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Abstract—In this paper, we discusses the finite element approximation for a Steklov eigenvalue problem. 

Based on the work of Armentano and Padra, we derive an a posteriori error estimate. By constructing auxiliary 

bubble functions and lifting operators, we prove the reliability and validity of the posterior error estimator. In 

addition, we verify the robustness of the posterior error estimator under the adaptive grid through numerical 

experiments. 
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I. INTRODUCTION  

The Steklov eigenvalue problem, as an important type of differential equation boundary value problem, 

is widely used in various fields of mathematical physics and engineering science, such as vibration analysis of 

elastic structures, modal study of acoustic waveguides, and interface resonance phenomena in electromagnetic 

fields. Its core feature is that the spectral characteristics of differential operators are dominated by boundary 

conditions, which gives the solution of the problem a unique physical meaning at the boundary, such as energy 

concentration or mode localization. However, with the increasing complexity of engineering problems (such as 

irregular geometric regions, non-uniform material parameters, etc.), traditional analytical methods face severe 

challenges, and efficient and stable numerical algorithms have become an urgent need for theoretical and 

applied research. 

Many scholars have studied the finite element method for the Steklov eigenvalue problems. In order to 

address the issue of posterior error estimation in the Steklov eigenvalue problem discussed in Remark 3.11 of 

reference [1], this paper proposes a posterior error estimator for this problem using the discontinuous finite 

element method. The reliability and effectiveness of the estimator are theoretically and numerically 

demonstrated. The main characteristics of the discontinuous finite element method are that the test function is 

discontinuous along the surface (or edge) in the mesh, which has the advantages of local mass conservation, 

easy coupling with other methods, hp adaptability, and can work on polygonal meshes. Therefore, the 

discontinuous finite element method has been used to solve many problems. In addition, the DG method has 

been used to solve various eigenvalue problems, such as Laplace eigenvalue problem [2], classical self adjoint 

Steklov eigenvalue problem [1], biharmonic eigenvalue problem [3], Maxwell eigenvalue problem [4], etc. 

For the self conjugate Steklov eigenvalue problem, Zeng et al. [1] first studied the discontinuous finite 

element method and provided its prior error estimate. For the Steklov eigenvalue problem of inverse scattering, 

Li et al. [5] studied the posterior error estimation and adaptive methods of discontinuous finite element method. 

On the basis of the above work, this paper further studies the posterior error estimator of the discontinuous finite 

element method. We have demonstrated the reliability and effectiveness of the posterior error estimator of the 

characteristic function by utilizing the properties of the lifting operator, and analyzed the reliability of the 

posterior error estimator of the finite element eigenvalues. The analysis method in this article can be extended to 

general second-order elliptic eigenvalue problems.  
Based on the above work, the remaining part of our article is arranged as follows: In Section 2, we first 

introduce the model problem and then describe the error estimates. In Section 3, establish a multigrid 
discretization scheme, and the error estimates of the proposed scheme is presented. In Section 4, conduct a 
theoretical analysis. Finally, The numerical results show that our method is efficient in Section 5. 
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II. PRELIMINARIES   

We consider the following Steklov eigenvalue problem: 

      (2.1) 

where  is a bounded polygonal domain with Lipschitz continuous boundary ,  is the outward 

normal derivation on . 

The variational problem associated with (2.1) is given by: Find and , such that 

  (2.2) 

where 

 

 

It is clear that  is symmetric, continuous and elliptic bilinear form on . 

Let  be a family of regular triangulations of . Let stand for the mesh-size, namely 

 is the diameter of , with  being the diameter of the triangle . The diameter 

of an edge  is dencted by , and the set of edges of elements  where  denotes the 

interior edges set and  denotes the set of edges lying on the boundary . We denote the average  

and jump  of on  by 

 

where  is the unit outer normal vector from  towards to 

. 

If , define the average and jump of on  as follows: 

  

Define the DGFEM space: 

  

where  denotes the space of polynomials defined on with degree less than or equal to . 

Introduce the piecewise  function space of degree : 

  

The DGFEM discretization of (2.2) is to find and , such that 

  (2.3) 
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where  

 

where  is the interior penalty parameter. We choose  to be sufficiently large to have coercivity. It is clear 

that the  discretization (2.3)  is  symmetric  which  is called  symmetric  interior  penalty  Galerkin  method 

(SIPG) in DGFEM. 

