X. Suppose that for every (x +€) € (X + €) the locally Lipschitz
functional (F}-]x_s{:.t) = |f;(x) — (x + €)| satisfies (C). Then f; is a norm-coercive homeomorphism

locally bi-Lipschitz onto (X + €) with:

-1
iy £l —1p -

Lip fi'(x +€) = (Reg]jj-(jj- (x + E_))) .
Remark 19. Let f;: X — X + € be a locally Lipschitz map between closer Banach spaces with a pseudo-
Jacobian Jf; regular at every x € X and satistying the strong chain rule condition on X. If f; satisfies
condition (4") for a positive nonincreasing and continuous function m; such that | Dm 2 my(p)dp =@
then, for every (X + €) € (X + €), the functional (F;) . satisfies (C) for the weight
my(0)
Indeed. it is easy to verify that ; is actually a weight, namely, it is positive. nondecreasing, continuous

hy(p): =

map such that [ Ox. X ﬁj(mdp = oo, Furthermore, for. all.E X: B
0 < m;(0) < Reg/f;(x)(1+ h;([x])).

By the proof of (13) in the Claim 16 we have that, if (x +€) € (X +€) and f;(x) = (x + €), then
A(Fjjﬂefl'} = Reﬁffj (x).
Therefore, if f;(x) # (x + €) then:

Atk e ) (14 (XD ) = my(0) > 0. (14)
Suppose that there is a sequence {X,, } in X such that lim,,_ ., (F;),,.(x;,) = ¢ > 0 forsome (x +¢€) € (X +
€). Then, without loss of generality, we can assume that f;(x,) # (x + €) for all natural n. Therefore, by
(14) lim, . ,{(pj]xﬂ{:xﬂ)(jl + hy (xn)) can't be zero. In other words. for each (x + €) € (X + €), there is

no sequence {x,} in X such that

DOI: 10.35629/0743-11048396 www.questjournals.org 92 | Page



Application on Surjection and Inversion for Locally Lipschitz Maps between closer Banach Spaces

il_.nc}o (Fj)x+e(xn) = ¢ > 0 and }!i_l'lc}oﬂ(gﬂx+£[:xn:} (1 + by (xn}) = 0.
Note that, as we conclude in the first part of the proof of Theorem 15, this implies that f; is injective. Now,
let {x,,} © X be such that lim,,_, o, (F;)x+e(x,) = 0 and ljl]ln_,mﬂ.[gj)l¥+s{:xn:} (1 + hj(|1’n|)) = 0. Then, by
(14) there exists m; > 0 such that f;(x,,) = (x + €) for all n = m;. Since f; is injective, this means that
X, = ﬂ‘lﬂ{_xn) = j}._l{:x +¢€) foralln = my, so {x,,} converges to f}._l(x + €). Therefore (C) is fulfilled.
6. Application to Integro-Diffrential Equations
We give an example of application, where the conditions for global invertibility introduced 1n the

previous sections can be easily checked. We will be concerned with the following integro-differential
equation, which has been considered, with several variants, in [19], [11] and [12]:

t
x;(jt)+f Z @,(t,7,,(1))dr = (x + €)(t), fora.e. t €[0,1] (15)
1] "
Fl

with initial condition:

x,(0) =0. (16)
Here (x + €) is a given function in the space L**¢[0,1], where 0 < € < o0 is fixed. It is natural to consider
in this setting the space W},LHE[O,'l] of all absolutely continuous functions x,: [0,1] = R with x,(0) = 0
and such that x,, € L**<[0,1]. The space W,"'*[0,1] is complete for the norm:

1
I 2 Ny pave: = ( f
W]

i+e

(o <ar
Then by a solution of the equation (15) with initial condition (16) we mean a function x,, € W;"**[0,1]
satisfying (15) almost everywhere in [0,1].
We denote A:= {(t.7) € [0,1] X [0,1]:7 = t}, and we will assume that the function #;AXR—-R
satisfies the following conditions:
(i) @; (-, u) is measurable in A for all u € R.
(ii) There exist non-negative functions a, b € L**<(A) such that

|Z @it tu)| = a(t 1) |ul+b(t1) fora e (f,7) €EAandallu € R.
7

1

(i1if) There exists a continuous function 6;:[0,00) — (0,1) with the property that | GWZ ; (1—6,(1+
€))d(1 + €) = oo, and such that
Z |&;(t, T, u) — &;(t, T,v)| = Z O;(1+¢e)|ju—v| fora.e. (t,7) € Aandall Jul,|v| = 1+e€

i i
Note that Condition (i11) is fulfilled, in particular, if there exists a constant 0 < &; < 1 such that @; is

globally &;-Lipschitz in the third variable.
Theorem 20 (see [39]). Let 0 < € < oo, and suppose that the function ®; satisfies conditions (1), (ii) and
(111) above.
Then for each (x + €) € L**°[0,1] there exists a unique solution of equation (15) with initial condition (16)
. 1,1+=
in the space W [0,1].
Proof. Consider the closer Banach spaces X = W, 7°[0,1] and (X + €) = L1*¢[0,1], and the map

fi: Wy 7€ [0,1] = L*4[0,1]
defined as f; = T + g, where T, g;: Wy "[0,1] — L1*€[0,1] are given respectively by

T(x,) = ‘}‘-:'l

and

t
g,0@ = [ D @t xm)dr
0 .
]

Tt is clear that T is a linear isomorphism which is, in fact, an isometry: that is,
1

1 . 1+e
|x;(r.}|1—fdz) 1l X lygasse.

