
Quest Journals 

Journal of Research in Applied Mathematics 

Volume 11 ~ Issue 4 (April 2025) pp: 111-125 

ISSN (Online): 2394-0743  ISSN (Print): 2394-0735 

www.questjournals.org  

 
 

 

DOI: 10.35629/0743-1104111125                               www.questjournals.org                                        111 | Page  

Review Paper 

A Segmented Autoregressive Model Based on the Horizontal and 

Vertical Axes 

 

Ding Peng1,Mingduan Liang2, Ying Han3, 
1,2,3School of Mathematical Sciences, Guizhou Normal University, Guiyang, China 

Corresponding Author: Ding Peng 

ABSTRACT: This paper aims to further discuss the segmentation and estimation issues of autoregressive (AR) 

models. The innovations in the AR model do not follow the default normal distribution but rather an arbitrary 

distribution or a mixture of several distributions. We use a mixture of normal distributions to fit the distribution 

of the innovations, and employ the Dirichlet process as the prior for the variance of the mixture normal 

distribution to obtain the posterior estimates of the parameters. By combining Gibbs sampling, we continuously 

update the parameter estimates of the model to achieve more accurate results.In this study, segmentation is 

performed along both the horizontal and vertical axes. For the horizontal axis, we use the Bayesian method to 

identify the threshold values and lag parameters. For the vertical axis, we employ the LASSO method to identify 

the locations of change points. Numerical simulations are conducted to demonstrate the feasibility of the two 

segmentation approaches. Moreover, the model estimation and analysis are carried out on real time series data. 
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I. INTRODUCTION 
The research in this paper focuses on the discussion of two different segmentation methods, namely the 

segmented autoregressive (AR) model based on the vertical axis and the segmented AR model based on the 

horizontal axis. The segmented AR model based on the vertical axis is the threshold autoregressive model (TAR). 

Since its introduction by Tong [7] in 1978, the TAR model has been extensively studied and is considered an 

approximation of nonlinear autoregressive models. Essentially, the TAR model is a piecewise linear model in the 

state space, where it is linear within each threshold value space. For more detailed descriptions of this model, refer 

to Tong [8].To estimate the parameters of the threshold autoregressive model, many scholars have conducted 

research. Tsay [9] used the least squares method to estimate the parameters and developed a simple statistic to 

specify the threshold values. In the Bayesian estimation approach, Chen and Lee [10] performed Bayesian 

estimation for the two-segment threshold model and used Gibbs sampling to obtain the expected marginal 

posterior densities of the threshold values and other parameters. This method avoids complex analysis and 

numerical multiple integrations. Moreover, Chen [11] constructed a Bayesian framework for the generalized 

threshold autoregressive model, demonstrating that the MCMC algorithm can be successfully applied to parameter 

estimation. For the self-exciting threshold autoregressive (SETAR) model with a single threshold variable, a 

considerable number of papers have proposed different information criteria and evaluated their performance 

[12][13][14][15]. Wang [16] studied the parameter estimation of panel data threshold models using the inverse 

LR method, focusing on small sample cases and providing corresponding confidence intervals. Zhang [17] 

compared the Bayesian estimation and maximum likelihood estimation of the threshold autoregressive model. 

The results showed that the regression parameters have the same distribution as the maximum likelihood estimates, 

while the Bayesian estimates converge to a function of a compound Poisson process, which can be regarded as 

the average of the compound Poisson process in the time domain. For inference on the multiple threshold 

autoregressive model, refer to the literature [18]-[23]. 

The study of segmented autoregressive models based on the vertical axis is essentially the study of 

change-point models. As research has progressed, it has become evident that linear time series models have certain 

limitations, especially when fitting stock data. Stock closing prices sometimes experience sudden increases or 

decreases. Page [24] first formally introduced the change-point problem in 1954, focusing on whether the 
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distribution parameters change once, i.e., whether there is a single change point in the time series data, and 

proposed the cumulative sum (CUSUM) detection method.Quandt [25] used the likelihood ratio test (LRT) to 

construct a test statistic for studying simple linear regression models with a single change point. For traditional 

methods on change-point research, refer to the monographs and review papers [26]-[34].After Tibshirani [35] 

proposed the LASSO method by adding a penalty term based on the L1 norm, many scholars applied the LASSO 

method to change-point detection, transforming the change-point detection problem into a variable selection 

problem. Zou [36] introduced a new sparse principal component analysis method—sparse principal component 

analysis, which obtains sparse loadings by imposing LASSO constraints on the regression coefficients. The 

analysis of the LASSO algorithm has yielded satisfactory results. Ciuperca [37] considered linear regression 

models with multiple change points and proposed model selection criteria for two cases. Comparisons showed 

that for sufficiently large sample sizes, the adaptive LASSO method selects the true model better than ordinary 

least squares (OLS), regardless of the location of the change points. Ciuperca [38] applied the adaptive LASSO 

method to detect change points in quantile regression models, obtaining the convergence rates of change-point 

estimates and regression parameter estimates in each stage. The sparsity of the adaptive LASSO quantile estimates 

of regression parameters is not affected by change-point estimation, and it was verified that the adaptive LASSO 

outperforms other variable selection methods at that time. For other types of LASSO methods for identifying 

change-point locations, refer to the literature [39]-[41]. 

The structure of this paper is as follows: Section 2 presents the matrix forms under the two segmentation 

methods and explains how the segmentation is performed; Section 3 derives the likelihood function of the time 

series data \( y \) and introduces the Dirichlet Process Mixture Model (DPMM) into the autoregressive model to 

compute the posteriors of the parameters; Section 4 conducts numerical simulations to demonstrate the feasibility 

of the proposed methods. For the threshold model, the proposed method is compared with the Ordinary Least 

Squares (OLS) method, and for the change-point model, it is compared with the pure LASSO and Maximum 

Likelihood Estimation (MLE) methods. The experimental results are analyzed, and it is concluded that the 

proposed methods outperform the other methods; Section 5 applies the two segmentation methods to real stock 

data, presenting the estimation results and forecasts for the next five steps; Section 6 concludes the paper by 

detailing the research findings. 

 

II. IDENTIFICATION OF SEGMENTED AUTOREGRESSIVE  
 

2.1 Identification of Vertical-Axis Segmented Autoregressive Models 

Consider the Self-Exciting Threshold Autoregressive (SETAR) model: 

𝑦𝑡 = 𝜙𝑗0 +∑𝜙𝑗𝑖𝑦𝑡−1

𝑞𝑗

𝑖=1

+ 𝜀𝑗𝑡 ,   𝑟𝑗−1 < 𝑦𝑡−𝑑 ≤   𝑟𝑗                                                     (1) 

𝑗 = 1,2,⋯ ,𝑚        − ∞ = 𝑟0 < 𝑟1 < ⋯ <   𝑟𝑚−1 <   𝑟𝑚 = +∞ 

where 𝜙𝑗𝑖and 𝑟𝑗 are real numbers, 𝑞𝑗, 𝑚, and 𝑑 are positive integers. It is assumed that the innovation terms 𝜀𝑡 are 

independent and follow different mixed normal distributions, i.e., 𝜀𝑗𝑡~𝑁(0, 𝜎𝑗𝑒
2 ), 𝑒 = 1,2,⋯ , k𝑗 , where 𝑒 is a 

positive integer. 

