Quest Journals

Journal of Research in Applied Mathematics Volume 11 ~ Issue 12 (December 2025) pp: 51-62 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735

www.questjournals.org

Research Paper

On Purely Infinite C*-algebras Associated to Hausdorff - 'Etale Groupoids

Awad Mohamed¹, Abdellteaf Yahia², Shawgy Hussein³

Ministry of Education Safiya girls Secondry School, Department of Mathematics.
 Berhard Rolwers, Rolwers Zerspanungstechnik Schwichtelersts 36.49377Vechta-Deutschland Germany
 Sudan University of science and Technology, college of science, Department of Mathematics Sudan

Abstract

For G be a Hausdorff-'etale groupoid that is minimal and topologically principal. We show that the sequence $C_r^*(G)$ is purely infinite simple if and only if all the nonzero positive elements of $C_0(G^{(0)})$ are infinite in the sequence of $C_r^*(G)$. If G is a Hausdorff-ample groupoid, then we also show that the sequence of $C_r^*(G)$ is purely infinite simple if and only if every nonzero projection in $C_0(G^{(0)})$ is infinite in the sequence $C_r^*(G)$. We then also show how this result applies to k-graph C^* -algebras. Finally, we investigate strongly purely infinite groupoid C^* -algebras.

Key words. Groupoid; groupoid C^* -algebra; purely infinite C^* -algebra; strongly purely infinite; topologically principal; k-graph.

Received 05 Dec., 2025; Revised 13 Dec., 2025; Accepted 15 Dec., 2025 © The author(s) 2025. Published with open access at www.questjournas.org

I. INTRODUCTION

Purely infinite simple C^* -algebras were introduced by [7] where he showed that the K_0 group of such algebras can be computed within the algebra itself without resorting to the usual direct limit construction. The K-theory groups of C^* -algebras have long been known to be computable invariants and Cuntz's result shows that this computation is easier when the C*-algebra is purely infinite simple. Elliott initiated a program to find a suitably large class of C*-algebras on which the K-theory groups provide a complete isomorphism invariant (see[8]). This program has achieved remarkable success, in a theorem of [11,20] which states that every Kirchberg algebra satisfying the Universal Coefficient Theorem (UCT) is classified by the isomorphism classes of its ordered K-theory groups .A Kirchberg algebra is a separable, nuclear, purely infinite simple C^* -algebra. The best of classification by the Kirchberg-Phillips theorem has lead many to study when various constructions of C^* algebras yield purely infinite simple algebras. Kumjian, Pask and Raeburn show that a graph C*-algebra of a cofinal graph is purely infinite simple if and only if every vertex can be reached from a loop with an entrance [17, Theorem 3.9]. Carlsen and Thomsen show that if the C^* -algebra constructed from a locally injective surjection θ on a compact metric space of finite covering dimension is simple, then it is purely infinite simple if and only if θ is not a homeomorphism [5], [24] show that if a countable exact group H acts by an essentially free action on the Cantor set X and the type semigroup of clopen subsets of X is almost imperforated, then $C_0(X) \rtimes_r H$ is purely infinite if and only if every clopen set E in X is paradoxical .The constructions in each of the above examples are special cases of groupoid C*-algebras.

We investigate purely infinite C^* -algebras associated to Hausdorff - 'etale groupoids .We restrict our attention to simple groupoid C^* -algebras. Characterising simplicity of groupoid C^* -algebras is known and we use the following theorem from [4]:

Theorem1.1(Brown-Clark-Farthing-Sims).Let G be a second-countable, locally compact, Hausdorff - etale groupoid. Then $C^*(G)$ is simple if and only if all of the following conditions are satisfied.

- (i) $C^*(G) = C_r^*(G)$;
- (ii) G is topologically principal;
- (iii) G is minimal.

However, necessary and sufficient conditions on the groupoid for the associated algebra to be purely infinite simple are not known. Anantharaman-Delaroche showed that 'locally contracting' is a sufficient condition on the groupoid in [1] but whether locally contracting is necessary remains an open question. Part of the difficulty in characterizing those groupoids that give rise to purely infinite simple C^* -algebras is relating arbitrary projections in the groupoid C^* -algebra to the groupoid itself. We show a necessary and sufficient conditions for ensuring pure infiniteness of groupoid C^* -algebras. We show that for a Hausdorff-'etale, topologically principal, and minimal groupoid G the C^* -algebra of the sequence of $C_r^*(G)$ is purely infinite simple if and only if all the non-zero positive elements of $C_0(G^{(0)})$ are infinite in the sequence $C_r^*(G)$. We specialize to Hausdorff-ample groupoids. This is an important class of examples because every Kirchberg algebra in UCT is Morita equivalent to an algebra associated to a Hausdorff-ample groupoid (see [26]). We show in Theorem 4.1 for a Hausdorff-ample groupoid G, that is also topologically principal and minimal, the C^* -algebra as the sequence $C_r^*(G)$ is purely infinite if and only if every nonzero projection in $C_0(G^{(0)})$ is infinite in the sequence $C_r^*(G)$. Theorem 4.1 is a generalization of [10] about partial actions. We demonstrate how Theorem 3.3 applies to k-graph C^* -algebras .We turn our attention to the non-simple case. In [13], the other introduce three separate notions of purely infinite C*-algebras: weakly purely infinite, purely infinite and strongly purely infinite. Of these notions, the last one appears to be the most useful in the classification theory of non-simple C^* -algebras. Indeed [12] showed that two separable, nuclear, strongly purely infinite C^* -algebras with the same primitive ideal space X are isomorphic if and only if they are KK_X - equivalent. We provide a characterization of when groupoid C^* -algebras are strongly purely infinite in Proposition 6.3.

2.1. Groupoids . A groupoid G is a small category in which every morphism is invertible . The set of objects in G is identified with the set of identity morphisms and both are denoted by $G^{(0)}$. We call $G^{(0)}$ the unit space of G. Each morphism γ_j in the category has a range and source denoted $r(\gamma_j)$ and $s(\gamma_j)$ respectively and thus r and s define maps $G \to G^{(0)}$. A topological groupoid is a groupoid with a topology in which composition is continuous and inversion is a homeomorphism . An open bisection in a topological groupoid G is an open set G such that both G and s restricted to G are homeomorphisms; in particular these restrictions are injective . An 'etale groupoid is a topological groupoid where G is a local homeomorphism . If a groupoid G is Hausdorff - 'etale, then the unit space $G^{(0)}$ is open and closed in G. If G is a locally compact, Hausdorff groupoid, then G is 'etale if and only if there is a basis for the topology on G consisting of open bisections with compact closure. A topological groupoid is

called ample if it has a basis of compact open bisections. If G is locally compact, Hausdorff - 'etale groupoid, then we note that G is ample if and only if $G^{(0)}$ is totally disconnected (see [13]). For a subsets $L, K \subseteq G$, denote

