
Quest Journals 

Journal of Research in Applied Mathematics 

Volume 11 ~ Issue 4 (April 2025) pp: 01-05 

ISSN (Online): 2394-0743  ISSN (Print): 2394-0735 

www.questjournals.org  

 

 
 

DOI: 10.35629/0743-11040105                                       www.questjournals.org                                        1 | Page 

Review Paper 

An Application of Polynomial on RS Codes 
 

Weam Mohammed Ahmed Elhadi Hamid 

Maha Toufig 
Department of Mathematics, Sudan University Science and Technology 

 

Abstract 

 In this paper we discuss a class of codes called RS Codes are subset of BCH Code and linear block codes can 

be constructed to be multiple error-correcting. We use application of polynomial on RS Codes and apply them 

using Maple.  

 

Keywords: RS Code, polynomial, error-correcting codes. 

 

Received 05 Apr., 2025; Revised 13 Apr., 2025; Accepted 15 Apr., 2025 © The author(s) 2025. 

Published with open access at www.questjournas.org 

 

I. RS Codes 

The RS Codes named after their inventors, who published them in 1960. The Reed-Solomon (RS) 

Codes are BCH Codes. Reed-Solomon Codes are based on a specialist area of mathematics known as Galois 

Field or Finite Field. 

 A Reed-Solomon code-word is generated using a special polynomial. All valid code-word are exactly 

divisible by the generator polynomial. The general form of the generator polynomial is  

𝑔(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛼2)… (𝑥 − 𝛼2𝑡) 

II. Construction of RS 

 To construct a Reed-Solomon, by choosing a primitive polynomial 𝑝(𝑥) of degree 𝑛 in 𝑍2[𝑥] and forming the 

field 𝐹 = 𝑍2[𝑥]/(𝑝(𝑥)) of order 2𝑛. We denote the element 𝑥 in this field by 𝛼. Reed-Solomon code-words are 

then polynomials of degree less than 2𝑛 − 1. However, unlike BCH code-words which are elements in 𝑍2[𝑥], 

Reed-Solomon code-words are in the following generator polynomial 𝑔(𝑥) ∈ 𝐹[𝑥].[1]        

 The code-words in 𝐶 are then all multiples 𝑏(𝑥)𝑔(𝑥) of degree less than 2𝑛 − 1 with 𝑏(𝑥) ∈ 𝐹[𝑥]. The code-

words in 𝐶 have length 2𝑛 − 1 positions and from a vector space with dimension 2𝑛 − 1 − 2𝑡. We will use the 

notation 𝑅𝑆(2𝑛 , 𝑡) to represent a 𝑡-error correcting Reed-Solomon code with code-words of length 2𝑛 − 1 

positions. [1] 

Example (1): 

 Choose primitive polynomial 𝑝(𝑥) = 𝑥4 + 𝑥 + 1 ∈ 𝑍2[𝑥]. The nonzero elements in 𝐹 = 𝑍2/(𝑝(𝑥)). Using this 

field 𝐹, we obtain the following generator polynomial 𝑔(𝑥) for an RS(15,2) code 𝐶. 

𝑔(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛼2)(𝑥 − 𝛼3)(𝑥 − 𝛼4) 

= 𝑥4 + 𝛼13𝑥3 + 𝛼6𝑥2 + 𝛼3𝑥 + 𝛼10 

 To construct one of the code-words in 𝐶, consider 𝑏(𝑥) = 𝛼10𝑥9 ∈ 𝐹[𝑥]. Then  

𝑏(𝑥)𝑔(𝑥) = 𝛼10𝑥13 + 𝛼8𝑥12 + 𝛼𝑥11 + 𝛼13𝑥10 + 𝛼5𝑥9 

http://www.questjournals.org/


An Application of Polynomial on RS Codes 

DOI: 10.35629/0743-11040105                                       www.questjournals.org                                        2 | Page 

is one of the code-words in 𝐶. [1] 