This paper divides the sample observations{𝑦𝑡 , 𝑡 = 1,2,⋯ ,𝑁} into multiple subsets (where 𝑁 is the total sample 

size), denoted as 𝑌1, 𝑌2, ⋯ , 𝑌𝑚 , with 𝑌1 = {𝑦𝑡 , 𝑦𝑡−𝑑 ≤ 𝑟1} , 𝑌2 = {𝑦𝑡 , 𝑟1 < 𝑦𝑡−𝑑 ≤ 𝑟2} , and 𝑌𝑚 = {𝑦𝑡 , 𝑟𝑚−1 <
𝑦𝑡−𝑑 ≤ 𝑟𝑚} . The dimension of 𝑌𝑗  is 𝑁𝑗 × (𝑞𝑗 + 1) , and the sample sizes of 𝑌1, 𝑌2, ⋯ , 𝑌𝑚  are 𝑁1, 𝑁2, ⋯ , 𝑁𝑚 

respectively, with 𝑁 =  𝑁1+𝑁2 +⋯+ 𝑁𝑚.Let 𝜙𝑗 = (𝜙𝑗0, 𝜙𝑗1, 𝜙𝑗2, ⋯ , 𝜙𝑗𝑞𝑗)
′. Each segment 𝑌𝑗 is further divided 

into smaller segments based on the different distributions of the variance, 𝑌𝑗 = {𝑌𝑗,𝑁𝑗𝑒 , 𝑒 = 1,2,⋯ , 𝑘𝑗}, with each 

smaller segment 𝑌𝑗,𝑁𝑗𝑒  having a sample size of 𝑁𝑗𝑒, and 𝑁𝑗 = ∑ 𝑁𝑗𝑒
𝑘𝑗
𝑒=1 , for 𝑗 = 1,2,⋯𝑚. The equation (1) can be 

rewritten in matrix form as: 

𝑌𝑗,𝑁𝑗𝑒 = 𝑌𝑗,𝑁𝑗𝑒
∗ 𝜙𝑗 + 𝐸𝑗𝑒   , 𝑟𝑚−1 ≤ 𝑦𝑡−𝑑 ≤ 𝑟𝑗 , 𝜀𝑡~𝑁(0, 𝜎𝑗𝑒

2 )                                (2) 

The specific expansion yields the following equation: 
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𝑌 =

{
 
 
 

 
 
 
{

𝑌1,𝑁11 = 𝑌1,𝑁11
∗ 𝜙1 + 𝜀11            ,          𝑦𝑡−𝑑 ≤ 𝑟1, 𝜀𝑡~𝑁(0, 𝜎11

2 )

⋮
𝑌1,𝑁1𝑘1 = 𝑌1,𝑁1𝑘1

∗ 𝜙1 + 𝜀1𝑘1       ,       𝑦𝑡−𝑑 ≤ 𝑟1, 𝜀𝑡~𝑁(0, 𝜎1𝑘1
2 )

⋮

{

𝑌𝑚,𝑁𝑚1 = 𝑌𝑚,𝑁𝑚1
∗ 𝜙𝑚 + 𝜀𝑚1   , 𝑟𝑚−1 < 𝑦𝑡−𝑑 , 𝜀𝑡~𝑁(0, 𝜎𝑚1

2 )

⋮
𝑌𝑚,𝑁𝑚𝑘𝑚 = 𝑌𝑚,𝑁𝑚𝑘1

∗ 𝜙𝑚 + 𝜀𝑚𝑘𝑚 , 𝑟𝑚−1 < 𝑦𝑡−𝑑 , 𝜀𝑡~𝑁(0, 𝜎𝑚𝑘𝑚
2 )

                                   (3) 

where 𝑁𝑗𝑒  is the sample size of the 𝑒 -th small segment in the 𝑗 -th segment, 𝐸𝑗𝑒 = {𝜀𝑗𝑒} , 𝑟0 = −∞ , Σ2 =

{𝜎11
2 , ⋯ , 𝜎1𝑘1

2 ,⋯ , 𝜎𝑚1
2 , ⋯ , 𝜎𝑚𝑘𝑚

2 } , and its dimension is ∑ 𝑘𝑗
𝑚
𝑗=1 × 1 , Let Φ = {𝜙1, 𝜙2, ⋯ , 𝜙𝑚}

′ , the sample 

observations be denoted as 𝑌 = {𝑌1
∗, ⋯ , 𝑌𝑚

∗ , 𝑌1, ⋯ , 𝑌𝑚}. The likelihood function for 𝑌 is given by: 

𝑃(𝑌|𝑑, 𝑟, 𝑞,𝛷, 𝛴2) ∝∏∏(𝜎𝑗𝑒
2 )−

𝑁𝑗𝑒
2 𝑒𝑥𝑝 (−

(𝑌𝑗,𝑁𝑗𝑒 − 𝑌𝑗,𝑁𝑗𝑒
∗ 𝜙𝑗)

′

(𝑌𝑗,𝑁𝑗𝑒 − 𝑌𝑗,𝑁𝑗𝑒
∗ 𝜙𝑗)

2𝜎𝑗𝑒
2 )                (4)

𝑘𝑗

𝑒=1

𝑚

𝑗=1

 

Esmail Amiri [37] provided the joint posterior density of 𝑑, 𝑟 and 𝑞 conditional on the data: 

𝑓(𝑑, 𝑟, 𝑞|𝒀) ∝∏2
(−
𝑣𝑗
2
+1)
𝜋
𝑣𝑗
2 𝛤(

𝑣𝑗

2
)(
𝑣𝑗𝑠𝑗

2

2
)−
𝑣𝑗
2 |𝑌𝑖

′𝑌𝑖|
−
1
2

𝑚

𝑗=1

                                              (5) 

where 𝑞 = {𝑞1, ⋯ , 𝑞𝑚}, 𝑟 = {𝑟1, ⋯ , 𝑟𝑚−1}, 𝑑 = 0,1,2,⋯ , 𝐼, and 𝐼 is a positive integer. 𝑣𝑗 = {𝑣𝑗𝑒 , 𝑒 = 1,2,⋯ , 𝑘𝑗} 

and 𝑠𝑗
2 = {𝑠𝑗𝑒

2 }  are given by:𝑠𝑗𝑒
2 =

(𝑌𝑗,𝑁𝑗𝑒
∗ −𝑌𝑗,𝑁𝑗𝑒

𝜙𝑗
∗)
′
(𝑌𝑗,𝑁𝑗𝑒
∗ −𝑌𝑗,𝑁𝑗𝑒

𝜙𝑗
∗)

𝑣𝑗𝑒
, 𝑣𝑗𝑒 = 𝑁𝑗𝑒 − 𝑞𝑗 − 1 .The MCMC method is 

used to estimate the values of 𝑑, 𝑟 and 𝑞. The closed forms of the conditional posterior probability functions for 

each order or the delay given the other parameters are available. The conditional posterior for 𝑟 is as follows: 