 $LK = \{ \gamma_j : \gamma_j = \xi_j \zeta_j \text{ with } \xi_j \in L, \zeta_j \in K, s(\xi_j) = r(\zeta_j) \}$. With a slight abuse of notation, for $u_j \in G^{(0)}$, we write $u_j G$ and Gu_j for $\{u_j\}G$ and $G\{u_j\}$ respectively and denote by $u_j Gu_j$ the set

$$\{\gamma_j \in G : r(\gamma_j) = s(\gamma_j) = u_j\}.$$

A topological groupoid G is topologically principal if the set $\{u_i \in G^{(0)} : u_i G u_i = \{u_i\}\}$ is dense in $G^{(0)}$, and minimal if $G.u_i := \{r(\gamma_i): s(\gamma_i) = u_i\}$ is dense in $G^{(0)}$ for all $u_i \in G^{(0)}$. Recall, for a second countable, locally compact, Hausdorff-'etale groupoid G the algebra $C^*(G)$ is simple if and only if G is minimal, topologically principal, and $C^*(G) = C_r^*(G)$. 2.2. Groupoid C^* -algebras. Let G be locally compact, Hausdorff-'etale groupoid and let $C_{c_r}(G)$ denote the set of compactly supported continuous functions from G to C. Since every element γ_i of G has a neighbourhood B such that $r|_{Br}$ is injective, the set $r^{-1}(u_i)$ is discrete for every $u_i \in G^{(0)}$. Thus if $f_i \in C_{c_r}(G)$ then $supp(f_i) \cap r^{-1}(u_i)$ is finite for all $u_i \in G^{(0)}$. Hence we are able to define a convolution and involution on $C_{c_r}(G)$ such that for $f_i, g_i \in$ $C_{c_n}(G)$,

$$(f_j * g_j)(\gamma_j) \coloneqq \sum_j \sum_{r(\eta_j) = r(\gamma_j)} f_j(\eta_j) g_j(\eta_j^{-1} \gamma_j) \text{and } f_j^*(\gamma_j) \coloneqq \overline{f_j(\gamma_j^{-1})}$$

Under these operations, $C_{c_r}(G)$ is a *-algebra . Next define for $f_j \in C_{c_r}(G)$,

$$\|f_j\|_I \coloneqq \sup_{u_j \in G^{(0)}} \sum_j \left\{ \left\{ \sum_{\gamma_j \in Gu_j} |f_j(\gamma_j)| \sum_{\gamma_j \in Gu_j} |f_j(\gamma_j)| \right\} \right\}$$
 and

 $||f_i||_I := \sup\{||\pi(f_i)||: \pi \text{ is } a \mid ||.||_I - \text{decreasing representation}\}.$

Then $C_r^*(G)$ is the completion of $C_{c_r}(G)$ in the $\|\cdot\|$ -norm.

Given a unit $u_i \in G^{(0)}$, the regular representation π_{u_i} of $C_{c_r}(G)$ on $\ell^2(Gu_i)$ associated to u_i is characterized by

$$\pi_{u_j}(f_j)\delta_{\gamma_j} = \sum_j \sum_{s(\eta_j)=r(\gamma_j)} (f_j)\delta_{\eta_j\gamma_j}.$$

The reduced C^* -norm on $C_{c_r}(G)$ is $\|f_j\|_r = \sup\{\|\pi_{u_j}(f_j)\| : u_j \in G^{(0)}\}$ and $C_r^*(G)$ is the completion of $C_{c_n}(G)$ in the $\|\cdot\|$ -norm . We focused on the reduced C^* -algebra and situations where the reduced and full algebras coincide. Also, we assuming G is second-countable, implying $C_r^*(G)$ is separable [21]. Below we recall a few standard results. (see [28].

Lemma 2.1 (cf. [21]. Let G be a locally compact, Hausdorff - 'etale groupoid . Then

- (i) The extension map from $C_{c_r}(G^{(0)})$ into $C_{c_r}(G)$ (where a function is defined to be zero on $G - G^{(0)}$) extends to an embedding of $C_{c_r}(G^{(0)})$ into $C_r^*(G)$.
- (ii) The restriction map $E_0: C_{c_r}(G) \to C_{c_r}(G^{(0)})$ extends to a conditional expectation $E: C_r^*(G) \to C_c(G^{(0)}).$
- (iii) The map E from item (ii) is faithful. That is, $E(b_r^*b_r) = 0$ mplies $b_r = 0$ for $b_r \in$ $C_r^*(G)$.

(iv) For every closed invariant set
$$D \subseteq G^{(0)}$$
 we have the following commuting diagram :
$$0 \to C_r^*(G|_U) \xrightarrow{l_r} C_r^*(G) \xrightarrow{\rho_r} C_r^*(G|_D) \to 0$$

$$E_U \downarrow \qquad \qquad E_D \downarrow$$

$$0 \to C_0(U) \xrightarrow{l_0} C_0(G^{(0)}) \xrightarrow{\rho_0} C_0(D) \to 0$$

Where $U = G^{(0)} - D$, l_r and ρ_r are determined on continuous functions by extension and restriction respectively. Moreover, image $(l_r) \subseteq \ker \rho_r$.

(v) The subalgebra $C_{c_r}(G^{(0)})$ contains an approximate unit for $C_r^*(G)$.

Proof: (i) Since G is Hausdorff - etale $G^{(0)}$ is open and closed in G. Thus, the

so the map from $C_{c_r}(G^{(0)})$ into $C_{c_r}(G)$ is a *-homomorphism . We claim the map is isometric, that is, we claim the reduced norm agrees with the infinity norm for functions in $C_{c_r}(G^{(0)})$. By evaluating at point masses in $\ell^2(Gu_j)$, one can show that $\|f_j\|_{\infty} \leq \|f_j\|_r$ for $f_j \in \mathcal{C}_{c_r}(G)$. The reverse inequality can be verified for $f_j \in C_{c_r}(G^{(0)})$ and the claim follows. Thus the*homomorphism from $C_{c_r}(G^{(0)})$ into $C_{c_r}(G) \subseteq C_r^*(G)$ extends by continuity to an isometric(hence injective)*-homomorphism from $C_{c_r}(G^{(0)})$ into $C_r^*(G)$.

(ii) Once again using that G is Hausdorff - `etale , we have that $G^{(0)}$ is open and closed in G and hence E_0 is well defined. One may easily verify that E_0 is (a) positive(b) linear (c) idempotent, and (d) of norm one. Therefore E_0 extends by continuity to a map $E: C_r^*(G) \to C_r^*(G)$ $C_{c_r}(G^{(0)})$ with the same properties (a)-(d). By (iii) we conclude that E is a conditional expectation.

(iii) Let
$$b_r \in C^*_r(G)$$
 such that $E(b_r^*b_r) = 0$. We need to show that $b_r = 0$. Let $V_{\gamma_j} : \mathbb{C} \to \ell^2\left(G_{s(\gamma_j)}\right)$ be given by $c_r \mapsto c_r \delta_{\gamma_j}$.

Then $V_{\gamma_i}^* \omega = \omega(\gamma_i)$. Since

$$||b_r||_r = \sup_{u_j \in G^{(0)}} ||\pi_{u_j}(b_r)||$$
 and

$$\left\|\pi_{u_j}(b_r)\delta_{\gamma_j}\right\|^2 = \langle \pi_{u_j}(b_r)\delta_{\gamma_j}, \pi_{u_j}(b_r)\delta_{\gamma_j}\rangle = \langle \pi_{u_j}(b_r^*b_r)\delta_{\gamma_j}, \delta_{\gamma_j}\rangle = V_{\gamma_j}^*\pi_{u_j}(b_r^*b_r)V_{\gamma_j}\mathbf{1}\,,$$

it suffices to show that $V_{\gamma_i}^* \pi_{u_i}(b_r^* b_r) V_{\gamma_i} = 0$ for all $u_j \in G^{(0)}$ and $\gamma_j \in G$. For $f_j \in C_{c_r}(G)$, $u_i \in G^{(0)}$, and $c_r \in \mathbb{C}$, we have

