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ABSTRACT: The biharmonic eigenvalue problem is a classical fourth-order partial differential equation and 

a subject of significant research interest, particularly in applied fields such as elasticity, fluid mechanics, and 

quantum mechanics. Specifically, the biharmonic eigenvalue problem under simply supported boundary 

conditions finds wide applications in thin plate vibration modeling. To accurately solve such problems, 

numerical methods play a crucial role. Among them, the discontinuous Galerkin finite element method offers 

high mesh flexibility and adaptability, enabling arbitrary high-order accuracy and flexible handling of complex 

boundary conditions. As a result, DG methods have become an essential numerical tool for solving various 

partial differential equations and practical problems. In the context of simply supported boundary conditions, a 

priori error estimates for the biharmonic eigenvalue problem serve as a vital tool for assessing the discrepancy 

between numerical and exact solutions. These estimates provide deeper insights into the convergence and 

stability of numerical methods. This paper investigates a priori error estimates for the biharmonic eigenvalue 

problem with simply supported boundary conditions. By employing the discontinuous Galerkin method, we 

analyze its error behavior in solving the biharmonic eigenvalue problem and derive corresponding error 

estimates. These estimates not only help evaluate the accuracy of numerical schemes but also provide 

theoretical support for practical applications. 
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I. INTRODUCTION 
The biharmonic eigenvalue problem, which investigates the eigenvalues and eigenfunctions of the 

fourth-order differential operator , represents a significant research topic in mathematical physics and 

engineering mechanics. This problem finds extensive applications across multiple disciplines, including thin 

plate vibration analysis, structural stability assessment, image processing, and materials science. Over the years, 

numerous scholars have dedicated substantial efforts to developing numerically efficient solutions for the 

biharmonic equation, with continuous optimization and innovation in solution methodologies. 

In reference [1-3], the finite difference method was employed to solve the biharmonic equation, and a 

compact difference scheme for the biharmonic equation was presented [3]. The finite difference method is easier 

to comprehend and apply when dealing with simple or lower-order problems. However, it becomes more 

challenging for general domains or equations with complex boundary conditions, whereas the finite element 

method offers greater flexibility. Huang Xuehai et al. [4] proposed the modified Argyris element, a conforming 

finite element method for Kirchhoff plate bending problems. Using standard techniques, they derived a priori 

error estimates for both the modified Argyris element and its corresponding finite element method. In reference 

[5], a mixed finite element method [5-7] was employed to solve the biharmonic equation. This approach 

introduces an intermediate variable to reduce the fourth-order equation into two second-order equations. The 

mixed variational problem is then discretized using mixed finite element spaces satisfying certain conditions, 

yielding numerical solutions for both the original variable and the intermediate variable that satisfy the original 

equation. On the other hand, the discontinuous Galerkin method [8-10] adopts a finite element approach with 

completely discontinuous basis functions. This method is capable of handling complex boundary problems and 

allows for flexible local mesh refinement and polynomial degree variation across elements. Therefore, the 

discontinuous Galerkin method is often used to solve various eigenvalue problems, such as the Steklov 
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eigenvalue problem [11], the Laplace eigenvalue problem [12], and the biharmonic eigenvalue problem [13-16], 

among others. Emmanuil et al. [10] derived a discontinuous Galerkin finite element scheme for the biharmonic 

equation. In reference [16], Xi Yingxia et al. proposed a multilevel correction scheme based on nonconforming 

finite elements for solving biharmonic eigenvalue problems. This method transforms the eigenvalue problem on 

a fine grid into an eigenvalue problem on a coarse grid along with a series of source problems on fine grids. The 

Ciarlet-Raviart mixed method [17-22] is also applicable to biharmonic eigenvalue problems. In reference [23], 

Yang Yidu devised an adaptive Ciarlet-Raviart mixed method employing piecewise polynomials of degree less 

than or equal to m. When the eigenfunctions are sufficiently smooth, this approach enables the numerical 

eigenvalues for the corresponding biharmonic eigenvalue problem to achieve optimal convergence order. The 

interior penalty discontinuous Galerkin (IPDG) method imposes penalty terms on the jumps of approximate 

solutions across interelement edges/faces. Compared with conforming finite element methods, the IPDG 

approach offers significantly greater flexibility. In reference [24], an hp-version interior penalty discontinuous 

Galerkin finite element method was developed for the biharmonic equation, where both stability analysis and a 

priori error estimates were rigorously established. The derived error bounds were shown to be optimal with 

respect to the mesh size h and slightly suboptimal in terms of the polynomial degree p. 

Focusing on the biharmonic eigenvalue problem with simply supported boundaries, this work develops 

a discontinuous Galerkin finite element approximation using the interior penalty discontinuous Galerkin (IPDG) 

framework. A rigorous error analysis is presented for the eigenvalue problem, including the derivation of a 

priori error estimates. These theoretical results offer fundamental guidance for assessing the numerical method's 

accuracy and its practical implementation. 