𝑓(𝑟|𝒀, 𝑑, 𝑞) ∝∏2
(−
𝑣𝑗
2
+1)
𝜋
𝑣𝑗
2 𝛤(

𝑣𝑗

2
)(
𝑣𝑗𝑠𝑗

2

2
)−
𝑣𝑗
2 |𝑌𝑗

′𝑌𝑗|
−
1
2

𝑚

𝑗=1

                                          (6) 

The conditional posterior for 𝑑 is given by: 

𝑓(𝑑|𝒀, 𝑟, 𝑞) ∝
∏ 𝛤(

𝑣𝑗
2
)(
𝑣𝑗𝑠𝑗

2

2
)−
𝑣𝑗
2 |𝑌𝑖

′𝑌𝑖|
−
1
2𝑚

𝑗=1

∑ ∏ 𝛤(
𝑣𝑗
2
)(
𝑣𝑗𝑠𝑗

2

2
)−
𝑣𝑗
2 |𝑌𝑖

′𝑌𝑖|
−
1
2𝑚

𝑗=1
𝐼
𝑑=0

                                             (7) 

where 𝐼 represents the maximum delay parameter, which is a positive integer. The conditional posterior for 𝑞 is 

given by: 

𝑓(𝑞|𝒀, 𝑟, 𝑑) ∝
∏ 𝛤(

𝑣𝑗
2
)(
𝑣𝑗𝑠𝑗

2

2
)−
𝑣𝑗
2 |𝑌𝑖

′𝑌𝑖|
−
1
2𝑚

𝑗=1

∑ ⋯∑ ∏ 𝛤(
𝑣𝑗
2
)(
𝑣𝑗𝑠𝑗

2

2
)−
𝑣𝑗
2 |𝑌𝑖

′𝑌𝑖|
−
1
2𝑚

𝑗=1

𝑛𝑞𝑚
𝑞𝑚=0

𝑛𝑞1
𝑞1=0

                                (8) 

where 𝑛𝑞1 , ⋯ 𝑛𝑞𝑚 are the maximum orders of the autoregression for each segment, which are less than the actual 

number of time series data points in each segment. 

 

2.2 Estimation of Horizontal-Axis Segmented Autoregressive Models 

The matrix form of the horizontal-axis segmented autoregressive model is: 

𝑦𝑡 =

{
 
 
 

 
 
 
{

𝑌1,𝑁11 = 𝑌1,𝑁11
∗ 𝜙1 + 𝜀11                         , 𝑡 < 𝑐𝑡1, 𝜀𝑡~𝑁(0, 𝜎11

2 )

⋮
𝑌1,𝑁1𝑘1 = 𝑌1,𝑁1𝑘1

∗ 𝜙1 + 𝜀1𝑘1                    , 𝑡 < 𝑐𝑡1, 𝜀𝑡~𝑁(0, 𝜎1𝑘1
2 )

⋮

{

𝑌𝑚,𝑁𝑚1 = 𝑌𝑚,𝑁𝑚1
∗ 𝜙𝑚 + 𝜀𝑚1        , 𝑐𝑡𝑚−1 ≤ 𝑡, 𝜀𝑡~𝑁(0, 𝜎𝑚1

2 )

⋮
𝑌𝑚,𝑁𝑚𝑘𝑚 = 𝑌𝑚,𝑁𝑚𝑘1

∗ 𝜙𝑚 + 𝜀𝑚𝑘𝑚 , 𝑐𝑡𝑚−1 ≤ 𝑡, 𝜀𝑡~𝑁(0, 𝜎𝑚,𝑘𝑚
2 )

                  (9) 
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where {𝑐𝑡1, ⋯ , 𝑐𝑡𝑚−1} is the set of change point locations, and the number of segments in the model is equal to 

the number of change point locations plus one. The data for each segment are 𝑌1 = {𝑦𝑡 , 𝑡 < 𝑐𝑡1},⋯ , 𝑌𝑚 =
{𝑦𝑡 , 𝑐𝑡𝑚−1 ≤ 𝑡}, and the other symbols are consistent with those in section 2.1. 

 

III. PARAMETER ESTIMATION                                                                                                               
The conditional likelihood function for 𝑌 is: 

𝑃(𝑌|𝑐𝑡1, ⋯ , 𝑐𝑡𝑚−1, 𝛷, 𝛴
2) ∝∏∏(𝜎𝑗𝑒

2 )
−
𝑁𝑗𝑒
2 𝑒𝑥𝑝 (−

(𝑌𝑗,𝑁𝑗𝑒 − 𝑌𝑗,𝑁𝑗𝑒
∗ 𝜙𝑗)

′

(𝑌𝑗,𝑁𝑗𝑒 − 𝑌𝑗,𝑁𝑗𝑒
∗ 𝜙𝑗)

2𝜎𝑗𝑒
2 )  

𝑘𝑗

𝑒=1

𝑚

𝑗=1

(10) 

It should be noted that, whether it is the segmented autoregressive model based on the horizontal axis or the 

vertical axis as mentioned earlier, the estimation methods for the parameters of the segmented autoregressive 

models are the same. Therefore, the following posterior estimation methods for these parameters are shared. 

This paper introduces the Dirichlet Process Mixture Model (DPMM) into the autoregressive model. Since 

the posterior distribution of the Dirichlet Process Mixture Model does not have an analytical solution, the unknown 

model is partitioned into blocks, and the joint posterior distribution of the parameters is obtained using Bayes' 

theorem: 

𝜋(𝛴2, 𝛷, 𝛼, 𝑍|𝑌) = 𝑓(𝑌|𝛴2, 𝛷, 𝛼, 𝑍)𝜋(𝛷|𝛴2, 𝛼, 𝑍)𝜋(𝛴2|𝛼, 𝑍)𝜋(𝑍|𝛼)𝜋(𝛼)                   (11) 

where 𝑍 = {𝑧𝑦𝑡 , 𝑡 = 1,2,⋯ ,𝑁} is the set of categorical labels. Given the other parameters and latent variables, 

the Markov chain is constructed by iteratively sampling from the posterior distribution of each block. 

It should be noted that the parameter estimation in this section is based on the following premise: the 

autoregressive model has already been segmented as described earlier. For the threshold model based on the 

vertical axis, the parameters 𝑑, 𝑟 and 𝑞 are known through Equations (6)–(8). For the change-point model based 

on the horizontal axis, the number and locations of the change points have already been identified through LASSO. 

We now begin to estimate ϕi . When calculating the posterior distribution of ϕi , to facilitate the 

derivation using conjugate distributions, this paper chooses the prior distribution of ϕi to be a multivariate normal 

distribution: 

𝑝(𝜙𝑗|𝑑, 𝑟)~𝑁𝑞𝑗+1(𝑢𝑗, √𝑣𝑗)                                                                  (12) 

Combining Equation (4), the conditional posterior distribution of 𝜙𝑗 is a multivariate normal distribution: 

𝜙𝑗|𝑑, 𝑟, 𝑞~𝑁 (𝜙𝑗
∗, 𝜎∅𝑗

2 )                                                                     (13) 

where, 𝜙𝑗
∗ = 𝜎∅𝑗

2 (
(𝑌𝑗,𝑁𝑗𝑒

)′𝑌𝑗,𝑁𝑗𝑒
∗

𝜎𝑗𝑒
2 +

𝑢𝑗

𝑣𝑗
)，𝜎∅𝑗

2 = (
(𝑌𝑗,𝑁𝑗𝑒
∗ )′𝑌𝑗,𝑁𝑗𝑒

∗

𝜎𝑗𝑒
2 + 𝑣𝑗

−1)−1. 