$$V_{\gamma_{j}}^{*}\pi_{u_{j}}(f_{j})V_{u_{j}}c_{r} = V_{\gamma_{j}}^{*}\pi_{u_{j}}(f_{j})c_{r}\delta_{u_{j}} = \sum_{j}V_{\gamma_{j}}^{*}\left(\sum_{s(\eta_{j})=u_{j}}f_{j}(\eta_{j})c_{r}\delta_{u_{j}}\right) = f_{j}(u_{j})c_{r}$$

$$= E(f_{j})(u_{j})c_{r}. \tag{2.1}$$

Thus by the continuity of E, for all $a_r \in C_r^*(G)$, $E(a_r)(u_j) = V_{\gamma_i}^* \pi_{u_i}(a_r) V_{u_i}$ as operators on \mathbb{C} . For every open bisection B and $\gamma_j \in B$, pick a function $\phi_{\gamma_j,B} \in C_{c_r}(G)$ such that $\phi_{\gamma_j,B}(\gamma_j) = 1$, supp $(\phi_{\gamma_j,B}) \subseteq B$, and $0 \le \phi_{\gamma_j,B} \le 1$. Now if $f_j \in C_{c_r}(G)$ and B is an open bisection with $\gamma_j \in B$,then

$$\left(E\left(\phi_{\gamma_j,B}^*f_j\phi_{\gamma_j,B}\right)\right)\left(u_j\right) = \sum_j \sum_{r(\xi_j)=r(\zeta_j)=u_j} \phi_{\gamma_j,B}\left(\xi_j^{-1}\right)f_j\left(\xi_j^{-1}\zeta_j\right)\phi_{\gamma_j,B}\left(\zeta_j^{-1}\right),$$
 which is zero unless ξ_j , $\zeta_j \in B^{-1}$. Since $r(\xi_j) = r(\zeta_j) = u_j$, we have that $\xi_j = \zeta_j$ is the

$$\left(E\left(\phi_{\gamma_{j},B}^{*}f_{j}\phi_{\gamma_{j},B}\right)\right)\left(u_{j}\right) = \phi_{\gamma_{j},B}\left(\xi_{j}^{-1}\right)f_{j}\left(s\left(\zeta_{j}\right)\right)\phi_{\gamma_{j},B}\left(\xi_{j}^{-1}\right) \leq E\left(f_{j}\right)\left(s\left(\zeta_{j}\right)\right) \\
\leq \left\|E\left(f_{j}\right)\right\|_{\infty}.$$
(2.2)

Now if $a_r \in C_r^*(G)$ then $\phi_{\gamma_j,B}^* a_r^* a_r \phi_{\gamma_j,B}$ is positive so $E\left(\phi_{\gamma_j,B}^* a_r^* a_r \phi_{\gamma_j,B}\right) \ge 0$. Therefore by the continuity of Ewe can apply (2.2) to obtain

$$0 \leq E\left(\phi_{\gamma_j,B}^*b_r^*b_r\phi_{\gamma_j,B}\right) \leq \|E(b_r^*b_r)\|_{\infty} = 0.$$

Thus $E\left(\phi_{\gamma_i,B}^* b_r^* b_r \phi_{\gamma_i,B}^*\right) = 0$ for all open bisections B and $\gamma_j \in B$. For $\gamma_j \in G$ pick an open bisection B such that $\gamma_j \in B$. Notice for $c_r \in \mathbb{C}$

$$\pi_{s(\gamma_j)}\left(\phi_{\gamma_j,B}^*\right)V_{s(\gamma_j)}c_r = \pi_{s(\gamma_j)}\left(\phi_{\gamma_j,B}^*\right)c_r\delta_{s(\gamma_j)}$$

$$= \sum_j \sum_{s(\eta_j)=s(\gamma_j)} \phi_{\gamma_j,B}(\eta_j)c_r\delta_{\eta_j} = c_r\delta_{\gamma_j} = V_{\gamma_j}c_r$$

Thus $\pi_{s(\gamma_j)}\left(\phi_{\gamma_j,B}\right)V_{s(\gamma_j)}=V_{\gamma_j}$ as operators . Now by equation (2.1) and the above observation we get for all $\gamma_i \in G$ that

$$V_{\gamma_j}^*\pi_{u_j}(b_r^*b_r)V_{\gamma_j}=V_{s(\gamma_j)}^*\pi_{s(\gamma_j)}\left(\phi_{\gamma_j,B}^*\ b_r^*b_r\ \phi_{\gamma_j,B}\right)V_{s(\gamma_j)}^*=E\left(\phi_{\gamma_j,B}^*\ b_r^*b_r\ \phi_{\gamma_j,B}\right)=0$$
 as desired . Therefore $b_r=0$ and hence E is faithful .

(iv) The diagram commutes when restricting to continuous functions with compact support . Commutatively then passes to the respective completions by continuity. Since we know $\rho_r(l_r(f_i)) = 0$ for all $f_i \in C_{c_r}(G|_U)$ we obtain image $(l_r) \subseteq \ker \rho_r$ by continuity.

- (v) Let $\mathbb C$ be the set of compact sets in $G^{(0)}$ ordered by inclusion . For each $G \in \mathcal C$ pick a function $e_{\mathcal{C}}$ in $C_{c_r}(G^{(0)})$ such that $0 \le e_{\mathcal{C}} \le 1$ and $e_{\mathcal{C}}|_{c_r} \equiv 1$. Fix $f_j \in C_{c_r}(G)$ vanishing outside a compact set $K \subseteq G$. For C such that $s(K) \subset C$, $f_i * e_C = f_i$. It follows that (e_C) is an approximate unit for $C_r^*(G)$.
- 2.3. Purely infinite simple C^* -algebras. Given a C^* -algebra A we denote its positive elements by A^+ . If B is a subalgebra of A then $B^+ \subset A^+$. In particular, if $C_0(X)$ is an abelian subalgebra of A and $f_j \in C_0(X)$ such that $f_j(x_n) \ge 0$ for all $x_n \in X$, then $f_j \in A^+$. For positive elements $a_r \in M_{n_0}(A)$ and $b_r \in M_{m_0}(A)$, a_r is Cuntz below b_r , denoted $a_r < b_r$, if there exists a sequence of elements x_{k_0} in $M_{m_0,n_0}(A)$ such that $x_{k_0}^*b_{rk} \to a_r$ in norm. Notice that \leq is transitive: if $a_r \leq b_r$ and $b_r \leq c_r$ there exist sequences of element x_{n_0} and y_{n_0} such that $x_{k_0}^*b_rx_{k_0}\to a_r$ and $y_{n_0}^*c_ry_{n_0}\to b_r$ in norm, so $x_{n_0}^*y_{n_0}^*c_ry_{n_0}x_{n_0}\to a_r$ in norm, that is $a_r \lesssim c_r$. We say A is purely infinite if there are no characters on A and for all $a_r, b_r \in$ A^+ , $a_r \lesssim b_r$ if and only if $a_r \in \overline{Ab_rA}$ [14]. A non-zero positive element $a_r \in A$ is properly infinite if $a_r \oplus a_r \preceq a_r$. By [14] A is purely infinite if and only if every non-zero positive element in A is properly infinite. A projection p in a C*-algebra A is infinite if it is Murrayvon Neumann equivalent to a proper subprojection of itself, i.e., if there exists a partial isometrics such that $s^*s = p$ but $ss^* \leq p$. By [14] a C^* -algebra A is purely infinite if every non-zero hereditary C^* -subalgebra in every quotient of A contains an infinite projection. For simple C^* -algebras the converse is also true, thus a simple C^* -algebra is purely infinite precisely when every hereditary subalgebra contains an infinite projection .We consider, locally compact, Hausdorff - 'etale groupoids .We will show that we can determine when $C_r^*(G)$ is purely infinite simple by restricting our attention to elements of $C_0(G^{(0)})$. Before we do that, we need the following technical lemmas .(see [28]).

