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Abstract 
The variational method, as the core tool of functional extremum analysis, has a wide and profound impact on 

mathematical theory and engineering applications through its three basic operations - chain rule, partial 

integration, and variable substitution. This article systematically reviews the historical development of these three 

methods and their key roles in classical mechanics and partial differential equations. The research results indicate 

that the chain rule provides an effective approach for the variation of complex functionals by handling composite 

dependency relationships; Divisional integration is not only indispensable in high-order derivative reduction and 

boundary condition treatment, but also lays the foundation for weak solution theory of partial differential 

equations; Variable substitution reveals the conservation laws and structural characteristics of physical systems 

(such as Noether's theorem) through symmetry utilization and dimensionality reduction simplification. Through 

typical cases such as Dirichlet energy functionals, this paper verifies the synergistic effect of compulsion, 

convexity, and weak lower semi continuity in proving the existence and uniqueness of minima. 
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I. Research background 
 

1.1 The Historical Development and Mathematical Needs of Variational Method 
Variational method is a mathematical branch that studies functional extremum. It is not only closely 

related to many branches of mathematics, but also provides important principles for physics, and has a wide range 

of applications[1-2]. Driving classic problems: Since the proposal of the steepest descent line problem and the 

isopach problem in the 17th century, variational methods have gradually developed into the core branch of 

functional extremum analysis. The establishment of the Euler Lagrange equation relies on the reduction of higher-

order derivatives by partial integration[3], while optimization problems under complex constraints (such as 

geodesics) require the use of variable substitution to simplify geometric structures, transforming functional 

extremum problems into differential equations, and laying the foundation for the solution paradigm of minimal 

problems. 

Variational calculus is a science that studies functional extremum problems and is a branch of classical 

mathematics This book starts with typical problems in mathematics, physics, and mechanics to establish a model 

for finding the extremum of a functional. It uses line algebra, numerical calculus, and functional comparison, as 

well as the comparison between Fermat's principle, Hamilton's principle, and variational principle in physics and 

mechanics. It introduces the methods and steps for finding the extremum of a functional in a clear and concise 

manner, and concludes that the necessary condition for a functional to obtain an extremum is that its first-order 

variation is zero. It also derives the Euler equation satisfied by the extremum curves (surfaces) of various types of 

functionals, and solves some practical problems by solving the Euler equation[4]. 

The introduction of the chain rule: when the functional involves composite functions (such as 

) or multivariate coupling in field theory, the chain rule becomes a necessary tool for handling 

the dependencies between variables[5]. 
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1.2 Theoretical support of physics 
The principle of minimum action: Hamilton's principle requires functional analysis of the action 

 perform variational analysis, Partial integration is used to eliminate boundary terms, 

while variable substitution (such as Legendre transform) transforms Lagrangian mechanics into Hamiltonian form. 

Field theory and gauge invariance: in electromagnetic field and quantum field theory, gauge 

transformation (variable substitution) requires the use of the chain rule to maintain the invariance of the action, 

reflecting the unity of physical symmetry and mathematical tools. 

Elasticity and static equilibrium state: In the problem of minimizing the potential energy of elastic bodies, 

variable substitution (such as strain stress relationship) simplifies complex constitutive equations into solvable 

forms. 

 

1.3 The Promotion of Modern Mathematics and Computational Science 
The establishment of Sobolev space and weak solution theory in the 20th century relied on the derivation 

of the weak form of PDE through partial integration[6]. 

Innovation in computational methods: In the finite element method (FEM), variable substitution is used 

for grid generation, and the chain rule supports automatic differentiation (AD) technology, becoming the core of 

machine learning optimization. 

The intersection of geometry and topology: the extension of geodesic problems on manifolds (such as 

Riemannian geometry) relies on variable substitution (such as exponential mapping) to simplify local coordinate 

systems. 

 

II. Research meaning 
 

2.1 Theoretical significance 
The collaborative use of chain rule, partial integration, and variable substitution provides a unified 

methodology for solving problems ranging from classical problems (such as catenary lines) to modern nonlinear 

problems (such as minimal surfaces). 

Promoting the development of mathematical analysis: The application of fractional integration in Sobolev 

space laid the foundation for PDE weak solution theory (such as the existence proof of Dirichlet problem). 

2.2 Application value 
Engineering and Physical Modeling: (1) Finite element analysis: Partial integration is used to construct 

weak form equations and support static equilibrium simulation in structural mechanics; (2) Optimal control: 

Variable substitution (such as state control variable separation) simplifies the rocket trajectory optimization 

problem. 