Assuming 𝑉𝑡  is the variance carried by the 𝑡-th data point, we introduce an indicator variable 𝑍 =
(𝑧𝑦1 , 𝑧𝑦2 , ⋯ , 𝑧𝑦𝑁) such that when 𝑉𝑡 = 𝜎𝑗𝑒

2 , 𝑒 = 1,2,⋯ , k𝑗, then 𝑧𝑦𝑡 = 𝑒. Under the Dirichlet process prior, the 

distribution of 𝑧𝑦𝑡 is as follows: 

𝑧𝑦𝑡~∑𝜋𝑒𝛿𝜎𝑗𝑒
2

∞

𝑒=1

(𝑑𝑉)                                                                       (14) 

where 𝛿 is an indicator function that is 1 only when 𝑉𝑡 = 𝜎𝑗𝑒
2  and 0 otherwise. The weight 𝜋 is defined through 

the stick-breaking process as  𝜋𝑖 = 𝑝𝑖 ∏ (1 − 𝑝𝑖𝑖)
𝑖−1
𝑖𝑖=1 , where 𝑝|𝛼~𝐵𝑒𝑡𝑎(1, 𝛼). 𝜎𝑗𝑒

2  is the variance of the 𝑒-th 

normal distribution in the 𝑗-th segment of the segmented autoregressive model, and it is one of the distinct values 

in 𝑉. By introducing 𝑧𝑦𝑡  into the DPMM model, we obtain: 

𝜀𝑡~𝑁 (0, 𝜎𝑧𝑦𝑡
2 ) 

𝑧𝑦𝑡~∑𝜋𝑒𝛿𝑒

∞

𝑒=1

 

𝜎𝑧𝑦𝑡
2 ~𝐺0  

𝐺0~𝐼𝑛𝑣 − 𝑔𝑎𝑚𝑚𝑎(𝑣1, 𝑐1)                                                                 (15) 
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where 𝜎𝑧𝑦𝑡
2  represents the variance of the normal distribution that the t-th data point follows. There is a premise 

that the innovations are independent. Define 𝜺 = (𝜀11, ⋯ , 𝜀1𝑁1 , ⋯ , 𝜀𝑚1, ⋯ , 𝜀𝑚𝑁𝑚)
′ ,  and 𝜀𝑗𝑖′ = 𝑦𝑗𝑖′ − 𝜙𝑗0 −

∑ 𝜙𝑗𝑖𝑦𝑗,𝑖′−𝑖
𝑞𝑗
𝑖=1

, for 𝑖′ = 𝑞𝑗 + 1, 𝑞𝑗 + 2,⋯ ,𝑁𝑗 . The conditional posterior distribution of 𝑉𝑡 is obtained as: 

𝑉𝑡|{𝑉𝑡′ , 𝑡
′ ≠ 𝑡}, 𝜀𝑡, 𝛼~

𝛼

𝑛 + 𝛼 − 1
𝑔(𝜀𝑡)𝐺(𝑑𝑉|𝜀𝑡) +

1

𝑛 + 𝛼 − 1
∑ 𝑓𝑁(𝜀𝑡|𝑉𝑡′)𝛿𝑉𝑡′

(𝑑𝑉)

𝑡′≠𝑡

              (16) 

From the form of the inverse gamma distribution's density function, we can deduce: 

𝐺(𝑑𝑉|𝜀𝑡)~𝐼𝑛𝑣 − 𝑔𝑎𝑚𝑚𝑎 (𝑣1 +
1

2
,
2𝑐1 + 𝜀𝑡

2

2
)                                                 (17) 

The marginal likelihood function is: 

𝑔(𝜀𝑡) = ∫𝑓𝑁(𝜀𝑡|0, 𝑉)𝐺0(𝑉)𝑑𝑉 =
1

√2𝜋
×
(𝑣1)

𝑐1

𝛤(𝑣1)
×

𝛤 (𝑣1 +
1
2
)

(
2𝑐1 + 𝜀𝑡

2

2
)
𝑣1+

1
2

                           (18) 

It is important to note that 𝐺(𝑑𝑉|𝜀𝑡) is the core of the inverse gamma distribution, while 𝑔(𝜀𝑡) is the marginal 

likelihood function obtained by integrating out the inverse gamma distribution. To sample Σ2from the posterior 

distribution 𝜋(Σ2|𝛼, 𝑍) , we need to sample 𝑍  from the posterior distribution 𝜋(𝑍|𝛼) . Here, Σ2 =
{𝜎11

2 , ⋯ , 𝜎1𝑘1
2 ,⋯ , 𝜎𝑚1

2 , ⋯ , 𝜎𝑚𝑘𝑚
2 } is the set composed of distinct 𝑉𝑡,for 𝑡 = 1,2,⋯𝑁, and 𝑍 = {𝑧𝑦1 , 𝑧𝑦2 , ⋯ , 𝑧𝑦𝑁} is 

the vector composed of the assignment variables 𝑧𝑦𝑡 . When 𝑉𝑡 = 𝜎𝑗𝑒
2 , 𝑧𝑦𝑡 = 𝑒. Therefore, sampling Σ2 requires 

two steps: 

1. Sample the cluster labels 𝑧𝑦𝑡  first: 

𝑧𝑦𝑡|𝜎𝑗𝑒
2 , 𝜀𝑡 , 𝛼~

{
 
 

 
 

𝛼𝑔(𝜀𝑡)𝛿𝑘𝑗+1(𝑑𝑧𝑦𝑡)

∑ 𝑓𝑁(𝜀𝑡|𝜎𝑗𝑒
2 )𝛿𝑒(𝑑𝑧𝑦𝑡) + 𝛼𝑔(𝜀𝑡)𝛿𝑘𝑗+1(𝑑𝑧𝑦𝑡)

𝑘𝑗
𝑒=1

∑ 𝑓𝑁(𝜀𝑡|𝜎𝑗𝑒
2 )𝛿𝑒(𝑑𝑧𝑦𝑡)

𝑘𝑗
𝑒=1

∑ 𝑓𝑁(𝜀𝑡|𝜎𝑗𝑒
2 )𝛿𝑒(𝑑𝑧𝑦𝑡)

𝑘𝑗
𝑒=1 + 𝛼𝑔(𝜀𝑡)𝛿𝑘𝑗+1(𝑑𝑧𝑦𝑡)

                          (19) 

The above is obtained after normalization. The cluster label 𝑧𝑦𝑡 will be sampled from {1,2,⋯ , 𝑘𝑗 , 𝑘𝑗 + 1} with the 

sampling probability given by Equation (19). If the sampled value is from {1,2,⋯ , 𝑘𝑗}, then the variance of that 

category will be updated. If the sampled value is 𝑘𝑗 + 1, then 𝑘𝑗 is updated to𝑘𝑗 + 1, increasing the number of 

mixture normal distributions, and the variance of the new distribution will be randomly sampled from the inverse 

gamma distribution. 