 

II. IDENTIFICATION OF SEGMENTED AUTOREGRESSIVE  
𝐿𝑝(𝜔) to represent a standard Lebesgue space, where 1 ⩽ 𝑝 ⩽ ∞, 𝜔 ⊂ ℝ2, The corresponding norm is 

expressed by ∥⋅∥𝐿𝑝(𝜔). In this paper, the norm of 𝐿2(𝜔) is represented by ∥⋅∥𝜔. We also use 𝐻𝑠(𝜔) to express 

the standard Hilbert Sobolev space of real functions defined at 𝜔 ⊂ ℝ2 with index 𝑠 ⩾ 0, and the corresponding 

norm and semi-norm are ∥⋅∥𝑠,𝜔 and ∣⋅∣𝑠,𝜔. Let Ω be the bounded open polygon region of 𝑅2, and let ∂Ω represent 

its boundary. Consider the simply supported boundary condition eigenvalue problem: find 𝜆 ∈ 𝐶 and 𝑢 ∈
𝐻0

1(Ω) ∩ 𝐻2(Ω), such that 
2Δ ,      Ω

Δ 0,       Ω.

u u in

u u on





 


  

                                                   (2-1) 

Denote 

Ω
( , ) ,u v uvdx   

1( , ) ( , ) ( , ), , (Ω),a u v u v u v u v H      

and define a continuous bilinear form 
1 2

0( , ) (Δ ,Δ ), , (Ω) (Ω).a u v u v u v H H    

Then, there exists two positive constants 𝐴 and 𝐵 independent of 𝑢 and 𝑣, such that the bilinear form 𝑎(⋅,⋅) is 

satisfied 
1 2

0

2 1 2

0

( , ) , , (Ω) (Ω)

( , ) , (Ω) (Ω)

a u v A u v u v H H

a u v B v v H H

 

 

„

…
. 

The weak form of (2.1) is to find (𝜆, 𝑢) ∈ 𝑅 × 𝐻0
1(Ω) ∩ Ω), 𝑢 ≠ 0, such that  

1 2

0( , ) ( , ), (Ω) (Ω).a u v u v v H H    

Let 𝒯 be a conforming subdivision of Ω into disjoint triangular or quadrilateral elements 𝜅 ∈ 𝒯, on 

this assumption that the subdivision is shape regular and constructed by affine mapping ℱ𝜅, where ℱ𝜅: 𝜅̂ → 𝜅, 

with nonsingular Jacobin, where 𝜅̂ is the reference triangle or quadrilateral. It is assumed that the mapping is 

constructed to ensure that Ω̅ = ⋃  𝜅∈𝒯 𝜅̅  and the elemental edges are straight line segments. 

The broken Laplacian Δℎ𝑢 is defined by 

(Δ ) | Δ( | ),hu u   T  

For a non-negative integer 𝑟, 𝒫𝑟(𝜅̂) is used to represent the set of all polynomials of degree at most 𝑟 

if 𝜅̂ is a reference triangle, and 𝒫𝑟(𝜅̂) is used to represent the set of polynomials of tensor product if 𝜅̂ is a 

reference quadrilateral. For 𝑟 = 2, consider its finite element space 
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2

2: { (Ω) : | ( ), },ˆ
K KS v L v F     P T  

We use 𝛤ℎ  to represent the union (including the boundary) of all one-dimensional unit edges 

associated with the subdivision 𝒯. In addition, we decompose 𝛤ℎ into two disjoint subsets, i.e. 𝛤ℎ = 𝛤∂ ∪ 𝛤int, 

where 𝛤int: = 𝛤ℎ ∖ 𝛤∂. 

Let 𝜅+and 𝜅− be two elements of the shared edge 𝑒: = ∂𝜅+ ∩ ∂𝜅− ⊂ 𝛤int. Define the outward normal 

unit vectors on 𝑒  corresponding to ∂𝜅+  and ∂𝜅− , respectively, as 𝐧+  and 𝐧− . For functions  𝑣: Ω → ℝ  and 

𝐪: Ω → ℝ2 , these functions may be discontinuous in  𝛤ℎ , the following is defined for  𝑣+: = 𝑣|𝑒⊂∂𝜅+ , 𝑣−: =
𝑣|𝑒⊂∂𝜅−, 𝐪+: = 𝐪|𝑒⊂∂𝜅+, 

.