Computational Science and Artificial Intelligence: (1) Deep learning optimization: Backpropagation of 

chain rule to minimize the loss function of neural networks; (2) Image processing: The TV denoising model (Total 

Variation) processes the image gradient field through partial integration. 

 

III. Modeling issues 
 

The typical problem in variational research is finding the minimum: 

  (3.1) 

where  

  (3.2) 

and  is an open area,  It is a set of functions defined on ,  is called Lagrangian, abbreviated as 

Lagrangian. 

When considering one-dimensional problems, we usually write the independent variable as , let 

, , we have  

  (3.3) 
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Variational problem is a minimization problem or a general optimization problem (finding the minimum, 

maximum, or saddle point), which has many similarities with the optimization problems of functions in calculus 

below: 

  (3.4) 

The difference is that in ordinary optimization, the variable is a point, while in variational problems, the variable 

is a function. 

Ordinary optimization: ; 

Variational problem: . 

 

IV. The role of calculus tools 
 

The independent variable in function  is a number  or  vector , We have calculus 

as a tool that can be used. The independent variable in functional  is a function , itself is a function of  

in some euclidean space . The function of a function is called a functional. Therefore, functional analysis is 

an essential foundational knowledge for variational methods. On the other hand, variational problems are also a 

place where functional analysis can shine. 

The subset  in variational problems exists in a certain function space, for example , while 

in calculus optimization problems is a subset of ,  which is finite dimensional. Function spaces are usually 

infinite dimensional, so many results or properties of finite dimensional linear spaces may not necessarily hold in 

infinite dimensional spaces and need to be reexamined. 

In this case: compactness of sets. In a finite dimensional norm vector space, a set is compact if and only 

if it is bounded and closed. Think back, if is tight, is continuous on ,  then can reach its 

extremum. In infinite dimensional space, boundedness and closure are necessary conditions for compactness, but 

not sufficient conditions. For example, the unit closed ball in  is clearly a bounded closed set, but not a 

sequence tight one. For example,  The sequence with 1 at position  and 0 

at other positions. If there is a convergent subsequence, it is a Cauchy sequence, But ,  it is 

impossible to approach infinitely.  This is because with infinite coordinates, there is room for infinite elements to 

maintain social distance between each other.  

The solution is to introduce a weaker topology in the function space, so that the unit sphere is compact 

relative to that topology. This ensures that the existence of subsequences converges in a weak sense, thereby 

proving the existence of solutions to variational problems. From the perspective of open sets, the weaker the 

topology, the fewer open sets it has, and therefore the fewer open covers it has, making it easier to satisfy the 

definition of compactness: every open cover has finite sub covers. 

Suppose  is a function between two topological spaces. When any open set in  remains an 

open set in under the original image of , then  is continuous. Due to the fewer open sets in weak topology, 

it is not conducive to satisfying the definition of continuity. To solve this problem, the continuity can be relaxed 

to the lower half continuity under weak topology, thereby reducing the open set while maintaining the fitness of 

the variational problem. However, in order to ensure the existence of solutions to variational problems, it is usually 

necessary to introduce coercivity and convexity conditions for functionals.  

 

4.1 Coercivity  
In variational methods, coercivity is a key property in functional analysis that ensures the existence of 

minima for functionals in certain function spaces. The specific definition is as follows: let  be a reflexive 

Banach space (such as  Sobolev space ), functional , it is called coercivity if: 

  (4.1) 

that is to say, when the norm of function  tends to infinity, the functional value also tends to infinity. 
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4.1.1 The proof framework of mandatory theory  
This article takes the classic Dirichlet energy functional as an example to illustrate the proof steps of the 

coercivity theory, suppose: 

  (4.2) 

where  is a bounded region,  and . 

Step1(Choose the appropriate function space):  let , its norm is  

  (4.3) 

According to the Poincaré inequality, this norm is equivalent to the  norm, that is to say , there exists , 

such that: 

  (4.4) 

Step2(Proof of coercivity): estimate the functional : 

  (4.5) 

Using the Cauchy-Schwarz inequality and the Poincaré inequality: 

  (4.6) 

Therefore, 

    (4.7) 

Let , when , the dominant term on the right is , therefore: 

  (4.8) 

This indicates that is coercive on . 

Step3(Combining weak lower semi continuity): The gradient term  in the Dirichlet energy functional 

is weakly lower semi continuous (due to convexity and differentiability). Therefore, the functional 

satisfies: coercivity (proven); weak lower half continuity. 