III. Error Correction in Reed-Solomon Codes 

  Let 𝐹 be a field of order 2𝑛, and let 𝐶 be an 𝑅𝑆(2𝑛 − 1, 𝑡) code in 𝐹[𝑥]. Suppose 𝑐(𝑥) ∈ 𝐶 is transmitted and 

we receive the polynomial 𝑟(𝑥) = 𝑐(𝑥) + 𝑒(𝑥) for some non-zero error polynomial 𝑒(𝑥) in 𝐹[𝑥] of degree less 

than 2𝑛 − 1. We can use the following steps to determine 𝑒(𝑥). [1] 

1) We first compute the first 2𝑡 syndromes of 𝑟(𝑥), which we will denote by:  𝑆1 = 𝑟(𝛼), 𝑆2 = 𝑟(𝛼2),

⋯  , 𝑆2𝑡 = 𝑟(𝛼2𝑡)  and form the following  syndrome polynomial 𝑆(𝑧). 

 

𝑆(𝑧) = 𝑆1 + 𝑆2𝑧 + 𝑆3𝑧
2 + ⋯ + 𝑆2𝑡𝑧

2𝑡−1. 

2) Nest, we construct the Euclidean algorithm for the polynomials  

𝛼(𝑧) = 𝑧2𝑡 and 𝑏(𝑧) = 𝑆(𝑧) in 𝐹[𝑧], stopping at the first row 𝑗 for which 𝑑𝑒𝑔(𝑟𝑗) < 𝑡. Let 𝑅(𝑧) = 𝑟𝑗 and 

𝑉(𝑧) = 𝑣𝑗. 

3) We can find the error positions in 𝑟(𝑥) by finding the roots of  𝑉(𝑧). Specifically, if 𝛼𝑖1 , 𝛼𝑖2 , ⋯ , 𝛼𝑖𝑘 

are the roots of  𝑉(𝑧), then 𝑟(𝑥) contains errors in positions 𝑥−𝑖1 , 𝑥−𝑖2 , ⋯ , 𝑥−𝑖𝑘 . Finally, we must find the 

coefficients of 𝑒(𝑥) at these error positions. Let 𝑒−𝑖 be the coefficient of the 𝑥−𝑖 term in 𝑒(𝑥). 

 

 Then 

𝑒−𝑖 =
𝑅(𝛼𝑖)

𝑉′(𝛼𝑖)
 

 

IV. Generator Matrices of RS Codes 

 Reed-Solomon Codes are cyclic codes, and a cyclic shift of a code-word is another code-word. The generator 

polynomial of a Reed-Solomon Code can be used to construct the generator matrix of the corresponding Reed-

Solomon Code or as an alternative approach, we can find the generator matrix of Reed-Solomon Code using:  

𝐺 =

[
 
 
 
 
𝑔1

𝑔2

𝑔3

⋮
𝑔𝑘]

 
 
 
 

 

[
 
 
 
 
1       1           1          1               …            1         
1       𝛼          𝛼2         𝛼3             …         𝛼𝑛−1     

1   (𝛼)2    (𝛼2)2     (𝛼3)2          …      (𝛼𝑛−1)2

⋮
1  (𝛼)𝑘−1 (𝛼2)𝑘−1 (𝛼3)𝑘−1    …  (𝛼𝑛−1)𝑘−1 ]

 
 
 
 

        → (1) 

where each 𝛼𝑖 term can be represented using a column vector including 𝑚-bits, where 𝑚 is the number 

appearing in 𝐺𝐹(23). [3] 

 

4-1 Encoding of RS Codes   

 If data-word polynomial is expressed in vector form using the extended field elements as  

𝑑 = [𝑑1 𝑑2  ⋯ 𝑑𝑘] 

then the encoding operation can be achieved using 

𝑐 = 𝑑𝐺 

leading to 

𝑐 = 𝑑1𝑔1 + 𝑑2𝑔2 + ⋯ + 𝑑𝑘𝑔𝑘 

 

 The encoding operation can also be achieved using  

𝑐(𝑥) = 𝑑(𝑥)𝑔(𝑥) 

where 𝑔(𝑥) is the generator polynomial of the 𝑅𝑆(𝑛, 𝑘) and 𝑑(𝑥) is the polynomial form of 𝑑. [3] 