1
{ }: ( ), [ ] :

2

1
{ }: ( ), [ ] :

2

v v v v v v     

     

   

     

n n

q q q q q n q n

 

If 𝑒 ∈ ∂𝜅 ∩ 𝛤∂, then these definitions are changed as follows: 

{ }: , { }: , [ ]: , [ ]: .v v v v       q q n q q n  

With the above definition, it can be verified 

intΓ Γ
d [ ] { }d { }[ ]d .

h

v s v s v s


      q n q q
T

 

To define ℎ𝜅: = diam(𝜅) , and collect them into the elementwise constant function  𝐡 : Ω → ℝ , with 𝐡 ∣𝜅=
ℎ𝜅 , 𝜅 ∈ 𝒯, and 𝐡 ∣𝑒= {𝐡}, 𝑒 ⊂ 𝛤ℎ. We always assume that the families of meshes considered are locally quasi-

uniform, there are constants 𝑐 ⩾ 1 independent of 𝐡, for any pair of elements 𝜅+ and 𝜅− in 𝒯, that share an edge, 

we have  

      𝑐−1 ⩽
ℎ

𝜅+

ℎ𝜅−
⩽ 𝑐. 

1 Poincar´e inequality [19]  

Let 
2R  be a bounded set, for any function

1

0(Ω)v H , there exists a constant𝐶 such that the following 

inequality holds  

Ω Ω .v C v                                                                   (2-6) 

2 Cauchy-Schwarz inequality [20]  

Let 𝑓(𝑥), 𝑔(𝑥) be integrable on[ , ]a b , then we have  

2 2 2[ ( ) ( ) ] [ ( ) ][ ( ) ].b b b

a a af x g x dx f x dx g x dx                                                       (2-7) 

Let , ( 1,2,..., )i ia b i n R ,then  

1 1

2 22 2

1 1 1

,| | ( ) ( )
n n n

i i i i

i i i

a b a b
  

                                                      (2-8) 

  

which holds with equality if and only if ( 1,2,..., )i ib ka i n  , (𝑘 is a constant). 

3 Young inequality [21]  

, 0, , 0a b p q  , and 
1 1

1
p q
  ，then we have 

, 0,
p q

q

p

a b
ab

p
q

 




                                                   (2-9) 

in particular, when p = q = 2, we have 

2 2.
1

4
ab a b


                                                          (2-10) 

4 Inverse inequality [22]  

For any 0(Ω )hv V  , there is 

0 0

1

1,Ω 0,Ω .v Ch v                                               (2-11)  

5 Trace inequality 
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Set 
1,1 , ( )pp v W    , we have 

1

0, , 0, , 0, ,( ).p

p p pv h v h v    


ˆ                                      (2-12)  

On the unit circle 𝜅, multiply both sides of the equation by 
1 2

0( ) ( )v H H   and integrate to obtain

2Δ .uvdx uvdx
 

                                                                (2-13)  

By Green's integral 
2Δ Δ Δ .uvdx u vdx u v ds

  
        n  

S 
Thus 

Δ Δ Δ Δ ,uvdx u vdx u v ds u v ds
   
         n n                      (2-14)                                   

when Δ 0u u  and (2-14), we have 

     
Γ Γ Ω

Δ Δ Δ Δ .
h int

h hu vdx u v ds u v ds uvdx


  


      
T

                (2-15)  

Add to the left end of (2-15) 

h intΓ Γ
[ ][ ]d , [ ][ ]d .u v s u v s                               (2-16) 

We first introduce the lifting operator ℒ: 𝒮: = 𝑆2 + (𝐻0
1(Ω) ∩ 𝐻2(Ω)) → 𝑆2 by 

h intΩ Γ Γ
( ) d [ ] { }d { }[ ]d .v u x v u s u v s u S      L                      (2-17) 

And the lifting operator ℒ has stability: for 𝑤 ∈ 𝒮 , there is 

h int

2 2 2

Ω Γ Γ( ) ( [ ] [ ] ).w C w w  „L  

Where 𝜎 = 𝐶𝜎𝐡3, 𝜏 = 𝐶𝜏𝐡. 

Proof. See [5]. 

Define bilinear form as 𝑎ℎ: 𝒮 × 𝒮 → ℝ by 

h int

Ω

Γ Γ

( , ) (Δ Δ ( )Δ Δ ( ))d

[ ][ ]d [ ][ ]
,

d

h h h h h h h h h h h h h

h h h h

a u v u v u v u v x

u v s u v s  

  

 



 

L L
.                 (2-18) 

here the internal penalty parameter 𝜎: 𝛤ℎ → ℝ, 𝜏: 𝛤int → ℝ of the segmentation constant is defined as 

h int

3 1

Γ 0 Γ 0| ( | ) , ,| ( | )e e     h h  

where 𝜎0 > 0, 𝜏0 > 0 , in order to guarantee the stability of the IPDG method defined in (2.7), 𝜎, 𝜏 must be 

selectively large enough. 