Lemma3.1. Let G be a locally compact, Hausdorff - 'etale groupoid and

 $E: C_r^*(G) \to C_0(G^{(0)})$ be the faithful conditional expectation extending restriction. Suppose that G is topologically principal. For every $\epsilon > 0$ and $c_r \in C_r^*(G)^+$, there exists $f_i \in$ $C_0(G^{(0)})^+$ such that:

- (i)
- $||f_i c_r f_i f_i E(c_r) f_i|| < \epsilon;$ (ii)

(iii) $||f_j E(c_r) f_j|| > ||E(c_r)|| - \epsilon$. **Proof:** Let $\epsilon > 0$. For $c_r = 0$ the result is trivial so let $c_r \in C_r^*(G)^+$ such that $c_r \neq 0$. Define

$$a_r := \frac{c_r}{\|E(c_r)\|} \ .$$

To find an appropriate f_i , we use the construction in the proof of [14]; we include the details below . Find $b_r \in \mathcal{C}_{c_r}(G) \cap \mathcal{C}_r^*(G)^+$ so that $\|a_r - b_r\| < \frac{\epsilon}{2\|E(c_r)\|}$. Then $\|E(b_r)\| > 1 - \frac{\epsilon}{2\|E(c_r)\|}$

$$||E(b_r)|| > 1 - \frac{\epsilon}{2||E(c_r)||}$$

because E is linear and $||E(a_r)|| = 1$. Now, let $K := \text{supp}(b_r - E(b_r))$, which is a compact subset of $G \setminus G^{(0)}$. Let $U := \left\{ u_j \in G^{(0)} \mid E(b_r)(u_j) > 1 - \frac{\epsilon}{2\|E(c_r)\|} \right\}.$

$$U := \left\{ u_j \in G^{(0)} \mid E(b_r)(u_j) > 1 - \frac{\epsilon}{2 ||E(c_n)||} \right\}.$$

Since G is topologically principal, [14, Lemma (2.3)] implies that there exists a nonempty open set $V \subseteq U_i$ such that $VKV = \emptyset$. Using regularity, fix a nonempty open set W such that $\overline{W} \subseteq V$. Using normality, select a positive (nonzero) real-valued function $f_j \in \mathcal{C}_{c_r}(G^{(0)})$ such that $f_i|_{\overline{W}}=1$, supp $(f_i)\subseteq V$, and $0\leq f_i(x_n)\leq 1$ for all $x_n\in G^{(0)}$. Therefore, f_i is

positive in $C_r^*(G)$ and satisfies item (i). To see that item (ii) holds, a direct computation

$$f_j b_r f_j = f_j E(b_r) f_j. (3.1)$$

Since $\|a_r - b_r\| < \frac{\epsilon}{2\|E(c_r)\|}$, $\|f_j\| = 1$ and E is norm decreasing we have

$$||f_j E(a_r) f_j - f_j E(b_r) f_j|| < \frac{\epsilon}{2||E(c_r)||}$$
 (3.2)

Combining equations (3.1) and (3.2) we get

Thus multiplying by $||E(c_r)||$ gives $||f_j c_r f_j - f_j E(c_r) f_j|| < \epsilon$ as needed in (ii). To see item (iii) notice that since $\operatorname{supp} f_i \subseteq U$ we have

$$f_j E(b_r) f_j \ge \left(1 - \frac{\epsilon}{2 \|E(c_r)\|}\right) f_j^2$$
.

Since
$$||f_j|| = 1$$
, from the above equation and equation (2) we get
$$||f_j E(a_r) f_j|| > ||f_j E(b_r) f_j|| - \frac{\epsilon}{2||E(c_r)||} \ge 1 - \frac{\epsilon}{2||E(c_r)||} - \frac{\epsilon}{2||E(c_r)||} = 1 - \frac{\epsilon}{||E(c_r)||}.$$

Multiplying by ||E(c)|| we obtain $||f_iE(c_r)f_i|| > ||E(c_r)|| - \epsilon$ as needed

Lemma 3.2. (see [28]). Let G be a locally compact, Hausdorff - etale groupoid and E: $C_r^*(G) \to C_0(G^{(0)})$ be the faithful conditional expectation extending restriction.

Suppose that G is topologically principal . For every non-zero $a_r \in C_r^*(G)^+$, there exists nonzero $h_r \in C_0(G^{(0)})^+$ such that $h_r \lesssim a_r$.

Proof: Let $a_r \in C_r^*(G)^+$ such that $a_r \neq 0$. Since E is faithful, $E(a_r)$ is non-zero. Applying Lemma 3.1 to $c_r \coloneqq \frac{a_r}{\|E(c_r)\|}$ and $\epsilon = 1/4$ gives us an $f_j \in C_0(G^{(0)})$ such that

items (i), (ii) and (iii) of Lemma 3.2 hold. In particular $||f_j E(c_r) f_j|| > \frac{3}{4}$. Following [14],

for each $d_r \in C_0(G^{(0)})^+$ we define the element

$$(d_r - 1/2)_+ := \phi_{1/2}(d_r) \in C_0(G^{(0)})^+$$

 $(d_r-1/2)_+\coloneqq\phi_{1/2}(d_r)\in C_0\big(G^{(0)}\big)^+$ Where $\phi_{1/2}(t)=\max\{t-1/2\}$ for $t\in\mathbb{R}^+$. Notice that

$$\|\phi_{1/2}(d_r)\| = \max\{\|d_r\| - 1/2, 0\},$$

 $\left\|\phi_{1/2}(d_r)\right\| = \max\{\|d_r\| - 1/2, 0\},$ for each $d_r \in C_0\big(G^{(0)}\big)^+$. Now let $h_r := \big(f_j E(c_r) f_j - 1/2\big)_+ \in C_0\big(G^{(0)}\big)^+$. Using item (ii) of Lemma 3.1 and [13], we can find $g_j \in C_r^*(G)$ so that $h_r = g_i^* f_j c_r f_i g_i$. Therefore $h_r \lesssim$ a_r . Finally, $h_r \neq 0$ since

$$||f_j|| = ||(f_j E(c_r) f_j - 1/2)_+|| \ge ||f_j E(c_r) f_j|| - 1/2 \ge 1/4 > 0.$$

Theorem 3.3. (see [28]). Let G be a locally compact, Hausdorff - 'etale groupoid. Suppose that G is minimal and topologically principal. Then $C_r^*(G)$ is purely infinite if and only if every non-zero positive element of $C_0(G^{(0)})$ is infinite in $C_r^*(G)$.

Proof: The forward implication is trivial. To see the reverse, let $a_r \in \mathcal{C}^*_r(G)^+$ such that $a_r \neq 0$. Using Lemma 3.2 we can find a non-zero

$$h_r \in C_0\big(G^{(0)}\big)^+$$

such that $h_r \lesssim a_r$. By assumption , we know h_r is infinite. Since $\mathcal{C}_r^*(G)$ is simple by [21], h_r is properly infinite by [14]. Thus a_r is properly infinite by [14],hence $\mathcal{C}_r^*(G)$ is purely infinite. Recall that a Kirchberg algebra is a separable , nuclear , purely infinite simple \mathcal{C}^* -algebra . We combine Theorem 3.3 with results from [2,4,21] to obtain the following characteri-zation of groupoid Kirchberg algebras .