If a functional is forced and weakly lower semi continuous on a reflexive Banach space, then it has a global 

minimum . 

Note that, Correction method for non coercive functionals 

(1)  Add penalty term: such as introducing  term to force the functional to grow at infinity. 

(2) Constrained optimization: Analyze on subspaces (such as ) and use compactness to restore 

coercivity. 

 

4.2 Convexity  
In variational and optimization theory, convexity is an important property of functionals, which directly 

relates to the existence, uniqueness, and stability of extremum solutions. The specific definition is as follows: let 

 be a real normed linear space(such as Sobolev space ), functional is 

called convex if:  

  (4.9) 

If the above inequality strictly holds for , then  is called a strictly convex functional. 
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4.2.1 The Judgment Theorem for Convex functionals 

Theorem 1 (First Order Condition): If the functional  is  differentiable on the Banach space 

, then  is a convex functional if and only if: 

  (4.10) 

where, is the  derivative  of at . 

Theorem 2 (Second Order Condition) If quadratic differentiable, then is a convex functional 

if and only if its operator is non negatively definite, i.e. 

  (4.11) 

4.2.2 The proof framework of convex functionals 
Firstly, considering the convexity of linear functionals, we also take the Dirichlet energy functional as an 

example to prove its convexity, consider the following Dirichlet energy functional: 

  (4.12) 

Step 1 (Decompose the functional): 

  

where  

Step 2 (Prove the convexity of ): for any , we have 

 

 (4.13) 

It can be obtained from the linearity of the gradient and the square convexity of the norm. 

Step 3 (Prove the linearity of ):  Since is a linear functional, it is naturally a convex functional. 

Step 4 (The linear combination of convex functionals maintains convexity) : the difference between convex 

functionals and linear functionals remains convex functionals. 

Next, we will discuss the convexity of general nonlinear functionals. Consider functional: 

  (4.14) 

where , the proof steps are as follows: 

(1)  Convexity of gradient term:  is a convex function on (since causes to be convex 

on ). 

(2)  Integral maintains convexity: The integral of a convex function remains a convex functional (defined by 

integral linearity and convexity). 

(3)  Convexity of linear terms: is linear with , therefore it is a convex functional. 

 

4.2.3 Strict convexity determination 

Theorem 3: If the functional  satisfies: 

  (4.15) 

It is called  strictly convex.  

Common strict convex functionals include: 

(1)  Dirichlet energy functional: when , the quadratic convexity of the gradient term 

is strictly convex. 
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(2)  Functional with strong convex terms: such as , where . 

4.2.4 The relationship between convexity and other variational properties 

(1)  convexity + coercivity  minimum existence uniqueness: If is coercive and strictly convex, then there 

exists a unique minimum point in the reflexive Banach space . 

(2)  convexity + weak lower semi continuity  existence of minimum value: if a convex functional is weakly 

lower semi continuous in Banach space, its minimum exists. 

 

V. The core role of chain rule, partial integration, and variable substitution in minimization 

problems 
 

5.1 Chain rule: handling composite dependency relationships 
When calculating derivatives, we must be careful about the dependencies between variables. Its mathematical 

form can be expressed as: 

Functional ,  if there is an intermediate variable , its variation 

needs to be passed through the chain rule: 

  (5.1) 

5.2 Partial integration: eliminating high-order terms and boundary treatment  

Functional  involves derivatives and integrals . The interaction between these two is 

reflected in the fractional integral. When the region is not smooth (such as in polyhedra), it is necessary to use 

partial integration in segments, and jump conditions will occur at the edges and vertices of the polyhedron. As for 

the derivation of the Euler-Lagrange equation: the high-order derivative term in the functional 

variation is transformed into boundary terms and first-order derivative terms through partial integration, for 

example: 

  (5.2) 

Generation of natural boundary conditions: in the free endpoint problem, forcing the boundary term to be 

zero(such as ) . 

5.3 Variable substitution: dimensionality reduction and symmetry utilization 
The most magical move can derive the deepest level results of variational calculus. Here are two examples: 

Legendre transformation and Noether's theorem. The Legendre transform transforms Lagrangian into Hamiltonian 

and Euler Lagrange equation into Hamiltonian system. If a scalar potential function is introduced, the Hamilton-

Jacobi equation can be derived. Different variables and equations reveal different structures of the same physical 

system. 