The finite element approximation of (2.4) is to find (𝜆ℎ, 𝑢ℎ) ∈ 𝑅 × 𝑆2, such that 

( , ) ( , ), .h h h h h h ha u v u v v S                                                          (2-19) 

The source problem of (2.4) is to find 𝑤 ∈ 𝐻0
1(Ω) ∩ 𝐻2(Ω), such that 

1 2

0( , ) ( , ), (Ω) (Ω).a w v f v v H H                                            (2-20) 

The DG approximation of (2-20) is to find 𝑤ℎ ∈ 𝑆2, such that  

( , ) ( , ), .h h h h ha w v f v v S                                                        (2-21) 

Define the linear bounded operator 𝑇: 𝐿2(Ω) → 𝐻0
1(Ω) ∩ 𝐻2(Ω) satisfying 

2 1 2

0( , ) ( , ), (Ω), (Ω) (Ω).a Tf v f v f L v H H                                (2-22) 

The equivalent operator from of (2.4) is  

1
.Tu u


                                                                         (2-23) 

By using (2-20), the corresponding discrete solution operator 𝑇ℎ: 𝐿2(Ω) → 𝑆 can be defined: 
2( , ) ( , ), (Ω), .h ha T f v f v f L v S                                            (2-24) 

The equivalent operator from of (2-20) is 
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.
1

h h h

h

T u u


                                                                    (2-25) 

From the consistency of discontinuous finite element method, let 𝑤 be the solution of (2-22), and 𝑓 ∈ 𝐿2(Ω), 

then 

, .h hw Tf w T f                                                                     (2-26) 

From (2-21) and (2-26), we obtain 

( , ) 0, .h h h ha w w v v S                                                           (2-27) 

For any function 𝑤 ∈ 𝒮, introduce sum space 𝑆 = 𝑆2 + (𝐻0
1(Ω) ∩ 𝐻2(Ω)), that assigns a locally discontinuous 

finite element norm, where the energy norm is defined as follows: 
1

2 2 2 2
Ω Γ Γ .( Δ [ ] [ ] )

h intG hw w w w                                 (2-28) 

There is 𝑎ℎ(⋅,⋅) is continuous and coercive： 

1| ( , ) | , ,h G Ga w v C w v w v S„                                           (2-29) 
2

2( , ) ,h Ga w w C w w S…                                                        (2-30) 

where 𝜎: 𝛤ℎ → ℝ, 𝜏: 𝛤int → ℝ is a piecewise continuous function, 𝐶1 and 𝐶2  are positive constants depending 

only on the mesh parameters. 

Proof. For 𝑤, 𝑣 ∈ 𝑆2, using the Cauchy-Schwarz inequality, we have 

| ( , ) |ha w v   

     
Ω Γ Γ

| (Δ Δ ( )Δ ( )Δ )d d d |
h int

h h h hw v w v v w x w v s w v s        „ L L  

Ω Ω Ω Ω Ω ΩΔ Δ ( ) Δ ( ) Δh h h hw v w v v w „ L L  

[ ] [ ] [ ] [ ]]
h h int intI I I Iw v w v        

G GC w v„ .  

continuity is valid. 
2 2

G Gw v  

    2 2 2

Ω Γ ΓΔ
h inthw w w      

    2 2 2

Ω Γ ΓΔ
h inthv v v      

    2 2 2 2 2

Ω Ω Ω Γ ΓΔ Δ Δ
h inth h hw v w v v      

    2 2 2

Ω Γ ΓΔ
h inthv w w      

         2 2 2 2

Γ Γ Γ Γ| ,
h int h int

w w v v          

from the definition of norm and the Young inequality that 
2

Ω
( , ) 2 ( )Δ dh G ha w w w w w x   L  

                                   
2 2 2

Ω Ω

1
2 ( ) .Δ

2
G hw L w w …  

And because 

2 2 2

Ω Ω

1
2 ( ) Δ

2
G hw L w w   

   
h int

2 2 2

Ω Γ ΓΔhw w w      

   
h int

2 2 2

Γ Γ Ω

1
2 ( ) Δ

2
hc w w w      

   
h int

2 2 2

Ω Γ Γ

1
Δ 1 2 ( ).

2
hw c w w       
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When 0 < 𝑐 <
1

2
, the proof is completed. 

Let 𝑤 ∈ 𝐻2+𝑟(Ω)(1 < 𝑟 ⩽ 2)  be the solution of (2-22), and 𝑓 ∈ 𝐿2(Ω) , assuming the following 

regularity estimate holds: 

2 Ω .rw f ˆ                                               (2-31) 

Let 𝑤𝐼  be the quadratic interpolation of 𝑤, then: 

3,Ω ,I

Gw w h w ˆ                                       (2-32) 

also [𝑤 − 𝑤𝐼] = 0. 

Lemma 2.1. (Proposition 4.9 in [6]) Let 𝜅 ∈ 𝒯 and 𝑣 ∈ 𝐻𝑠𝜅(𝜅), 𝑠𝜅 > 3, then there exists the polynomial Π𝑣 ∈
𝑆ℎ𝜅, satisfying (0 ⩽ 𝑚 ⩽ 𝑠𝜅) 

, , ,Π s m

m sv v h v

  

 ˆ                                                  (2-33) 

1

2
0, Ω , .Π

s

sv v h v


  



 ˆ                                                 (2-34) 

Introduce the global interpolation operator Π: (𝐻0
1(Ω) ∩ 𝐻2(Ω)) → 𝑆,  such that Π(𝑢)|𝜅 = Π(𝑢|𝜅) , for the 

vector-value function 𝐫 = (𝐫1, 𝐫2, ⋯ , 𝐫𝑑), define Π(𝐫)|𝜅 = (Π𝐫1, Π𝐫2, ⋯ , Π𝐫𝑑). 