Corollary3.4.(see [28]). Let G be a second-countable, locally compact, Hausdorff - etale groupoid. Then $C^*(G)$ is a Kirchberg algebra if and only if G is minimal, topologically principal, measure-wise amenable and every non-zero positive element of $C_0(G^{(0)})$ is infinite in $C^*(G)$.

Proof: Suppose $C^*(G)$ is a Kirchberg algebra .Then $C^*(G)$ is simple by definition and so $C^*(G) = C_r^*(G)$, G is minimal and G topologically principal [4]. Since $C^*(G)$ is nuclear, $C_r^*(G)$ is also nuclear hence G is measure-wise amenable by [2]. Finally, we apply Theorem 3.3 to see that every non-zero positive element of $C_0(G^{(0)})$ is infinite in $C^*(G)$. Conversely, suppose G is minimal, topologically principal, measure-wise amenable and that every non-zero positive element of $C_0(G^{(0)})$ is infinite in $C^*(G)$. Then $C_r^*(G) = C^*(G)$ is nuclear by [2], simple by [24], separable because G is second countable [21] and purely infinite by Theorem 3.3. We will restrict our attention to ample groupoids. Although this might seem a very restrictive class of groupoids, it actually includes a lot of important examples. Again, every Kirchberg algebra in UCT is Morita equivalent to a C^* -algebra associated to a Hausdorff - ample groupoid (see[26]). The ample case is far more manageable than the general case. In particular there is a large number of projections in the associated algebra. Let G be a locally compact, Hausdorff - 'etale groupoid. If G is ample, then the complex Steinberg algebra associated to G is

 $A(G) := \operatorname{span}\{\chi_B : B \text{ is a compact open bisection}\} \subseteq C_{c_r}(G)$

where χ_B denotes the characteristic function of B, is dense in $C_r^*(G)$ see [6](see also [27]). A quick computation shows that $\chi_B * \chi_D = \chi_{BD}$ and $\chi_B^* = \chi_{B-1}$, so that if $B \subseteq G^{(0)}$ is compact open, then χ_B is a projection.

compact open, then χ_B is a projection. **Theorem4.1**(see [28]). Let G be a second countable, Hausdorff-ample groupoid. Suppose that G is topologically principal, minimal and that B is a basis of $G^{(0)}$ consisting of compact open sets. Then $C_r^*(G)$ is purely infinite if and only if every non-zero projection p in $C_0(G^{(0)})$ with supp $(p) \in B$ is infinite in $C_r^*(G)$.

Proof: The forward implication is trivial . To see the reverse, suppose every non-zero projection p of $C_0(G^{(0)})$ with $\operatorname{supp}(p) = U$ for some $U \in B$ is infinite in $C_r^*(G)$. By Theorem 3.3 it suffices to show that every positive element in $C_0(G^{(0)})^+$ is infinite . Let $a_r \in C_r^*(G^{(0)})^+$ be a nonzero element . We show that a_r is properly infinite . We claim there is a non-zero projection $p \in C_0(G^{(0)})^+$ with $\operatorname{supp}(p) \subseteq U$ for some $U \in B$ such that $p \leq a_r$. To see this, first note that characteristic functions of the form χ_V are projections in $C_0(G^{(0)})$ for every compact open set $V \subseteq G^{(0)}$. Since B is a basis of compact open sets , there exists a compact open set $U_0 \in B$ and a non-zero $S \in \mathbb{R}^+$ such that $\chi_{V_0}(x_n) \leq Sa_r(x_n)$ for every $x_n \in G^{(0)}$. Then $p := \chi_{V_0} \leq Sa_r$. Applying [14] we get that $p \leq Sa_r$ and so $p \leq a_r$ as claimed. Since p is infinite by assumption and $C_r^*(G)$ is simple, p is properly infinite by [14].

Hence a_r is properly infinite by [14]. In the next corollary, we show how we can use the minimality of G to strengthen our result.

Corollary 4.2. (see [28]). Let G be a second countable, Hausdorff- ample groupoid.

Suppose that G is topologically principal and minimal. Then $C_r^*(G)$ is purely infinite if and only if there exists a point $x_n \in G^{(0)}$ and a neighborhood basis D at x_n consisting of compact open sets so that every non-zero projection q in $C_0(G^{(0)})$ with $\operatorname{supp}(q) \in D$ is infinite in $C_r^*(G)$.

Proof: Again, the forward direction is trivial. For the reverse implication, suppose there exist a point $x_n \in G^{(0)}$ and neighborhood basis D of x_n consisting of compact open sets such that that every non-zero projection q in $C_0(G^{(0)})$ with $\operatorname{supp}(q) \in D$ is infinite in $C_r^*(G)$. Let Bbe a basis of $G^{(0)}$ consisting of compact open sets and suppose $p := \chi_v$ is a non-zero projection in $C_0(G^{(0)})$ with $U \in B$. By Theorem 4.1, it suffices to show that p is infinite. Since G is minimal and ample, there exists a compact open bisection B such that $x_n \in s(B)$ and $r(B) \cap U \neq \emptyset$. By shrinking B, we may assume that $r(B) \subseteq U$. Since s(B) is a compact open neighborhood of x_n , there exists a $V \in D$ such that $V \subseteq s(B)$. By shrinking Bagain , we may assume that s(B) = V. Thus, $\chi_V = \chi_B^* \chi_{r(B)} \chi_B$. That is $\chi_V \lesssim \chi_{r(B)}$. Hence, $\chi_{r(B)}$ is properly infinite by [15]. Finally, since $\chi_U = \chi_{r(B)} + \chi_{U-r(B)}, \chi_U$ is infinite .We apply Theorem 4.1 to C^* -algebras associated to k-graphs. We assume the reader is familiar with the basic definitions and constructions of k-graphs and their C^* -algebras found in [16], but we recall a few facts here. Let A be a k-graph. Then the associated C^* -algebra $C^*(A)$ is the universal C^* -algebra generated by a Cuntz-Krieger A-family $\left\{s_{\lambda_j}:\lambda_j\in A\right\}$. To keep things clean, we will restrict our attention to row-finite k-graphs with no sources but similar results hold in the more general setting. We think our results will be useful in this setting because necessary and sufficient conditions on A for $C^*(A)$ to be purely infinite simple are not known. Following [16] we recall how $C^*(A)$ can be realised as the C^* -algebra of a second countable, Hausdorff - ample groupoid G_A as follows. Let A^{∞} denote the infinite path space

of A and $A^{\infty}(v)$ be the set of infinite paths with range v. Define $G_A:=\{(x_n,n_0,y_n)\in A^{\infty}\times \mathbb{N}^k\times A^{\infty}:\sigma^l(x_n)=\sigma^{m_0}(y_n), n_0=l-m_0\}$ where σ is the shift map. We view (x_n,n_0,y_n) as a morphism with source y_n and range x_n . Composition is given by $(x_n,n_0,y_n)(y_n,m_0,w_n)=(x_n,n_0+m_0,w_n)$. The unit space $G_A^{(0)}$ is identified A^{∞} . For $\lambda_i,\mu_i\in A$ with $s(\lambda_i)=s(\mu_i)$ we define

$$Z(\lambda_j, \mu_j) := \{(\lambda_j z_n, d(\lambda_j) - d(\mu_j), \mu_j z_n) : z_n \in A^{\infty}(s(\lambda_j))\}.$$

The (countable) collection of all such $Z(\lambda_j, \mu_j)$ generate a topology under which G_A is a second countable, Hausdorff - ample groupoid by [16]. Further, the relative topology on the unit space A^{∞} has a basis of compact cylinder sets

$$Z(\lambda_j) := \{\lambda_j x_n \in A^{\infty} \colon x_n \in A^{\infty}(s(\lambda_j))\}$$

by identifying $Z(\lambda_j, \lambda_j)$ and $Z(\lambda_j)$ from [16]. Note that G_A is amenable by [16] and hence $C_r^*(G_A) = C^*(G_A)$. It was shown in [16] that

$$C^*(A) \cong C^*(G_A)$$
.