2. After knowing the distribution of 𝑧𝑦𝑡 for the 𝑗-th segment, start updating the variance in each class: 

𝜋(𝜎𝑗𝑒
2 |𝑍, 𝜀, 𝑘𝑗) ∝ (𝜎𝑗𝑒

2 )
−[
𝑁𝑗𝑒+2𝑣1

2
+1]

𝑒𝑥𝑝 (−
𝑁𝑗𝑒𝜀𝑡

2 + 2𝑐1

2𝜎𝑗𝑒
2 )~𝐼𝑛𝑣𝑔𝑎𝑚𝑚𝑎 (

𝑁𝑗𝑒 + 2𝑣1

2
,
𝑁𝑗𝑒𝜀𝑡

2 + 2𝑐1

2
)    (20) 

where 𝑗 = 1,2,⋯ ,𝑚 , e = 1,2,⋯ , k𝑗 and  𝜀 = {𝜀1, 𝜀2, ⋯ , 𝜀𝑁𝑗}. If the cluster label 𝑧𝑦𝑡  sampled in the first step is 

a new category, then 𝑁𝑗𝑒 = 1. Therefore, the variance of the normal distribution that the data in each segment 

follows can be estimated using Equation (20). 

The posterior estimation of the parameter 𝛼 is given by Escobar, who provided a method based on Gibbs 

sampling. The posterior estimation of 𝛼 is a mixture of two gamma distributions: 

𝛼|𝑘, 𝜂~𝜋𝜂𝐺(𝑐 + 𝑘, 𝑑 − 𝑙𝑛𝜂) + (1 − 𝜋𝜂)𝐺(𝑐 + 𝑘 − 1, 𝑑 − 𝑙𝑛𝜂)                            (21) 

In Equation (21), 𝜂 and 𝜋𝜂 are still unknown. 𝜋𝜂  is defined by the following equation:
𝜋𝜂

1−𝜋𝜂
=

𝑐+𝑘−1

𝑛(𝑑−𝑙𝑛𝜂)
,which can be rearranged to: 

𝜋𝜂 =
𝑐 + 𝑘 − 1

𝑛(𝑑 − 𝑙𝑛𝜂) + 𝑐 + 𝑘 − 1
                                                             (22) 

Next, we calculate the posterior distribution of 𝜂, 𝑃(𝜂|𝑘, 𝛼) ∝ 𝜂𝛼(1 − 𝜂)𝑛−1, which is: 

𝜂|𝑘, 𝛼~𝐵𝑒𝑡𝑎(𝛼 + 1, 𝑛)                                                                  (23) 
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IV. NUMERICAL SIMULATIONS                                                                                                              
4.1 Simulation Based on the Vertical-Axis Segmented Autoregressive Model 

In this section, this paper illustrates the simulation study of the aforementioned model and compares it 

with conventional methods to demonstrate the superiority of the proposed model. The following TAR model is 

considered, which has one threshold value, and each segment is a first-order autoregressive model with the 

variance of the innovation term in each segment coming from a mixture of two variances: 

𝑌𝑡 = {
7.8 + 𝑌1

∗02 + 𝜀1      , 𝑦𝑡−1 ≤ 17, 𝜀1~𝜋11𝑁(0,10) + 𝜋12𝑁(0,50)

14 + 0.2𝑌2
∗ + 𝜀2     ,17 < 𝑦𝑡−1, 𝜀2~𝜋21𝑁(0,10) + 𝜋22𝑁(0,1)

                          (24) 

where (𝜋11, 𝜋12, 𝜋21, 𝜋22) = (0.410, 0.590, 0.435, 0.565). 

This paper considers that the variances of the innovation terms in each segment are independent and 

come from a mixture distribution, estimated using the DPMM method. The estimation results are compared with 

the case where the innovations are assumed to follow a single normal distribution, with the benchmark method 

being OLS. The estimated threshold values are shown in the following table: 

 

Table 4-1: Estimation of Threshold Values, Lag Parameters, and Autoregressive Model Orders. 

Parameter  𝑟  𝑑  𝑞1  𝑞2 

True Value 17 1 1 1 

DPMM 17.009 1 1 1 

OLS 17.845 1 1 1 

 

From Table 4-1, it can be seen that the threshold values estimated by the DPMM method are slightly 

better, which may be related to the estimation of the coefficients and variances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: The positional relationship between the true values and the threshold values estimated by 

the two methods. 

In Figure 4-1, the gold line represents the true value of the threshold 𝑟, while the red and green lines 

above it represent the threshold values estimated by the DPMM and OLS methods, respectively. The red line is 

almost completely overlapping with the gold line. 

 

Table 4-2: Estimation of the model's constant term and coefficients by DPMM and OLS. 

Parameter 𝜙10  𝜙11  𝜙20  𝜙21 

True Value 7.800 0.200 14.000 0.200 

DPMM 7.826 0.205 13.901 0.206 

OLS 7.574 0.292 12.700 0.262 

In Table 4-2, the second row represents the true values of the parameters, while the third row shows the 

average estimates obtained using the DPMM method. 𝜙10 and 𝜙11 denote the constant term and the coefficient 

of the first-order autoregressive term in the first segment, respectively. 𝜙20 and 𝜙21 denote the constant term 

and the coefficient of the first-order autoregressive term in the second segment, respectively. As can be seen from 

Table 4-2, the estimates obtained using the DPMM method are closer to the true values of the parameters, 

indicating that the proposed method is more effective. 
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The constant terms and coefficients of each segment of the threshold model estimated by DPMM are plotted for 

the last 500 iterations as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: From left to right, the plots show the estimates of the constant term and coefficient for the 

first segment of the autoregressive model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3: From left to right, the plots show the estimates of the constant term and coefficient for the 

second segment of the autoregressive model. 

 

Figures 4-2 and 4-3 display the estimates of the constant terms and coefficients for the first and second 

segments of the autoregressive model, respectively. The gold lines represent the true values, while the red lines 

indicate the mean estimates obtained using the DPMM method. In Figure 4-2, the left plot shows that the true 

value of the constant term for the first segment is 7.8, and the mean estimate from the DPMM method is 7.826. 

The right plot indicates that the true value of the coefficient for the first segment is 0.20, with a mean estimate of 

0.206 from the DPMM method. In Figure 4-3, the left plot shows that the true value of the constant term for the 

second segment is 14, and the mean estimate from the DPMM method is 13.901. The right plot indicates that the 

true value of the coefficient for the second segment is 0.20, with a mean estimate of 0.206 from the DPMM 

method. 

Table 4-3: This table presents the estimation of the variances of the innovation's mixture normal 

distributions using the Dirichlet Process Method. 