Lemma 2.3. (lemma 2.1 in [7]) Let 𝜅 ∈ 𝒯, 𝑒 ⊂ ∂𝜅, and 0 < 𝜉 <
1

2
, for any 𝜈 ∈ 𝐻1+𝜉(𝜅) with Δ𝜈 ∈ 𝐿2(𝜅), there 

exists a positive constant C independent of 𝜈 such that  

 1

1 , 0,
,

2

Δ , , .
e

C h e

   


    


    n T                            (2-35) 

Theorem 2.1. Let 𝑤 and 𝑤ℎ be the solution of (2-20) and (2-21), for all 𝜅 ∈ 𝒯, and  𝑠𝜅 > 3,0 < 𝜉 <
1

2
, then 

there holds 
1

,Ω Ω ,inf Δ
h

h G h G
v S

w w w v h w h f




   ˆ                       (2-36) 

1

3 ,Ω ΩΔ .h Gw w h w h w h f

  ˆ .                                (2-37) 

Proof. Firstly, we prove (2-35) by utilizing (2-27), (2-29) and (2-30), we obtain 
2

( , )

( , ) ( , )

h h G

h h h h h

h h h h h h h h

h G h h G

v w

a v w v w

a w w v w a v w v w

v w v w



 

    

 

ˆ

ˆ

ˆ

  

   

       

Γ

Γ

({ Δ }[ ] { Δ }[ ])d

({Δ }[ ] {Δ }[ ])d .

h

int

h h h h h h

h h h h h h

v w v w v w v w s

v w v w v w v w s

 

 

     

     




  

By (2-35), the inverse estimate, and the definition of the energy norm, we have 

 

 

Γ

1 1
, ,Γ

2 2

3
3 2

1 22
, 0,

{ Δ( )}[ ])d

{ Δ } [ ]

Δ [ ]

h

h

h h h

h h h
e ee

h h e

v w v w s

v w v w

h v w h v w

 



 








 




 

   

 
   

 


nˆ

ˆ

ò

  

 

1
3 2

1 2 1 22
0, 0,Δ [ ]h h eh v w h h v w 

 



 

 
   

 
  

 1 2

,Ω ΩΔ .h h Gh w h f v w

  ˆ                                      (2-38) 

It can also be known that 

 
Γ

{ Δ }[ ])d 0.
h

h h hv w v w s                                                   (2-39) 
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By the trace inequality, the definition of the energy norm and (2-31) we have 

    
Γ

0, 0,
Γ

1 1 1 1

22 2 2 2
0, 0,

Δ [ ]d

Δ( ) [ ( )]

Δ( ) ( [ ( )] )

int

int

h h h

h e h h e
e

h k h h e

v w v w s

v w v w

h v w h h v w










 

 

  

  

  

ˆ

ˆ

1 1 1 1

22 2 2 2
0, 0,

Ω

Ω .

]Δ( ) ( [ ( ) )

( Δ )

( )

h k h h e

h G h h G

h G h h G

h v w h h v w

v w h w v w

v w h f v w




 





  

  

  

ˆ

ˆ

  

(2-40) 

Similarly 

 

   
Γ

0, 0,
Γ

1 1 1 1

22 2 2 2
0, 0,

{Δ }[ ]d

       Δ( ) [ ( )]

                         Δ( ) ( [ ( )] )

int

int

h h h

h h e h e
e

h h k h e

v w v w s

v w v w

h v w h h v w










 

 

  

  


ˆ

ˆ

  

1 1 1 1

22 2 2 2
0, 0,Δ( ) ( [ (

.

)] )h h k h e

h h G h G

h v w h h v w

v w v w




 


  

 ˆ

  

(2-41) 

From (2-38), (2-39), (2-40), and (2-41) 
1

,Ω Ω .Δh h G h Gv w v w h w h f

   ˆ                         (2-42) 

Using the triangle inequality we obtain (2-36).  

To prove (2-37), by (2-28), let ( ) ΠhE w w w  have 

h

3

2 2 22
0, 0,Γ

Γ

1

22
0,Γ

Γ

         ( ) Δ ( ) [ ( )]

[ ( )]

h

int
int

h G h h h
e

h
e

E w E w h E w

h E w








 





  

 

ˆ
T

  

3

2 22
0, 0,Γ

Γ

1

22
0,Γ

Γ

1 2 3

 

.