An Application of Polynomial on RS Codes 

DOI: 10.35629/0743-11040105                                       www.questjournals.org                                        3 | Page 

Example (2): 

 The generator polynomial of the double-error-correcting 𝑅𝑆(7,3) using the extended field element 𝐺𝐹(23) 

generated using the primitive polynomial       𝑝(𝑥) = 𝑥3 + 𝑥 + 1 can be calculated as  

𝑔(𝑥) = 𝑥4 + 𝛼3𝑥3 + 𝑥2 + 𝛼𝑥 + 𝛼3 

 We want to encode the data-word 𝑑 = [110111010] using 𝑅𝑆(7,3). The encoding of the data-word achieved 

using the following: [3] 

 First, let’s give the field element of 𝐺𝐹(23) for the reminder  

                                                  0 → 0 

                                                  1 → 1 

                                                  𝛼 →  𝛼 

                                                 𝛼2  →  𝛼2 

                                                 𝛼3  →  𝛼 + 1 

                                                 𝛼4  →  𝛼2 + 𝛼 

𝛼5  →  𝛼2 + 𝛼 + 1 

                                                  𝛼6  →  𝛼2 + 1 

 The generator matrix of the code be formed using Eq.(1) as 

𝐺 = [
1   1    1     1     1    1       1   
1  𝛼    𝛼2   𝛼3  𝛼4  𝛼5    𝛼6  

1  𝛼2  𝛼4  𝛼6  𝛼8  𝛼10  𝛼12
] 

which can be simplified by using 𝛼7 = 1 as 

𝐺 = [
1   1    1    1    1    1    1 
1  𝛼    𝛼2   𝛼3 𝛼4 𝛼5 𝛼6

1  𝛼2  𝛼4  𝛼6  𝛼   𝛼3 𝛼5
] 

 

 The data-word given in the example can be expressed in polynomial form as  

𝑑 = [110⏟
𝛼2+𝛼

  111⏟
𝛼2+𝛼+1

  010⏟
𝛼

]  → 𝑑 = [𝛼4  𝛼5  𝛼]. 

 

 

 The encoding operation can be performed as  

𝑐 = 𝑑𝐺  

→ 𝑐 = 𝛼4[1 1 1 1 1 1 1] + 𝛼5[1 𝛼  𝛼2 𝛼3 𝛼4 𝛼5 𝛼6] + 𝛼[1 𝛼2 𝛼4 𝛼6 𝛼  𝛼3 𝛼5]  

→ 𝑐 = [𝛼4  𝛼4  𝛼4  𝛼4  𝛼4  𝛼4  𝛼4] + [𝛼5  𝛼6  𝛼7  𝛼8  𝛼9  𝛼10  𝛼11] + [𝛼   𝛼3  𝛼5  𝛼7  𝛼2  𝛼4  𝛼6] 

→ 𝑐 = [𝛼
4 + 𝛼5 + 𝛼        𝛼4 + 𝛼6 + 𝛼3       𝛼4 + 𝛼7 + 𝛼5       𝛼4 + 𝛼8 + 𝛼7

   𝛼4 + 𝛼9 + 𝛼2      𝛼4 + 𝛼10 + 𝛼4      𝛼4 + 𝛼11 + 𝛼4 ] 

→ 𝑐 = [𝛼3    0    0    𝛼6    𝛼4    𝛼3    𝛼6] 

 



An Application of Polynomial on RS Codes 

DOI: 10.35629/0743-11040105                                       www.questjournals.org                                        4 | Page 

which can be expressed in binary form as  

→ 𝑐 = [𝛼3⏟
𝛼+1

    0    0    𝛼6⏟
𝛼2+1

    𝛼4⏟
𝛼2+𝛼

    𝛼3⏟
𝛼+1

    𝛼6⏟
𝛼2+1

] 

→ 𝑐 = [011    000    000    101    110    011    101] 

which can be expressed using concatenated bits as  

→ 𝑐 = [011000000101110011101]. 

 

V. Decoding BCH and RS Codes 

 There are many algorithms which have been developed for decoding RS codes.  