Parameter  𝜎11
2   𝜎12

2   𝜎21
2   𝜎22

2  

True Value 10 50 10 1 

DPMM 13.682 56.176 10.032 0.636 

OLS 34.803 34.803 7.380 7.380 

In Table 4-3, the second row represents the true values of the variances, the third row shows the mean 

estimates of the variances obtained using the DPMM method, and the fourth row shows the mean estimates of the 

variances obtained using the OLS method. The OLS method assumes that the innovation terms in each segment 

follow the same distribution, hence it provides identical estimates for 𝜎11
2  and 𝜎12

2 , as well as for 𝜎21
2  and 𝜎22

2 .For 

the DPMM method, we choose to consider the two clusters with the highest number of assignments as the final 

clustering result, discarding the other clusters with very few assignments. Therefore, the DPMM method estimates 

the innovation terms as a mixture of two normal distributions, which matches the original design of the number 

of mixture components.In the data setup, the first segment's innovation terms follow a mixture distribution of the 
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form: 𝜀1~0.3894166𝑁(0, √10) + 0.6105834𝑁(0, √50) .The DPMM method estimates the mixture normal 

distribution as: 𝜀1~ 0.4097425𝑁(0, √13.682) + 0.5902575𝑁(0, √56.176) .For the second segment, the 

innovation terms follow a mixture distribution of the form:𝜀2~0.5648855𝑁(0, √10) + 0.4351145𝑁(0, √1).The 

DPMM method estimates the mixture form as:𝜀2~0.6224674𝑁(0, √10.032) + 0.3775326 (0, √0.636). 
 

Table 4-4: Number of Clusters and Their Frequencies Over 500 Iterations 

Number of Clusters. 1 2 3 4 5 6 7 8 9 10 

Frequency of the 

First Segment. 

0 191 162 94 31 14 6 2 0 0 

Frequency of the 

Second Segment. 

0 316 140 34 9 1 0 0 0 0 

It is worth noting that when using the DPMM method to cluster the innovations in this paper, the number 

of clusters often exceeds two. In the first segment of the autoregressive model, the DPMM identifies up to 8 

clusters, with weights for one instance being (0.356368564，0.616310160，0.002710027，0.004065041，

0.005420054，0.001355014，0.001355014，0.001355014). In fact, apart from the first two categories having a 

larger number of samples, the sample sizes for the third category and beyond are very small. The sample sizes for 

each category are (263，463，2，3，4，1，1，1). Therefore, this paper ignores these categories and assigns 

them to the second category, considering that the innovations in the first segment follow a mixture of two normal 

distributions. Similarly, in the second segment of the autoregressive model, the DPMM identifies up to 6 clusters, 

which only appear once. The weights for this instance are (0.609195402，0.360153257，0.015325670，

0.007662835，0.003831418，0.003831418). The sample sizes for each category are (159，94，4，2，1，1). 

Thus, the innovations in the second segment are also considered to follow a mixture of two normal distributions. 

The parameter 𝛼does not have a true value; its magnitude merely restricts the number of clusters. 

Generally, under the same conditions, the smaller the value of 𝛼, the fewer the number of clusters, and vice versa. 

In this paper, the average value of the clustering parameter for the first segment is 𝛼1 =  0.379508, and for the 

second segment, it is 𝛼2 =  0.1256694. 

 

4.2 Simulation Based on the Horizontal-Axis Segmented Autoregressive Model 

In this subsection, the DPMM method used in this paper is compared with the LASSO regression method 

and the MLE method. First, we consider a two-segment autoregressive model with the specific parameters as 

follows: 

𝑦 = {
0.6 × 𝑦𝑡−1 + 0.2𝑦𝑡−2 + 𝜀1, 𝑛 ≤ 400
0.8 × 𝑦𝑡−1 − 0.1𝑦𝑡−2 + 𝜀2, 𝑛 > 400

                                                      (25) 

where 𝜀1~𝑡(𝑑𝑓 =  10)  with a default mean of 0 and a default standard deviation of 1, and 

𝜀2~0.5𝑁(0,0.5) + 0.5𝑁(0,2). The model has a sample size of 𝑛 = 1000, and the true location of the change 

point is at the 401st time point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: Change point location identified by the LASSO method. 

Figure 5-6 illustrates the identification of the change point by the LASSO method, which divides the 

time series model into two segments, with the change point located at the 396th time point. The vertical line in 

the figure indicates the position of this change point, which is very close to the set change point location. In Figure 
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5-6, the horizontal axis represents the time series of data points, and the vertical axis represents the data values. 

The green part indicates good estimation results. First, the LASSO method is used to identify the change point 

location. Subsequently, the DPMM, LASSO, and MLE methods are applied to estimate the parameters for each 

segment of the data, yielding the results shown in the following table: 

 

Table 4-5: Estimation of Parameters for the Autoregressive Model 

Parameter 𝑏11 𝑏12 𝑏21 𝑏22 

True Value 0.6 0.2 0.8 -0.1 

DPMM 0.5973 0.2378 0.8015 -0.1005 

LASSO 0.5950 0.2538 0.8096 -0.1116 

MLE 0.6044 0.2416 0.8057 -0.1048 

Table 4-5 presents the estimates of the coefficients for the two-segment autoregressive model obtained 

using the three methods. The initial coefficients were sampled from a standard normal distribution. From this 

table, it can be seen that the DPMM method provides the most accurate estimates of the autoregressive coefficients 

for both segments, especially for the second segment, while the MLE method is the next best, and the LASSO 

regression is the weakest among the three methods.The innovations are an important part of the autoregressive 

model, representing all the new information at a given time that cannot be explained by past sequence values. The 

innovations follow an unknown distribution, which may be non-normal or a mixture distribution. This paper 

applies the Dirichlet process to the prior of the innovations, using a mixture of normal distributions to fit the 

unknown distribution, resulting in Table 4-6: 

 

Table 4-6: Parameter Estimation of the Distribution Followed by the Innovations 

Parameter t-distribution Mixture of Normal Distributions 

True Value t(df=10) N(0,2) N(0,0.5) 

DPMM N(0, 1.0677)+N(0,2.2338) N(0, 2.1702) N(0,0.5789) 

LASSO N(0,1.4248) N(0,1.6093) N(0,1.6093) 

MLE N(0, 1.1018) N(0,1.5287) N(0, 1.5287) 

In Table 4-6, it should be noted that: The innovations in the first segment of the autoregressive model 

follow a t-distribution with 10 degrees of freedom. The DPMM method uses a mixture of two normal distributions 

to approximate this t-distribution, with specific standard deviations and weights as follows: 0.6302392 N(0, 

1.0677) + 0.3697608 N(0, 2.2338).For the innovations in the second segment of the autoregressive model, which 

follow a mixture of two normal distributions with equal weights of 0.5 each, the DPMM method correctly 

identifies the number of mixture components, with specific standard deviations and weights as follows: 0.4972397 

N(0, 2.1702) + 0.5027603 N(0, 0.5789).In contrast, the LASSO and MLE methods are unable to identify the 

number of components in the mixture. When the innovations do not follow a single normal distribution, the 

estimated variance values are inaccurate. 