Introduce the sum space  endowed with DG norm 

  

and define the other norm on  by 

 

Note that  is equivalent to  on . 

In order to show that the discretization (2.3) is stable, first we will show that  is coercive on 

. It is easy to know that the following continuity and coercivity properties hold: 

 (2.4) 

  (2.5) 

We consider the following source problem (2.6) associated with (2.2) and the DG approximate source 

problem (2.7) associated with (2.3), respectively. 

Find such that  

  (2.6) 

Find  such that                                                                                                 

  (2.7) 

Since  and  are continuous and coercive on  and , respectively.  and 

  are bounded, from Lax-Milgram Theorem we know that (2.6) and (2.7) admit the unique solution  

and , respectively. 

Lemma 2.1. If , the solution  of the source problem (2.6) satisfies  with 

 and  
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  (2.8) 

For the case that , we have  and  

  (2.9) 

Let   and  be the solution of (2.7) and (2.8), respectively, then the SIPG approximation (2.8) is 

consistent: 

  (2.10) 

Then, thanks to Lemma 2.1, for the source problem (2.6), let , we can define the solution 

operator  as 

  (2.11) 

Define the operator , such that  

  

Similarly, from (2.7) we define a discrete solution operator as 

  (2.12) 

and the discrete operator , such that 

  

where  is the restriction of  on . 

Hence, (2.2) and (2.3) has the following equivalent operator form, respectively: 

  (2.13) 

  (2.14) 

where . In this paper, ,  and , are all called eigenvalues. 

From the definition of  and (2.5), noticing that  is equivalent to  on , we can derive 

that 

  

which yields 

  (2.15) 

Lemma 2.2. Suppose that  and , then there holds 

 

 

  (2.16) 

Introduce the auxiliary problem: find  such that  

  (2.17) 
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From the elliptic regularity estimates for homogeneous Neumann boundary problem, we know that the 

following regularity estimate holds: , the solution  of (2.16) belongs to  

and satisfies 

  (2.18) 

Let  denote the linear interpolation of  on . 

Lemma 2.3. Suppose that  and  be the solution of (2.6) and (2.7), respectively, 

, then there hold 

  (2.19) 

Theorem 2.1. Suppose that  and  be the solution of (2.6) and (2.7), respectively, 

, then there hold 

  (2.20) 

Theorem 2.2. Suppose that  and  be the solution of (2.6) and (2.7), respectively, 

, then there hold 

  (2.21) 

Assume that  is the th eigenvalue of (2.2), and the algebraic multiplicity is equal to , 

. When [6],  eigenvalues 

, , … ,  of (2.3) will converge to . Let  be the space spanned by all 

eigenfunctions corresponding to  and  be the direct sum of the eigenspaces corresponding to all 

eigenvalues of (2.3) that converge to . We have the following error estimates[7]. 

Theorem 2.3. We assume that ,  =min , then there holds  

  (2.22) 

Let  be an eigenfunction of (2.3), then there exists  such that 

  (2.23) 

  (2.24) 

III. MULTIGRID DISCRETIZATION 

Let  be an family of regular meshes of , , and let  be the DG space defined on 

. Denote . Now, for the eigenvalue problem (2.3) we give the following multigrid 

discretization scheme of DGFEM based on the shifted inverse iteration. 

Scheme 3.1. Given the iterative times . 

Step 1: Solve (2.3) on : Find such that  and  

  (3.1) 

Step 2: . 

Step 3: Solve a linear system on : Find  such that 
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  (3.2) 

Let . 

Step 4: Compute the Rayleigh quotient  

  

Step 5: If , then output , stop; else,  and return to Step 3. 

From (2.10) we define the Ritz-Galerkin projection operator by  

  (3.3) 

Hence, for any  

 

 

 

Then, , thus . 

Lemma 3.1. Let  be an eigenpair of (2.2), then for any  and , the Rayleigh quotient 

 such that 

 

 (3.4) 

Lemma 3.2. For any nonzero , 

  (3.5) 

Let  be the th eigenpair of (3.1), then  derived from Scheme 3.1 is the th eigenpair 

approximation of (2.2). In what follows we also denote . 