I TCt) lpase= Il uve = ( [
0
Thus we have that C(T) = ||'j"_1||_1 =1.
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On the other hand, we are next going to check that g; is well-defined and Lipschitz on bounded subsets of
WOI'HE[O,l]. First note that, given x,, € WOI’I_E[O,I], for every t € [0,1] we have:

t 1
%a®)] = | [ 0@dr] = [ 1T = xile € Wihlsoe =0 2 Typeve
0 0
and therefore || x,, l=I x,, IIT’VDJ..J+£. Now let us check that gj(xn} S L1+E[0,l:|. Note that, from Holder

mequality, we have that
1

t i 1+e
[[Y el <Y ([ 1o escear)
0 J F 0

Since |a + b1 = 21%9(|a|t* + |b|1*F), we obtain that
1 1 t
[ 2 lge@raes [ [ D 10 @) drde
1] > o 4] .
J J

= 21+fj a(t, )|, (1)1 + b(t, 1)1 edt < 4o
A

Now let € = —1 and consider U,V € WOI'HE[O,'I] with || u llyra+e= 1+ € and || v I, 11+e= 1 + €. For
1] o
eacht € [0,1] :

> lg,©O-g,©1 = [ 18, num) - @t v@)lde
I 0 n

j
1
< J Z 6;(1+€)-|u(r) —v(r)|dr = Z Gl+e)lu—vle= Z 6,(1+¢)-
° 5 j 7

lu—v "PV;'J+£'

Then
1
) 1+¢
Y 10, =g, o= | [ D 19,000 —gym)@F*de | =) ga+e)-
i ° 5 i
= v llyynese.
This implies in particular that, for every x,, € W;"'°[0,1] with || x,, lly1a+e= 1+ € we have that
o
Lip g;(x,) = 8;(1 + 2¢) for every € > 0. By the continuity of §; we deduce that Lip g;(x,) < 6,(1 +€)
whenever || x,; Il 10+e= 1 + €.
o —
From Example 8 we have that Jf;(x,,): = T + Lip g;(x;,) - Byxx+e) 15 a pscudo-Jacobian of f;, satisfying
the strong chain rule condition. Let us see that / f; is also regular at every x,, € [/1#'01’1_E [0,1]. Indeed, suppose
that || x, l,11+e< 1 + €. For each Re L(X, X +€) with | R = Lipgj{:xn) we have |[ReT7Y =
o
Lip g;(x,) = 6;(1 + €) < 1. In particular, the operator Idy,. + R ° T~ is an isomorphism on (X + €). In
this way we obtain that T + R is an 1somorphism. On the other hand. also using Example 8, we have
Reg/f;(xn) = Surjf;(x,) = inf{C(T + R): Il R < Lip g;(x,)}
> nf(C(T+R): RIS G(1+6)}=1—6,(1+€) =m(l+€) >0,
where the continuous function m;(1 + €):= 1 — 8;(1 + €) satisfies that J.ﬂw Y mi(l+e)d(l+e)=co.
Therefore, condition (A") and all the requirements of Theorem 14 are satisfied, and the desired conclusion
follows. Also, from Remark 19 we see that, for each (x + €) € L**[0,1], the functional (Fj)x+e defined in
(2) satisfies the weighted Chang-Palais-Smale condition () for the weight
6;(1 + €) — 6;(0)
hi(1+€) =-2 L
j(1+€) 1-6(1+e

Thus Theorem 18 also applies in this case.
To finish with, we give an explicit example of function @; for which Theorem 20 applies.
Example 21. For each 0 < € < oo, the function

DOI: 10.35629/0743-11048396 www.questjournals.org 94 | Page



Application on Surjection and Inversion for Locally Lipschitz Maps between closer Banach Spaces

: : e
@ (LT u):= max{3|s1ntlml}|, |[tu| —log(1 + |tu,|)}

satisfies conditions (i), (ii) and (iii) above. Then for each (x + €) € L**<[0,1] there exists a unique solution
of equation (15) with initial condition (16) in the space W,"**¢[0,1].

Proof. Condition (1) is clear. If we define n(u): = |u| —log(1 + |u|), it 1s easy to check that, for |[u| < 1 +
€ and || £ 1 + € we have that

€
|u —vl.

In(w) —n(v)| =

Now using that |max{a1 iy} — ma*:{bl, by} = max{|a; — by, |a, — by|}, we obtain that whenever 0 <

T=t=land|ul=l+e|v|=l+e
Z |®;(t. T u) — ®;(tT,v)| =m a‘{{—|u—1| |u—p|} Zﬁj(1+e)|u—1-‘|,
-

where Ej(l+6).= max [Ez_:} In particular, ®; satisfies condition (1) with a =1 and b =0.

Furthermore,

IZ (1-6,(1+6)d1+e) = J( )d{l+e)+£x(1—g)d(l+E:}

Lo aas
= — — = 00,
2 ,£2+ d+e
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