 The algebraic decoding BCH or RS codes has the following general steps:  

1. Computation of the syndrome.  

2. Determination of an error locator polynomial, whose roots provide an indication of where the errors 

are. There are many different ways of finding the locator polynomial. These methods include the Peterson–

Gorenstein–Zierler algorithm for RS codes, the Berlekamp–Massey algorithm for RS codes. 

3. Finding the roots of the error locator polynomial. This is usually done using the Chien search, which is 

an exhaustive search over all the elements in the field. 

4. For RS codes non-binary, the error values must be determined. This is typically accomplished using 

Forney’s algorithm. [4] 

 

5-1 Computation of the Syndrome 

 Let 𝑔(𝑥) be the generator polynomial for a RS code, with roots 𝛽𝑏 , 𝛽𝑏+1, ⋯ , 𝛽𝑏+2𝑡−1, where 𝛽 is an element of 

order 𝑛. Since  

𝑔(𝛽𝑏) = 𝑔(𝛽𝑏+1) = ⋯ = 𝑔(𝛽𝑏+2𝑡−1) 

it  follows that a code-word 𝑐 = (𝑐0, ⋯ , 𝑐𝑛−1) with  polynomial  

𝑐(𝑥) = 𝑐0 + ⋯ + 𝑐𝑛−1𝑥
𝑛−1 has 

𝑐(𝛽𝑏) = ⋯ = 𝑐(𝛽𝑏+2𝑡−1) = 0 

 For a received polynomial 𝑟(𝑥) = 𝑐(𝑥) + 𝑒(𝑥), we compute 

𝑆𝑗 = 𝑟(𝛽𝑗) = 𝑐(𝛽𝑗) + 𝑒(𝛽𝑗) = 𝑒(𝛽𝑗)  , 𝑗 = 𝑏, 𝑏 + 1,⋯ , 𝑏 + 2𝑡 − 1 

 The values 𝑆𝑏 , 𝑆𝑏+1 ⋯ , 𝑆𝑏+2𝑡−1, are called the syndromes of the received data. Suppose that 𝑟 has 𝑣 errors in it 

which are at locations 𝑖1, 𝑖2, ⋯ , 𝑖𝑣  , with corresponding error values in these locations 𝑒𝑖𝑗
= 0 . The errors can 

be represented by the error polynomial 

𝑒(𝑥) = ∑ 𝑒𝑘𝑥
𝑘

𝑛−1

𝑘=0

= ∑𝑒𝑖𝑙

𝑣

𝑙=1

𝑥𝑖𝑙  

Then 

𝑆𝑗 = 𝑒(𝛽𝑗) = ∑𝑒𝑖𝑙
(𝛽𝑗)𝑖𝑙

𝑣

𝑙=1

= ∑𝑒𝑖𝑙
(𝛽𝑖𝑙)𝑗

𝑣

𝑙=1

  , 𝑗 = 𝑏, 𝑏 + 1,⋯ , 𝑏 + 2𝑡 − 1 

Let 

𝑋𝑙 = 𝛽𝑖𝑙 



An Application of Polynomial on RS Codes 

DOI: 10.35629/0743-11040105                                       www.questjournals.org                                        5 | Page 

 Then we can write 

𝑆𝑗 = ∑ 𝑒𝑖𝑗
𝑋𝑙

𝑗

𝑣

𝑙=1

  , 𝑗 = 𝑏, 𝑏 + 1,⋯ , 𝑏 + 2𝑡 − 1 

 If we know the 𝑋𝑙, then we know the location of the errors. [4] 

VI. Conclusion 

 Application of polynomial on RS Codes is an application of algebra that has increasingly important over the 

last several decades. And apply them using  Maple. 

References 
[1]. Klima, Richard E. Application of Abstract Algebra with Maple. Richard E.Klima, Neil P.sigmon, Ernest stitzinger.  

[2]. Lidl, Rudolf. Applied Abstract Algebra / Rudolf  Lidl, Gunter pi\2-2end ed. 

[3]. Orhan Gazi. Forword Error Correction via Channel Coding. Springer Nature Switzerland AG2020. 

[4]. Todd K.Moon. Error Correction Coding “Mathematical Methods and Algorithms” Second edition 2021. 

 

 

 