Δ ( ) [ ( )]

                 [ ( )]

:

h
h

h
h

h h h
e

h
e

E w h E w

h E w

I I I








 





  

 

  

                                  ˆ
J

.  

Estimate of 1I  , from (2-33) and 3
k

s    

2 2

0, 3, .Δ ( ) ( )h hE w h w ˆ                                         (2-43) 

Estimate 2I , by (2-34), the trace inequality and the inverse estimate, we have 
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3

22
0,

3

22
0,

1 1

3 22 2

0, 0,

1

3 2

[ ( )]

                         (( ( )) ( ( )) )

( ( ) ( ) )

(

h e

h h e

e h e h

e

h E w

h E w E w

h h E w h E w

h h

 

   


 

   








 




  



n

                                  ˆ

                                  ˆ 2

0,

2

3,( .

( ) )

)

hE w

h w

 



 

                   ˆ

  

(2-44) 

Estimate 
3I , and by the same token 

1 1

2 22 2
0, 0,[ ( )] (( ( )) ( ( )) )h e h h eh E w h E w E w

 
   

 

  n  

1

1 22

0,
( ( ) )e hh h E w

 
  





ˆ  

2

3, .( )h w ˆ                                                                                   (2-

45) 
By the definition of norm, (2-43), (2-44), and (2-45) 

1

2 2
3,Π ( ( .) )Gw w h w 


 

J

ˆ                                                    (2-46) 

By using the error estimate and the interpolation estimate inf Π
hv S h G Gw v w w  ˆ , we obtained 

1

,Ω Ω

1

3,Ω ,Ω Ω

i

.

nf Δ

Δ

h

h G
v S

w v h w h f

h w h w h f



















  

 ˆ
                                  (2-47) 

Then from (2-36) and (2-47) 
1

3 ,Ω ΩΔ ,h Gw w h w h w h f

  ˆ  

the proof is completed. 

Theorem 2.2. Let 𝑤 and 𝑤ℎ be the solution of (2-20) and (2-21), then there holds: 
2

Ω Ω ,h h Gw w h w w h f  ˆ                                      (2-48) 

2

Ω 2 ,Ω .h rw w h w  ˆ                                                           (2-49) 

Proof. 𝑤𝐼  is the quadratic interpolation of 𝑤, form (2-27) and (2-32), we have 

   ( , ) , , I

h h h h h

I

h G G

w w f a w w w a w w w w

w w w w

     

 ˆ
  

    

        
Γ

Γ

{ Δ } { Δ }[ ] d

{Δ } {Δ }[ ] d .

h

int

I I

h h

I I

h h

w w w w w w w w s

w w w w w w w w s

 

 

       

      
 




  

(2-50) 

From [𝑤 − 𝑤𝐼] = 0, we derive 

  
hΓ
Δ [ ]d 0.I

hw w w w s                                                  (2-51) 

From lemma 2.2, the inverse estimate, definition of energy norm, (2-31) and taking 𝜉 = 𝑟 − 1, we deduce 
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 

 

Γ

1 1
, ,Γ

2 2

1
3 2

1 2 1 22
, 0, 0,

{ Δ }[ ]d

{ Δ } [ ]

Δ Δ [ ]

h

h

I

h

h
e ee

h e

w w w w s

w w w

w h w h h w w

 

 

   








 


 

 

  

 
   

 


nˆ

ˆ

ò

  

 

 

1 2

,Ω Ω

1 2

2 Ω

Ω

|| || ||

||

|| || || .

Δ || || ||

||

||

h G

r h G

r

h G

h w h f w w

h w h f w w

h f w w













 

 



ˆ

ˆ

ˆ

  

(2-52) 

By the trace inequality with 
1

2
< 𝛽 ⩽ 1, the interpolation estimates and the definition of energy norm, we get 

    

    

   

Γ

0, 0,
Γ

1
1 2

22
0, 0,

Δ d

Δ

Δ [ ]

int

int

I

h

I

e h e
e

I

h e

w w w w s

w w w w

w w h w w












   

    

 
   

 



ˆ

ˆ

   

   

 

1
1 1 1 2

22 2 2
, 0,

2 ,

3 2

| Δ | [ ]

( )

I

h e

I I

G h G

r

r h G

h h w w h w w

w w h w w w w

h w h w w w



  




 


 





 
   

 

   

 

ˆ

ˆ

  

2 Ω .r h G h Gh w w w h f w w  ˆ ˆ                                        (2-

53) 

From the trace inequality, (2-31), (2-32) and the definition of energy norm, we derive 

   
Γ

{Δ }[ ]d
int

I

hw w w w s   

   

1
1 1 2

22 2
0, 0,

Γ

Δ [ ]
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I

h e e
e

h w w h w w




 
   

 
ˆ   

   

1
1 1 1 2

22 2 2
, 0,| Δ | [ ]I

h eh h w w h w w


  



  

   
 

  

  
1 1 1

2 2 2
0,( ) ΔI

G h Gh w w h w w h w 
 

   
 

ˆ  

3 1 1

2 2 2
3 0,( ) Δh Gh w h w w h w 

 
  

 
ˆ  

2 2

2 2r h G rh w w w h w  ˆ  

2 2

Ω Ω .h Gh f w w h f ˆ                                                             (2-

54) 
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by (2-50), (2-51), (2-52), (2-53) and (2-5) 
2

Ω Ω.h hGw w hw w h f  ˆ  

Next, we prove (2-49). From (2-37), (2-54), and (2-48), obtain 
3 2

Ω 2 ,Ω Ω

3 2

2 ,Ω 2 ,Ω

2

2 ,Ω .