More specifically, by [16,Corollary 5.3], there is a (unique) isomorphism

$$\phi: C^*(A) \to C^*(G_A)$$
 such that $\phi(s_{\lambda_j}) = \chi_{z_n(\lambda_j, s(\lambda_j))}$. Note that

$$\phi\left(s_{\mu_{j}}s_{\mu_{j}}^{*}\right) = \chi_{Z_{n}\left(\mu_{j},s\left(\mu_{j}\right)\right)}\chi_{Z_{n}\left(\mu_{j},s\left(\mu_{j}\right)\right)}^{*} = \chi_{Z_{n}\left(\mu_{j},s\left(\mu_{j}\right)\right)}\chi_{Z_{n}\left(\mu_{j},s\left(\mu_{j}\right),\mu_{j}\right)} = \chi_{Z_{n}\left(\mu_{j},\mu_{j}\right)} = \chi_{Z_{n}\left(\mu_{j},s\left(\mu_{j}\right)\right)}.$$

With all of this theory in place, along with the simplicity results of [23] and [4], the following is an immediate corollary of Theorem 4.1 and Corollary 4.2.

Corollary 5.1(see [28]). Suppose A is a row-finite k-graph with no sources such that A is aperiodic and co final in the sense of [23]. Then

- (i) For $\mu_j \in A$, $s_{\mu_i} s_{\mu_i}^*$ is infinite if and only if $s_{s(\mu_i)}$ is.
- (ii) $C^*(A)$ is purely infinite simple if and only if s_v is infinite for every $v \in A^0$.
- (iii) $C^*(A)$ is purely infinite simple if and only if there exists $x_n \in A^{\infty}$ such that s_v is infinite for every vertex v on x_n .

Proof: For (i), we use a trick used in [25]. Recall that infiniteness is preserved under von Neumann equivalence, hence $s_{\mu_i} s_{\mu_i}^*$ is infinite if and only if $s_{\mu_i}^* s_{\mu_i} = s_{s(\mu_i)}$ is infinite. For (ii), we apply Theorem 4.1 to the second countable, Hausdorff - ample groupoid G_A , first we check the remaining hypotheses of Theorem 4.1 . Since A is cofinal and aperiodic, $C^*(G_A) \cong$ $C^*(A)$ is simple by [23]. Thus $C^*(G_A) = C_r^*(G_A)$ is simple and hence G_A is topologically principal and minimal by [4]. We have that the collection of cylinder sets of the form $Z(\mu_i)$ form a basis B of consisting of compact open sets. Now we apply Theorem 4.1 to see that $C^*(G_A)$ is purely infinite if and only if each $\chi_{Z_n(\mu_i)}$ is infinite. Let

$$\phi: C^*(A) \to C^*(G_A)$$

be the isomorphism characterized by $s_{\mu_i} \mapsto \chi_{Z_n(\mu_i)}$. Since ϕ is an isomorphism, this gives $\chi_{Z_n(\mu_j)}$ is infinite if and only if $\phi^{-1}(\chi_{Z_n(\mu_j)}) = s_{\mu_j} s_{\mu_j}^*$ is infinite. Finally, $s_{\mu_j} s_{\mu_j}^*$ if and only if $s_{s(\mu_j)}$ is infinite by (i). For (iii), given an infinite path x_n , the collection of compact open sets of the form $Z(x_n(0,n_0))$ for $n_0 \in \mathbb{N}^k$ form a neighbourhood base at x_n . Now proceed as in the proof of (ii) replacing Theorem 4.1 with Corollary 4.2 and μ_i with $x_n(0, n_0)$. Let A be a C^* -algebra .A pair of positive elements $(a_1, a_2) \in A \times A$ has the matrix diagonalization property in A in the sense of [15] if for every positive matrix $\begin{pmatrix} a_1 & b_{12} \\ b_{21} & a_2 \end{pmatrix}$ with $b_{ij} \in A$ and every $\epsilon_1, \epsilon_2, \delta > 0$ there exists $d_1, d_2 \in A$ with

$$\|d_i^*a_id_i-a_i\|<\epsilon_i$$
 and $\|d_i^*b_{ij}d_i\|<\delta$.

A subset \mathcal{F}_r of A^+ is a filling family for A, in the sense of [15], if for every hereditary C^* subalgebra H of A and every primitive ideal I of A with $H \nsubseteq I$ there exist $f_i \in \mathcal{F}_r$ and $z_n \in A$ with $z_n^* z_n \in H$ and $z_n z_n^* = f_j \notin I$. By Proposition 3.13 and Lemma 3.12 [15], if A^+ contains a filling family \mathcal{F}_r that is closed under o-cut-downs and every pair of elements $(a_1, a_2) \in$ $\mathcal{F}_r \times \mathcal{F}_r$ has the matrix diagonalization property, then A is strongly purely infinite.

We provide a characterization of when the reduced groupoid C^* -algebra is strongly purely infinite (Proposition (6.3)). In our proof of Proposition 6.3 we will use results from [4] to describe ideals of reduced groupoid C*-algebras. First we need the following lemma. Recall theta subset $D \subseteq G^{(0)}$ is said to be invariant if

$$G.D := \{r(\gamma_j) : s(\gamma_j) \in D\} \subseteq D.$$

Lemma 6.1 (see [28]). Let G be a second countable, locally compact, Hausdorff - 'etale groupoid such that $C^*(G) = C_r^*(G)$. Then the following properties are equivalent:

(i) For every closed invariant set $D \subseteq G^{(0)}$

$$C^*(G|_{\mathcal{D}}) = C_r^*(G|_{\mathcal{D}}).$$

 $C^*(G|_D) = C^*_r(G|_D) \ .$ (ii) For every closed invariant set $D \subseteq G^{(0)}$ the sequence

$$0 \to C_r^* \left(G|_{G^{(0)} - D} \right) \xrightarrow{\iota_r} C_r^* \left(G \right) \xrightarrow{\bar{\rho}_r} C_r^* \left(G|_D \right) \to 0$$

is exact where ι_r and ρ_r are determined on continuous functions by extension and restriction respectively. Remark 6.2 in [22,Remark 4.10],Renault mentions that if $G|_D$ is amenable for every closed invariant set $D \subseteq G^{(0)}$, then item (ii) of Lemma 6.1 follows. Thus Lemma 6.1 is a strengthening of Renault's comment.