Similar to Section 5.1, the Dirichlet process often identifies more clusters than the actual number of 

categories. In the first segment of the autoregressive model, the DPMM identifies up to 14 clusters at its maximum, 

with weights as follows: (0.63023919, 0.21786768, 0.07667684, 0.03166412, 0.02159288, 0.01172519, 

0.00424936, 0.00303308, 0.00107888, 0.00110433, 0.00051908, 0.00015267, 0.00008142, 0.00001527). In fact, 

apart from the first two categories, the sample sizes of the remaining categories are very small, with only a few or 

a dozen samples. Therefore, this paper ignores these categories and assigns them to the second category, 

considering that the innovations in the first segment follow a mixture of two normal distributions. In the second 

segment of the autoregressive model, the DPMM uses up to 7 mixture normal distributions at its maximum, which 

only occurs once, with the weights of the mixture normal distributions being (0.462809917, 0.507438017, 

0.004958678, 0.018181818, 0.001652893, 0.001652893, 0.003305785). The Dirichlet process often identifies 

more categories than the actual number, but many of these categories have very low weights. Similarly, it is 

considered that only two categories are generated here. The LASSO and MLE methods assume that the 

innovations follow a single normal distribution. 

This paper processes the innovations to better explain the time series data and also to predict the time 

series model. Therefore, this paper conducts predictions for the first and second segments of the autoregressive 

model, forecasting the data for the next five time points. The results are as follows: 
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Table 4-7: Forecasted Values for the Next Five Time Points in the First Segment of the Autoregressive Model. 

 First Segment of the Autoregressive Model MSE 

True Value 3.839809 1.883247 4.481181 3.410880 3.354103 NULL 

DPMM 3.256816 3.977992 4.588088 2.272528 2.389873 1.392970 

LASSO -0.337823 -0.002889 -0.418313 -1.410194 0.151177 15.703330 

MLE 1.164346 1.067213 0.993561 0.925571 0.866678 6.470308 

In the five-step-ahead time series prediction for the first segment of the autoregressive model, the DPMM 

method provides an acceptable estimate for the first time point and a very close estimate for the third time point. 

However, the errors for the other three time points are greater than 1, which can be attributed to the randomness 

in the estimation process. Despite this, the Mean Squared Error (MSE) value is relatively small. The LASSO 

regression has the largest MSE value, while the MLE method has a smaller MSE value. A smaller MSE indicates 

a more accurate estimation. 

 

Table 4-8: Forecasted Values for the Next Five Time Points in the Second Segment of the Autoregressive Model 
 The second segment of the autoregressive model. MSE 

True Value 1.817131 1.213866 1.896725 2.018733 2.114893 NULL 

DPMM 2.0109773 1.7938544 0.7503575 0.9040297 2.10309257 0.586165 

LASSO 3.500133 2.112954 2.979287 5.274592 6.007251 6.112773 

MLE 1.3726238 0.9267491 0.6462279 0.4669116 0.3518173 1.472070 

In the prediction of the second segment of the autoregressive model, the DPMM method provides an 

estimate close to the true value for the first time series point and an acceptable estimate for the second time series 

point. Due to the characteristics of random sampling, the third and fourth time series points deviate from the true 

values, while the fifth time series point is again close to the true value. The LASSO method has the largest MSE, 

followed by MLE, with DPMM having the smallest MSE. 

Additionally, the clustering effect of the Dirichlet process is influenced by the hyperparameter 𝛼. The 

closer the value of 𝛼 is to 0, the fewer the number of clusters. The estimated values of 𝛼 for the two segments of 

the autoregressive model are 𝛼1 =  0.495951 and 𝛼2 = 0.426070, respectively. In practice, the calculated values 

of 𝛼 often tend to be close to 0, and there is no so-called "true value" for 𝛼. 

 

V. EMPIRICAL ANALYSIS 
In this section, the two segmentation methods are applied to the same real dataset—the closing prices of 

Salt Lake Corporation, to better demonstrate the practicality of the DPMM method in real data. The dataset 

consists of 2,492 time series data points, collected hourly from January 2, 2020, to November 10, 2023. The data 
were sourced from East Money Finance. 

 

5.1 Empirical Analysis of the Vertical-Axis Segmented Autoregressive Model 

Using the original data, an Augmented Dickey-Fuller (ADF) test was conducted. The Dickey-Fuller 

statistic value was -2.668, with a lag order of 13, indicating that the model considered data from the previous 13 

time points to estimate the current point's value. The p-value was 0.2955, which is greater than the commonly 

used significance levels (such as 0.05 or 0.01), so the time series is non-stationary. 

After differencing the data, the threshold value was calculated as -0.17, with a lag parameter of 1, and 

the order of the two-segment threshold autoregressive model was 2. Conducting the ADF test again, the ADF 

statistic value for the first segment of the autoregressive model was -10.2526, which is much smaller than the 

critical value at the 1% significance level. The ADF statistic value for the second segment of the threshold 

autoregressive model was -22.3589, which is also much smaller than the critical value at the 1% significance level. 

This indicates that the segmented time series does not have a unit root. 

 

 

 

 

 

 

https://pan.baidu.com/share/init?surl=vlPO4xxFdNN0PB_FzmI2Fw&pwd=28z2
https://pan.baidu.com/share/init?surl=vlPO4xxFdNN0PB_FzmI2Fw&pwd=28z2
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Figure 5-1: This figure shows the estimates for the first segment of the autoregressive model, with the 

coefficients for the first-order and second-order autoregressive terms displayed from top to bottom. 

 

In this subsection, the number of iterations is set to 1000, with the first 500 iterations discarded as burn-

in. The results from the last 500 iterations are used for analysis. The estimates of the constant term and coefficients 

for the first segment are plotted in Figure 6-2, where the two red lines represent the mean estimates from the last 

500 iterations, with values of -0.0218882 and -0.0543517, respectively. 

 

Figure 5-2: This figure displays the estimates for the second segment of the autoregressive model, with the 

coefficients for the first-order and second-order autoregressive terms shown from top to bottom. 

 

The estimates of the constant term and coefficients for the second segment are plotted in Figure 5-2, 

where the two red lines represent the mean estimates from the last 500 iterations, with values of -0.1570886 and 

0.0736061, respectively. Figures 5-1 and 5-2 show that the estimates fluctuate around the red lines, indicating that 

the estimation results are stable. This suggests that the chosen number of iterations is appropriate. 

Table 5-1: Coefficient Estimates for the Two-Segment Threshold Autoregressive Model. 

Parameter 𝜙10 𝜙11 𝜙20 𝜙21 

DPMM -0.022 -0.054 -0.157 0.074 

 

The results of the calculations, rounded to three decimal places, are filled into Table 6-1. The initial 

values of the coefficients are random numbers drawn from a standard normal distribution. 
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Table 5-2: Variance Estimates of the Mixture of Normal Distributions for the Innovations in the Two-Segment 

Threshold Autoregressive Model. 

 Mixture of Normal Distributions. MSE 

The first segment of the 

autoregressive model. 

N(0,0.111)+N(4.531) 2.555005 

The second segment of the 

autoregressive model. 

N(0, 0.018) 0.1428687 

 

In Table 6-2, for the first segment of the autoregressive model, the maximum number of clusters 

identified was 12, with weights as follows: (0.848906561, 0.047713718, 0.015904573, 0.039761431, 

0.019880716, 0.009940358, 0.001988072, 0.003976143, 0.001988072, 0.001988072, 0.005964215, 

0.001988072). If we consider only this single result, only one category would appear. However, taking the average 

of 500 results, it is ultimately divided into two categories with weights of (0.8679881, 0.1320119). For the second 

segment of the autoregressive model, the final result has only one category because the weight of the largest 

category is 0.998, and the other categories can be ignored. 