Δr

h r

r

r r

r

w w h w h w

h w h w

h w







 



 



    ˆ

                ˆ

ˆ

  

(2-55) 

which proves (2-49). 

Taking 2 (1 2)s r r   „ in (2-37) and the regularity estimate the following stability estimate 

2

2 2 Ω .

h G h G G

h G

r

r

T f T f Tf Tf

T f Tf Tf

h Tf Tf f

 

 



ˆ

        ˆ

               ˆ ˆ

  

(2-56) 

III. A PRIORI ERROR ANALYSIS                                                                                                      
Let 𝜆 be the 𝑗th eigenvalue of (2.4), with algebraic multiplicities q and the ascent 𝛼 = 1,where 𝜆𝑗 =

𝜆𝑗+1 = ⋯ = 𝜆𝑗+𝑞−1. When ∥ 𝑇ℎ − 𝑇 ∥0,Ω→ 0, q eigenvalue 𝜆𝑗,ℎ, ⋯ 𝜆𝑗+𝑞−1,ℎ of (2.9) will converge to 𝜆. Let 𝑀(𝜆) 

be the generalized eigenvector space of (2.4) related to 𝜆 , 𝑀ℎ(𝜆)  be the direct sum of the generalized 

eigenvector space of (2.9) related to 𝜆ℎ, and 𝜆ℎ converge to 𝜆. 

The subspacegap between the two closed subspaces 𝑉 and 𝑈 is denoted as 

       
Ω

Ω
, 1

, sup inf , , max{ , , , }.ˆ
v Uu V u

U V u v U V U V V U   
 

    

 

1

,

1ˆ
2

j q

h i h
i i

 
 



  denotes the arithmetic mean。 

Theorem 3.1 The following inequality holds 

     2ˆ ,, hM M h   ˆ                                                                       (3-1) 

2 ,h h  ˆ                                                                        (3-2) 

2.| |h h  ˆ                                                                        (3-3) 

Let 𝑢ℎ ∈ 𝑀ℎ(λ) be the direct sum of the generalized eigenspaces of (2-19), and 0 < ξ <
1

2
. Then there 

exists an eigenfunction 𝑢 of (2-4) such that 
2

0,Ω ,hu u h ˆ                                                                                  (3-4) 

1 4

2 ,Ω ,Ω .Δh G ru u h u h u h



  ˆ                           (3-5) 

Proof Let 𝑇𝑓 = 𝑤 and 𝑇ℎ𝑓 = 𝑤ℎ . Combining the operator form, regularity estimates, and equation (2-49), we 

obtain 

2 2

Ω Ω
Ω

0 (Ω) 0 (Ω)Ω Ω

sup suph h
h

f L f L

Tf T f w w
T T

f f   

 
    

2

2
2Ω

0 (Ω) Ω

sup 0,( 0).
f L

h f
h h

f 

 ˆ ˆ                                                          (3-6) 

From Theorems (7.1), (7.2), (7.3), and (7.4) in reference [44], we have 

     ( )Ω
ˆ ,, ( ) |h h MM M T T    ˆ                                                  (3-7) 

1
2

( ) Ω
,

| (( ) ,, ) | ( ) |ˆ
j q

h h i l h M
i l j

T T T T    
 



    ˆ                       (3-8) 



A Priori Error Estimates for Biharmonic Eigenvalue Problems with Simply Supported .. 

DOI: 10.35629/0743-1104126139                               www.questjournals.org                                        136 | Page  

1
2

( ) Ω
,

| | | (( ) , ) | ( ) | |,
j q

h h i l h M
n i j

T T T T    
 



    ˆ                       (3-9) 

Ω ( )Ω| ( ) | .h h Mu u T T  ˆ                                                                      (3-10) 

 where {φ𝑖}𝑖=𝑗
𝑗+𝑞−1

 forms a basis for 𝑀(𝜆). 

It can be inferred from Theorem 2.2 and Theorem 2.1 that 

Ω

( ) Ω Ω
( ), 1

( ) | suph M h
f M f

T T Tf T f
 

    

Ω

2

2,Ω
( ), 1

.sup r
f M f

h Tf



 

ˆ                                           (3-11) 

By inserting (3-11) into (3-7), we obtain (3-1). 