Proof: Fix a closed invariant set $D \subseteq G^{(0)}$ and let $U = G^{(0)} - D$. Consider the following diagram:

$$0 \to C^*(G|_U) \xrightarrow{l_r} C^*(G) \xrightarrow{\rho_r} C^*(G|_D) \to 0$$

$$\pi_U \downarrow \qquad \qquad \pi \downarrow \qquad \qquad \pi_D \downarrow$$

$$0 \to C_r^*(G|_U) \xrightarrow{l_0} C_r^*(G) \xrightarrow{\rho_0} C_0(D) \to 0$$

$$(6.1)$$

where π_U , π and π_D are the respective quotient maps, and ι , ι_r and ρ , ρ_r extend extension and restriction respectively. Since all of the maps involved are continuous, the diagram commutes. We also have that the top row of (6.1) is exact by [18,Lemma 1.10].(ii) \Rightarrow (i): We show the subjective map π_D is injective. Fix any $a_r \in C^*_r(G|_D)$ with $\pi_D(a_r) = 0$. Find $b_r \in C^*(G)$ with $\rho(b_r) = a_r$. From

 $\pi_D(\rho(b_r)) = \rho_r(\pi(b_r)) = 0$, exactness of (6.1), subjectivity of π_U , and $\iota_r \circ \pi_U = \pi \circ \iota_r$ we obtain

$$\pi(b_r) \in \ker \rho_r = \iota_r \left(C_r^*(G|_U) \right) = \iota_r \circ \pi_U \left(C^*(G|_U) \right) \pi \circ \iota_r \left(C^*(G|_U) \right).$$

Find $c_r \in C^*(G|_U)$ with $\pi(b_r) = \pi \circ \iota_r(c_r)$. As π is an isomorphism by assumption we obtain that $b_r = \iota_r(c_r)$. Hence $a_r = \rho_r(b_r) = \rho_r \circ \iota_r(c_r) = 0$. and

 $C^*(G|_D) = C^*_r(G|_D)$.(i) \Rightarrow (ii):

By assumption the maps π and π_D are isomorphisms. Using the commutative diagram (6.1) and the exactness of the top line of that diagram, the exactness of the bottom line follows from a easy diagram chase. Let G be a second countable, locally compact, Hausdorff-'etale groupoid and D be a closed invariant set of $G^{(0)}$ and define $U = G^{(0)} - D$. Recall from Lemma 2.1 (4) we have the communing diagram:

D. Recall from Lemma 2.1 (4) we have the communing diagram:
$$0 \to C_r^*(G|_U) \xrightarrow{l_r} C_r^*(G) \xrightarrow{\rho_r} C_r^*(G|_D) \to 0$$

$$E_U \downarrow \qquad E \downarrow \qquad E_D \downarrow$$

$$0 \to C_0(U) \xrightarrow{l_0} C_0(G^{(0)}) \xrightarrow{\rho_0} C_0(D) \to 0$$
(6.2)

Notice that the bottom row in (6.2) is exact. We will use this diagram several times. We also use the notation Ideal [S] for the ideal in $C_r^*(G)$ generated by $S \subseteq C_r^*(G)$.

Proposition 6.3(see[28]).Let G be a second countable, locally compact, Hausdorff and 'etale groupoid such that $C^*(G) = C_r^*(G)$. Then the following properties are equivalent:

(i) The C^* -algebra $C_r^*(G)$ is strongly purely infinite, and for every ideal I in $C_r^*(G)$,

$$I = \mathrm{Idea}\big[I \cap C_0\big(G^{(0)}\big)\big].$$

(ii) For every closed invariant set $D \subseteq G^{(0)}$, $G|_D$ is topologically principal; the sequence

$$0 \to C_r^*(G|_U) \xrightarrow{\iota_r} C_r^*(G) \xrightarrow{\rho_r} C_r^*(G|_D) \to 0$$

$$\tag{6.3}$$

is exact where $U = G^{(0)} - D$, ι_r and ρ_r are determined on continuous functions by extension and restriction respectively; and for every pair of elements a_r , b_r in $C_0(G^{(0)})^+$ the 2-tuple (a_r, b_r) has the matrix diagonalization property in $C_r^*(G)$.

Proof: (i) \Rightarrow (ii): Fix a closed invariant set $D \subseteq G^{(0)}$ and $U = G^{(0)} - D$. For this D and U we have a commuting diagram as in (6.2). Define $I := \ker \rho_r \subseteq C_r^*(G)$. Using the diagram, $\rho_0(E(I)) = E_D(\rho_r(I)) = 0$, implying that $E(I) \subseteq \iota_0(C_0(U))$. Since $E(b_r) = b_r$ for $b_r \in C_0(G^{(0)})$, $I \cap C_0(G^{(0)}) \subseteq E(I)$. Using assumption (i) we have $I = \text{Ideal}[I \cap C_0(G^{(0)})]$. Hence

 $\ker \rho_r = I = \operatorname{Ideal} [I \cap C_0(G^{(0)})] \subseteq \operatorname{Ideal} [E(I)] \subseteq \operatorname{Ideal} [\iota_0(C_0(U))] \subseteq \iota_r(C_r^*(G|_U));$ that is $\ker \rho_r \subseteq \operatorname{image} (\iota_r)$. Thus (6.3) is exact .We know that each $G|_D$ is topologically principal by [4] provided that $C^*(G|_D) = C_r^*(G|_D)$. The latter follows from Lemma 6.1 since (6.3) is exact .Since $C_r^*(G)$ is strongly purely infinite, Lemma 5.8 in [13] implies that every pair (a_r, b_r) of positive elements in $C_0(G^{(0)})$ has the matrix diagonalization property in $C_r^*(G) \cdot (\mathrm{ii}) \Rightarrow (\mathrm{ii}) = \mathrm{Since}$ we assumed that $G|_D$ is topologically principal for all closed invariant $D \subseteq G^{(0)}$, by the proof of Corollary 5.9 in [4], we know $I = \mathrm{Ideal}[I \cap C_0(G^{(0)})]$ for every ideal I in $C_r^*(G) = C^*(G)$ provided that $C^*(G|_D) = C_r^*(G|_D)$ for every closed invariant set $D \subseteq G^{(0)}$. But this follows from Lemma 6.1 since $C^*(G) = C_r^*(G)$ and (6.3) is exact, which are assumed in (ii). Hence (ii) implies $I = \mathrm{Ideal}[I \cap C_0(G^{(0)})]$.

We prove $C_r^*(G)$ is strongly purely infinite. Define $\mathcal{F}_r := C_0(G^{(0)})^{\frac{1}{r}} \subseteq C_r^*(G)$. By functional calculus we know

$$f_j(a_r) \in \mathcal{F}_r$$
, for $f_j \in C_0(\mathbb{R})^+$, $a_r \in \mathcal{F}_r$.

In particular \mathcal{F}_r is closed under ε -cut-downs, i.e., for each $a_r \in \mathcal{F}_r$, and $\varepsilon \in (0, \|a_r\|)$ we have $(a_r - \varepsilon)_+ \in \mathcal{F}_r$. By (ii) each pair (a_r, b_r) with $a_r, b_r \in \mathcal{F}_r$ has the matrix diagonalization property (of [15]). Now by Lemma 3.12 of [15] we know that \mathcal{F}_r has the matrix diagonalization property of [15]. If follows from Proposition 3.13 of [15] that $C_r^*(G)$ is strongly purely infinite provided that \mathcal{F}_r is a filling family for $C_r^*(G)$, which we now show. Fix any hereditary C^* -subalgebra H of $C_r^*(G)$ and any ideal I of $C_r^*(G)$ with $H \not\subseteq I$. We know $I = \text{Ideal}[I \cap C_0(G^{(0)})]$, hence $I = \iota_r(C_r^*(G|_U))$ for some open invariant set $U \subseteq G^{(0)}$. Let $D = G^{(0)} - U$ and consider the corresponding commuting diagram (6.2). Select $d_r \in H^+, d_r \not\in I$. Define $c_r := \rho_r(d_r)$. As $d_r \not\in I = \ker \rho_r$ by exactness in (ii), we know $\rho_r(d_r) \neq 0$. Since E_D is faithful and c_r positive,

$$\epsilon := \frac{1}{4} ||E_D(c_r)|| > 0.$$

By (ii) the groupoid $G|_D$ is topologically principal, hence Lemma 3.1 gives $f_j \in C_0(D)^+$ such that

$$h_r := \left. a_r^* f_j \, c_r f_j \, a_r = \left(f_j \, E_D(c_r) f_j - \epsilon \right)_+ \in C_0(D)^+ \, .$$