In this section, a model is built for the data of Salt Lake Corporation, resulting in a two-segment threshold 

model with one threshold value. The clustering parameter for the first segment is 𝛼1 = 0.5823436, and for the 

second segment, it is 𝛼2 = 0.9355127. The final estimated threshold model is as follows: 

𝑌𝑡 = {
−0.022𝑌𝑡−1 − 0.054𝑌𝑡−2 + 𝜀1  , 𝑌𝑡−1 ≤ −0.17
−0.157𝑌𝑡−1 + 0.0742𝑌𝑡−2 + 𝜀2, −0.17 < 𝑌𝑡−1

                                               (26) 

where 𝜀1~0.1320119𝑁(0, √0.111) + 0.8679881𝑁(0, √4.531), and 𝜀2~𝑁(0, √0.998). The model 

proposed in this paper can be applied to various fields, such as stock markets, bank credit risk, healthcare, and 

insurance claims. 

5.2 Empirical Analysis of the Horizontal-Axis Segmented Autoregressive Model 

In this subsection, the conclusions obtained from the numerical simulations are applied. First, LASSO 

regression is used to identify the change points, and then the DPMM method is employed to estimate the model 

parameters. The data used in this subsection are the same as the original data used in Section 6.1, but not all data 

are differenced in this subsection. The specific discussion is as follows. 

 

 

 

 

 

 

 

Figure 5-3: Change Point Identification Using LASSO Regression. 

Using LASSO regression, Figure 6-4 is obtained, which clearly identifies the change point location at 

307. Subsequently, this paper conducts the ADF test on the two segments of time series data separately. The test 

results are as follows: for the first segment, Dickey-Fuller = -1.4952, p-value = 0.7891; for the second segment, 

Dickey-Fuller = -3.7367, p-value = 0.02215. Therefore, the p-value of the second segment is less than 0.05, 

indicating no unit root, while the p-value of the first segment is greater than 0.05, so the null hypothesis is rejected, 

and it is concluded that the first segment of time series data is not stationary. Thus, this paper performs differencing 
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on the first segment of data, resulting in Dickey-Fuller = -6.4397, and the p-value is far less than 0.01 at this time, 

indicating that the differenced time series data is stationary. 

Table 5-3: Estimated Coefficients for the Two-Segment Autoregressive Model 

 b11 b21 b22 

DPMM 0.003613054 0.8513004 0.1473344 

In Table 6-3, according to the Akaike Information Criterion (AIC), the optimal orders of the two-segment 

autoregressive models are determined to be first-order and second-order, respectively. The estimated coefficients 

for the first segment of the autoregressive model are small because the original data itself has small differences, 

and the differenced data is even smaller. The time series values in the second segment of the autoregressive model 

are highly correlated with the first-order lagged values. In fact, in most autoregressive models, time points closer 

to the t-th moment are more useful for the model. 

Table 5-4: Estimates of the Unknown Distributions Followed by the Innovations in the Two-Segment 

Autoregressive Model 

 Mixture of Normal Distributions. MSE 

The first segment of the 

autoregressive model. 

N(0,0.1981) 0.0146692 

The second segment of the 

autoregressive model. 

N(0, 0.2327)+ N(0,0.8000) 0.0096657 

From Table 5-4, it can be seen that the unknown distribution followed by the innovations in the first 

segment of the model can be approximated by a single normal distribution, while the unknown distribution 

followed by the innovations in the second segment requires a mixture of two normal distributions for 

approximation. When the number of clusters is at its maximum, 10 categories are generated, with weights as 

follows: (0.5380384968, 0.2873510541, 0.1448212649, 0.0210815765, 0.0018331806, 0.0018331806, 

0.0009165903, 0.0009165903, 0.0009165903, 0.0022914757). If we consider this clustering result alone, there 

should be three normal distributions. However, in the numerous iterations of this experiment, the weight of the 

third category rarely exceeds 5%. Therefore, this paper takes the mean of the weights from 500 iterations, and the 

weight of the third category is very small and can be ignored. Ultimately, the weights of the two normal 

distributions obtained in this paper are: 0.5614537 N(0, 0.2327) + 0.4385463 N(0, 0.8000). 

Additionally, since it can be seen from Figure 6-4 that the second segment of the autoregressive model 

fits well, the estimation of parameters for the second segment should be better than that for the first segment. The 

clustering parameters generated by the two segments of the autoregressive model are 𝛼1 = 0.2079229 and 𝛼2 =

0.6201116, respectively. 

In summary, the time series model estimated for Salt Lake Corporation is as follows: 

𝑦 = {
0.0036 × 𝑦𝑡−1 + 𝜀1, 𝑛 ≤ 306

0.4255 × 𝑦𝑡−1 + 0.0738𝑦𝑡−2 + 𝜀2, 𝑛 > 306
                                                   (27) 

where the innovations of the autoregressive model are 𝜀1~N(0,0.1981) and 𝜀2~0.5614537N(0, 0.2327) +
 0.4385463N(0,0.8000). 

 

VI. CONCLUSION  
This paper investigates segmented autoregressive models, discussing parameter estimation for both the 

vertical-axis and horizontal-axis segmented autoregressive models. For the vertical-axis segmented autoregressive 

model, the values of 𝑑, 𝑟 and 𝑞 are estimated first. For the horizontal-axis segmented autoregressive model, the 

number and locations of change points are identified initially. Subsequently, the Dirichlet Process Mixture Model 

(DPMM) is introduced into the autoregressive model. For innovations following an unknown distribution, a 

mixture of normal distributions is used to approximate this distribution, with the variances of the mixture normal 

distributions sampled from the distribution 𝐺 generated by the Dirichlet process. The posterior estimates of the 

parameters of the autoregressive model are derived. 
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Through numerical simulations, the effectiveness of the proposed method is demonstrated by comparing 

it with OLS, MLE, and LASSO methods. The Gibbs sampling algorithm is used in this paper to continuously 

update the model parameters. The initial values of the model's constant, coefficients, and variances are random 

numbers sampled from distributions. The variances are correlated with the autoregressive model's constant and 

coefficients. Good variance fitting results enhance the estimation accuracy of other parameters in the 

autoregressive model. The numerical simulation process shows that the DPMM method significantly outperforms 

other methods in estimating model parameters. The case study also demonstrates the applicability of the proposed 

method to real data, proving that DPMM has certain practical value. 

When clustering with the DPMM method, the number of categories is generally greater than the actual 

number of categories. In such cases, it is necessary to examine the data in each category. This paper chooses to 

discard categories with very few data points in the clustering and assign their data to the last category. If the 

innovations follow a mixture of normal distributions, the DPMM method can identify the number of mixture 

normal distributions, with weights close to the actual values, and the estimated variances of the normal 

distributions are close to the true variances. For innovations following non-normal distributions (such as the t-

distribution), the DPMM method can also provide good fitting results using a mixture of normal distributions. 

Moreover, it does not require pre-specification of the unknown distribution, making the model more flexible and 

increasing the credibility of the results. 
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