Inserting (3-11) into (3-10) gives (3-4). 

Using the operator properties and regularity estimates, the Galerkin orthogonality relations (2-27) and 

(2-29) yield 

 (( ) , ) ,h i l h i h i lT T a T T T        

 ,h i h i l h la T T T T       

i h i G l h l GT T T T    ˆ  

3 3i lh T h T ˆ  

2.hˆ                                                                                   (3-12) 

By inserting (3-12) into (3-8), we obtain (3-2). 

Inserting (3-12) into (3-9) gives (3-3). 

From 𝑢 = λ𝑇𝑢 and 𝑢ℎ = λℎ𝑇ℎ𝑢ℎ, the triangle inequality combined with (2-56), (3-3), and (3-4) yields 

( )h G h G h h G h h h Gu u u T u u T u T u u        ˆ  

4

Ω .h hu u h ˆ ˆ                                                                                      (3-13) 

Based on (2-36) and (2-37), we derive 

h G h Gu T u Tu T u      

2

1

,Ω Ωinf Δ
h

h G
v S

Tu v h u h u

 


  ˆ  

1

2 ,Ω ΩΔr

rh u h u hu

  ˆ  

1

2 ,Ω ,ΩΔ .rhu h u

 ˆ                                                                        (3-14) 

By combining equations (3-13) and (3-14), we obtain equation (3-5). 

IV. NUMERICAL EXPERIMENTS     

In this section, we conducted computational experiments on the Matlab 2017a platform to validate the 

effectiveness of our method. Considering problem (2-1), our program was compiled under the iFEM software 

package, and we performed calculations using the SIPG method (with penalty coefficients𝜎 = 70, 𝜏 = 70). We 

considered two test domains: the square domain Ω𝑆 with vertices at (0,0), (1,0), (1,1), (0,1), and the hexagonal 
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domain Ω𝐻 with vertices at (1,7,2), (2,7,3), (3,7,4), (7,5,4), (7,6,5), (1,6,7). Since the exact eigenvalues are 

unknown, we took the reference eigenvalue 𝜆 = 389.6365 for the square domain. For the hexagonal domain, 

we used a previous reference eigenvalue  

𝜆 = 51.198878119786. 

Table 1 Numerical Eigenvalue Results for the Domain Ω𝑆 

𝐷𝑜𝑚𝑖𝑛 𝑙 𝑑𝑜𝑓 𝜆 = 389.6365 𝐸𝑟𝑟𝑜𝑟 

Ω𝑆 

1 768 1.0e+02*4.804360813618129 90.7995813618128 

2 1056 1.0e+02*4.0162473161865 11.98823162 

6 3888 1.0e+02*3.92258114095587 2.62161409558774 

10 18564 1.0e+02*3.90122271091472 0.485771091471861 

14 87588 1.0e+02*3.89736006335979 0.099506810507876 

16 206172 1.0e+02*3.89680850296493 0.044593973099722 

 

Table 2 Numerical Eigenvalue Results for the Domain Ω𝐻 

𝐷𝑜𝑚𝑖𝑛 𝑙 𝑑𝑜𝑓 𝜆 = 51.198878119786 𝐸𝑟𝑟𝑜𝑟 

Ω𝐻 

1 2304 56.681054076591394 5.482175956805392 

2 2616 54.063730945910883 2.864852826124881 

6 8334 52.153313504680995 0.954435384894992 

10 28248 51.509294035452548 0.310415915666546 

12 53400 51.376378012289926 0.177499892503924 

15 136656 51.266349425181744 0.067471305395742 
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Figure 1 Error Curve of the Second Eigenvalue on the Test Domain Ω𝑆 

 

Figure 2 Error Curve of the Second Eigenvalue on the Test Domain Ω𝐻 

V. CONCLUSION                    

                                                         

The biharmonic eigenvalue problem has a wide range of applications in fields such as elastic 

mechanics, including thin plate vibration models, fluid mechanics, and quantum mechanics. This paper presents 

a discontinuous Galerkin method for solving the biharmonic eigenvalue problem under simply supported 

boundary conditions and derives the a priori error estimate for the biharmonic equation under these conditions. 

The most significant aspect is proving the convergence of the discrete solution operator 𝑇ℎin the 𝐿2(Ω) norm to 

the Dirichlet operator 𝑇, that is, ∥ 𝑇 − 𝑇ℎ ∥Ω→ 0, (ℎ → 0). In conclusion, we conducted numerical experiments 

using the discontinuous Galerkin method to obtain the eigenvalue numerical solutions. From the error curves, it 

can be observed that our method achieves the optimal convergence rate for the eigenvalues and provides the 
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optimal error estimates for the eigenfunction. This numerical experiment demonstrates the effectiveness of the 

algorithm. Additionally, this study provides theoretical support and numerical methods for practical problems 

such as thin plate vibrations and structural stability analysis, which helps to enhance the precision and efficiency 

of engineering design. 
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