Notice that

$$\|h_r\| \geq \|f_j E_D(c_r) f_j\| - \epsilon > \|E_D(c_r)\| - 2\epsilon > 0.$$

Using that ρ_r restricts to the map $C_0(G^{(0)}) \to C_0(D)$, select $b_r \in C_0(G^{(0)})^+$ such that $\rho_r(b_r) = h_r$. Also as ρ_r is surjective find $w_n \in C_r^*(G)$ such that $\rho_r(w_n) = f_j a_r$. Since $\rho_r(b_r - w_n^* d_r w_n) = h_r - a_r^* f_j c_r f_j a_r = 0$ we have $b_r = w_n^* d_r w_n + v$ for some $v \in I$. Let $\left\{e_{\lambda_j}\right\}$ denote an approximate unit of $I = (G|_U)$ with $e_{\lambda_j} \in C_0(U)$ (see Lemma 2.1). Let 1 be the unit of the unitization of $C_r^*(G)$. Then $\left(1 - e_{\lambda_j}\right) u_j \left(1 - e_{\lambda_j}\right) \to 0$. For suitable λ_0 and $e := 1 - e\lambda_0$ we get $\|ew_n^* d_r w_n e - eb_r e\| = \|eve\| < \epsilon$. Use Lemma 22 of [13] to find a contraction $u_j \in C_r^*(G)$ such that

$$g_j := u_j^* e w_n^* d_r w_n e u_j = (eb_r e - \epsilon) \in C_0 \big(G^{(0)}\big)^+ = \mathcal{F}_r \ .$$
 Since $b_r e_{\lambda_0} + e \lambda_0 b_r - e \lambda_0 b_r e_{\lambda_0} \in C_0(U) \subseteq \ker \rho_r$ we obtain that $\rho_r(eb_r e) = \rho_r(b_r) = \sum_{k=0}^{n} e^{-k\theta_k} e^{-k\theta_k$

Moreover by functional calculus we know
$$(h_r - \epsilon)_+ = (f_j E_D(c_r) f_j - 2\epsilon)_+$$
. We conclude $\|\rho_r(g_j)\| = \|(h_r - \epsilon)_+\| = \|(f_j E_D(c_r) f_j - 2\epsilon)_+\| \ge \|f_j E_D(c_r) f_j\| - 2\epsilon > \|E_D(c_r)\| - 3\epsilon$

ensuring $g_j \notin I$. Finally with $z_n := u_j^* e w_n^* d_r^{1/2} \in C_r^*(G)$ we obtain $g_j = z_n z_n^*$ and $z_n^* z_n \in H$. By definition \mathcal{F}_r is a filling family for $C_r^*(G)$ completing the proof.

References

- [1] C. Anantharaman-Delaroche, Purely infinite C^* -algebras arising from dynamical system, Bull. Soc.Math. France 125 (1997), no. 2, 199-225.
- [2] C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, Monographies de L'Enseignement Math'ematique, 36, L'Enseignement Math'ematique, Geneva, 2000.
- [3] B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006, Theory of *C**-algebras and von Neumann algebras, Operator Algebras and Noncommutative Geometry, III.
- [4] J.H. Brown, L.O. Clark, C. Farthing and A. Sims, Simplicity of algebras associated to 'etale groupoids, Semigroup forum, to appear.
- [5] T. Carlsen and K. Thomsen, The structure of the *C**-algebra of a locally injective surjection, Ergodic Theory Dynam. Systems 32 (2012), no. 4, 1226–1248.
- [6] L.O. Clark, C. Farthing, A. Sims and M. Tomforde, A groupoid generalization of Leavitt path algebras, Semigroup forum, to appear.
- [7] J. Cuntz, K-theory for certain C*-algebras, Ann. of Math. (2) 113 (1981), no. 1, 181-197.
- [8] G. Elliott, On the classification of C*-algebras of real rank zero, J. Reine Angew. Math. 443 (1993),179-219.
- [9] R. Exel, Reconstructing a totally disconnected groupoid from its ample semigroup, Proc. Amer. Math. Soc. 138 (2010), 2991–3001.
- [10] T. Giordano and A. Sierakowski, Purely infinite partial crossed products, submitted. arXiv:1303.4483v2
- [11] E. Kirchberg, The classification of purely infinite C^* -algebras using Kasparov's theory, preprint, 1994.
- [12] E. Kirchberg, Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren, p. 92–141 in *C**-Algebras: Proceedings of the SFB-Workshop on *C**-algebras, M"unster, Germany, March 8-12, 1999/J. Cuntz, S. Echterhoff (ed.), Springer, Berlin etc. (2000), 272 pp.
- [13] E. Kirchberg and M. Rørdam, Infinite non-simple C^* -algebras: absorbing the Cuntz algebras O1,Adv. Math. 167 (2002), 195–264.
- [14] E. Kirchberg and M. Rørdam, Non-simple purely infinite C*-algebras, Amer. J. Math. 122 (2000),637–666.
- [15] E. Kirchberg and A. Sierakowski, Strong pure infiniteness of crossed products, J. Funct. Anal. (2014).
- [16] A. Kumjian and D. Pask, Higher rank graph C^* -algebras, New York J. Math. 6 (2000), 1–20.
- [17] A. Kumjian, D. Pask, and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), no. 1, 161–174.
- [18] P.S. Muhly, J. Renault and D.P. Williams, Continuous trace groupoid C^* -algebras, III, Trans. Amer. Math. Soc. 348 (1996), 3621–3641.
- 14 J. BROWN, L. O. CLARK, AND ADAM SIERAKOWSKI
- [19] A. Paterson, Groupoids, Inverse Semigroups, and their Operator Algebras, Progress in Mathematics, 170, Birkhauser, Boston, 1998.
- [20] N. C. Phillips, A classification theorem for nuclear purely infinite simple C^* -algebras, Doc. Math. 5 (2000), 49-114.
- [21] J. Renault, A groupoid approach to C^* -algebras. Lecture Notes in Mathematics, 793. Springer, Berlin, 1980.
- [22] J. Renault, The ideal structure of groupoid crossed product C^* -algebras, J. Operator Theory 25 (1991), 3–36.
- [23] D.I. Robertson and A. Sims, Simplicity of C^* -algebras associated to higher-rank graphs, Bull. Lond. Math. Soc. 39 (2007), 337–344.
- [24] M. Rørdam and A. Sierakowski, Purely infinite C^* -algebras arising from crossed products, Ergodic Theory Dynam. Systems 32 (2012), no. 1, 273-293.
- [25] A. Sims, Gauge-invariant ideals in the C^* -algebras of finitely aligned higher-rank graphs, Canad. J.Math. 58 (2006), 1268-1290.
- [26] J. Spielberg, Graph-based models for Kirchberg algebras, J. Operator Theory 57 (2007), 347–374.
- [27] B. Steinberg, A groupoid approach to inverse semigroup algebras, Adv. Math. 223 (2010), 689-727.
- [28] Jonathan brown, lisa orloff clark , and adam sierakowski Purely Infinite C^* -algebras Associated to Hausdorff Etale Groupoids. March 21, 2014.