If the Lagrangian is invariant under certain transformations, there exists a conservation law. This is the 

most profound result in variational calculus: Noether's theorem. 

In fact, the more accurate term for 'invariance' is' symmetry ', while' variable transformation 'can be 

understood as' group interaction'. 

The Noether theorem demonstrates a profound connection between symmetry and conservation laws, such 

as: 

(1)  Time translation symmetry conservation of energy; 

(2)  Spatial translational symmetry conservation of momentum; 

(3)  Rotational symmetry conservation of angular momentum. 
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VI. Application examples 
 

Case 1 (Elliptical Partial Differential Equations)  

Consider the existence of weak solutions to the Poisson equation: 

  (6.1) 

the corresponding energy functional is: 

  (6.2) 

(1)  Coercivity: obtained directly from . 

(2)  Existence of minimal solution: there exists a unique such that ,  the 

weak solution of the equation. 

Case 2 (uniqueness of solutions to elliptic equations)  

Consider equation: 

  (6.3) 

the corresponding energy functional is: 

  (6.4) 

(1)  Convexity: the gradient term and the power term are both convex functions, and the 

overall functional is convex after integration. 

(2)  Uniqueness guarantee: strict convexity (because is strictly convex when ) ensures that the 

solution is unique. 

Case 3 (one dimensional variational minimization problem) 

For one-dimensional problems, we use instead of , and instead of . Note that although 

, the function can be a curve in space, i.e.  can be a vector, typically representing the motion 

trajectory of an object, then the first derivative  is velocity and the second derivative  is acceleration. 

Consider the variational problem: 

  (6.5) 

A typical example is: 

(1) ; 

(2) , it is the difference between kinetic energy  and 

potential energy . 

Recall that the first-order condition for min   is . But now itself is a function 

that can change at every point . How to take the derivative of a function? 
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The idea is to introduce changes in the function. Let be the testing function in , satisfy certain boundary 

conditions, if , So . For the example above, 

. 

Let , so we can take the derivative of .  Obviously, is the solution of 

if and only if is the minimum value of . The corresponding first-order condition is 

  (6.6) 

Chain rule:  by taking the derivative of the chain rule, we obtain the variational form of the Euler-Lagrange 

equation: 

  (6.7) 

Chain rule: by applying partial points, we obtain: 

  (6.8) 

Because , the boundary term in the partial integral has disappeared. Now make is dense in 

, and we obtain a strong form of the Euler-Lagrange equation： 

  (6.9) 

for , the equation above becomes Newton's equation: 

  (6.10) 

The method of deriving Newton's equations of motion by solving variational problems and using Euler-Lagrange 

equations is called the "principle of minimum action". 

Variable substitution:  consider the following variable substitution: 

  (6.11) 

To derive the Hamiltonian system, we obtain the total differential on both sides of 

 by:  

  (6.12) 
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The final step is due to definition of and using new variables  to write the Euler-Lagrange 

equation. 

When the Hamiltonian  is independent of , for the solution  of the 

Hamiltonian system, we obtain the conservation of the Hamiltonian, which is: 

  (6.13) 

An important example is , for  , the variable  is momentum, 

the Hamiltonian is the total energy 

  (6.14) 

So we have obtained the law of conservation of energy. The underlying reason is due to the symmetry of 

Lagrangian towards time translation. 

Symmetry implies conservation laws, and conservation quantities themselves can generate corresponding 

symmetries. This bidirectional connection greatly inspired the development of theoretical physics. In practical 

research, scientists often first discover a certain conserved quantity in experiments, and then go back to search for 

the symmetry behind it, in order to derive a beautiful theoretical framework. 

 

References 
 
[1]. JIA X Y. Variational method before the 19th century [D]. Northwest university,2008.DOI:10.7666/d.y1254044. 
[2]. LAO D Z. Fundamentals of the calculus of variations [M]. National Defence Industry Press,2015. 

[3]. JIA X Y. The idea of invariance of basic equations in Euler's variational method and its exploration [J].  2011. 

[4]. YE K Q,ZHENG Y P. Variational Method and Its Applications [M]. National Defence Industry Press,1991. 
[5]. SU J Z. Functional Analysis and Variational Method [M]. University of Science and Technology of China Press,1993. 

[6]. Bensoussan A , Frehse J ,Christine Grün. Multiple Integrals in the Calculus of Variations[J].Communications on Pure & Applied 

Analysis, 1966, 13(5):1719-1736.DOI:10.1007/978-3-540-69952-1. 
 

 