IV. A POSTERIORI ERROR ESTIMATE 

Let  be the eigen pair of (2.3), On each unit  and each edge , there are the following 

element residuals and surface residuals. 

  

  

  

  



A multigrid discretization scheme for the Steklov eigenproblem 

DOI: 10.35629/0743-11044252                                       www.questjournals.org                                      48 | Page 

The local error estimation on an element is defined as:          

(4.1) 

The global error estimator is as follows: 

  (4.2) 

Introduce a stable lifting operator  

(4.3) 

  (4.4) 

Simultaneously, defining an auxiliary bilinear form  

  (4.5) 

It is easy to know that  on ,  on , and  

 

Lemma 4.1. For any , we have , such that  

 

  (4.6) 

Lemma 4.2. Using  to represent linear finite element space, for any , there is a segmented 

linear interpolation , satisfy  

               (4.7) 
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 (4.8) 

where is the union of all units that share a node with ,  is the union of all units that share a node with 

. 

 

Theorem 4.1. Suppose that  and  be the eigen pair of (2.2) and (2.3), respectively, 

, for any , then there hold 

  (4.9) 

Theorem 4.2. Under the conditions of Theorem 4.1, the following inequality holds: 

  (4.10) 

Lemma 4.3. For all polynomial functions , , we have  

  (4.11) 

  (4.12) 

Lemma 4.4. Suppose that  and  be the eigen pair of (2.2) and (2.3), respectively, there are the 

following local upper bounds: 

 (4.13) 

Let  be the inner edge of adjacent units  and  

 (4.14) 

where . 

For each boundary edge  and , we have  

 (4.15) 

For any  

  (4.16) 

Theorem 4.3. Under the conditions of Theorem 4.1, the following inequality holds: 
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  (4.17) 

V. NUMERICAL EXPERIMENTS 

Consider the Steklov problem (2.1), The test domains are set to be the unit square  with 

vertices are (0,1), (1,0), (0,0), (1,1) and the L-shaped domain , 

respectively. The four smallest approximate eigenvalues on  are  

  

The four smallest approximate eigenvalues on  are  

  

This paper presents a study on the multigrid discretization of Steklov eigenvalue problems. Based on our 

approach, we solve the eigenvalue problem on the fine grid  using linear elements and also provide solutions 

using Scheme 3.1 Numerical experiments are conducted on  and . From TABLE I  and TABLE III, it 

can be seen that when the mesh size increases, the advantages of the multigrid discretization method with 

shifted inverse iteration become more apparent, indicating the efficiency of our approach. 

 

Fig. 1. The unit square domain . 
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Fig. 2. The unit square domain . 

 

 
 

Fig. 3. The error curves in . 

 

Fig. 4. The error curves in . 
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TABLE III. The first fourth eigenvalues of  (2.1)  solved using linear elements on domain ,  based on 

scheme 3.1. 

     

1/16 
0.240112826863608 

 

1.493737311069134 

 

1.494032112369319 

 

2.091898207310659 

 

1/32 
0.240087583630703 

 

1.492666919245926 

 

1.492748911957080 

 

2.084980101243282 

 

1/64 
0.240081216887900 

 

1.492394549965722 

 

1.492416140866160 

 

2.083232720433993 

 

1/128 
0.240079619065589 

 

1.492326033499974 

 

1.492331570017943 

 

2.082793751735668 

 

1/256 
0.240079218879208 

 

1.492308863965719 

 

1.492310265635612 

 

2.082683761802871 

 

 

TABLE IVI. The first fourth eigenvalues of  (2.1)  solved using linear elements on domain , based on 

scheme 3.1. 

     

1/16 
0.182999984078385 

 

0.897087899512774 

 

1.692214637235418 

 

3.241311541144290 

 

1/32 
0.182973282649124 

 

0.894937883634405 

 

1.689540378762870 

 

3.223904609240853 

 

1/64 
0.182966511922253 

 

0.894134444101236 

 

1.688840311680383 

 

3.219389751050658 

 

1/128 
0.182964807413177 

 

0.893832650873182 

 

1.688661107773306 

 

3.218244256048426 

 

1/256 
0.182964379708959 

 

0.893717985383559 

 

1.688615730973319 

 

3.217956122839075 
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