Quest Journals

Journal of Research in Applied Mathematics Volume 11 ~ Issue 12 (December 2025) pp: 19-20 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735

www.questjournals.org

Research Paper

Simplicial Complexes in Algebraic Topology

Masarat Alfadil Mohamed, Belgiss Abdelaziz Abd Elrahman

Department of Mathematics, Faculty of Science, Sudan University of Science and Technology, Khartoum, Sudan.

Abstract:

Simplicial complexes are a central tool in algebraic topology, providing a bridge between combinatorial structures and abstract simplicial complexes, the notion of realizations, the concept of triangulable spaces, and the Simplicial Approximation Theore, highlighting their role in studying topological properties.

Keywords: providing a bridge between combinatorial structures and abstract simplicial complexes, the notion of realizations, the concept of triangulable spaces, and the Simplicial Approximation Theore.

Received 05 Dec., 2025; Revised 10 Dec., 2025; Accepted 13 Dec., 2025 © The author(s) 2025. Published with open access at www.questjournas.org

I. Introduction

Topology studies spaces through properties that remain invariant under continuous deformations. One of the most powerful tools in this field is the theory of simplicialcomplexes , which allows us to translate abstract topological problems into combinatorial ones , described in terms of finite sets of vertices and simplices .

II. Geometric Simplicial Complexes

Definition:

A (geometric) simplicial complexesis a finite collection K of simplices in R^N satisfying :

- 1) if $S = \{v_0, \dots, v_n\}$ is in K and T < S (T is a subset of S), then T is also in K;
- 2) for S and T in K, if $\Delta^n[S] \cap \Delta^m[T] \neq \emptyset$, then $\Delta^n[S] \cap \Delta^m[T] = \Delta^k[U]$ for some U in K, that is, if simplices of K intersect, then they do so along acommon face.

III. Abstract Simplicial Complexes

Definition:

A finite collection of sets $L=\{S_{\alpha}|S_{\alpha}=\{v_{\alpha 0},\ldots,v_{\alpha n_{\alpha}}\},1\leq\alpha\leq N\}$ is an abstract simplicial complexes f whenever $T=\{v_{j_0},\ldots,v_{j_k}\}$ is a subset of S and S is in L, then T is also in L.

In its simplicity there is a gain in flexibility with the notion of an abstract simplicial complexes. We can define all sorts of combinatorial objects in this manner (see, for example, [Björner]). To maintain the connection to topology, we ask if it is possible to associate to every vertex v in an abstract simplicial complex L a point vin \mathbb{R}^N in such a way that L determines a geometric simplicial complex. The answer is yes, and the proof is an exercise in linear algebra (sketched in the exercises) in which we associate a list of vectors in \mathbb{R}^N in general position to each set Sin L . In fact, if the abstract simplicial complex contains a set of cardinality at most m+1, then there is a geometric simplicial complex L' with corresponding sets consisting of vectors in \mathbb{R}^{2m+1} in general position. Another way to connect with topology is to use the combinatorial data given by an abstract simplicial complex and construct a topological space by gluing simplices together: If $L = \{S|S = \{v_o, \ldots, v_n\}\}$, then the set of equivalence classes, $|L| = [U_{s \in L} \Delta_S^n]$, associated to the equivalence relation given by $\mathbf{p} \sim \mathbf{q}$ for $\mathbf{p} \in \Delta_S^n$ and $\mathbf{q} \in \Delta_T^m$ if there is a shared face U < S, U < T and $\mathbf{p} = \mathbf{q}$ in $\Delta_U^k \in \Delta_S^n$ and $\Delta_U^k \in \Delta_T^m$, that is, we glue the simplices Δ_S^n . The reader should check that this quotient construction determines a space homeomorphic to the realization of a geometric simplicial complex built out of vertices in \mathbb{R}^N .

IV. The Simplicial Approximation Theorem

Given two simplicial complexes K and L and a continuous mapping $f: |K| \to |L|$, then there is a nonnegative integer r and a simplicial mapping $\emptyset: sd^r K \to L$ with \emptyset a simplicial approximation to f.

Proof:We use the fact that |K| and |L| are compact metric spaces. Suppose dim K=n. The collection $\{f^{-1}(O_L(w))|w$ a vertex in $L\}$ is an open cover of |K|. The cover has a Lebesgue number $\delta_K>0$. Iterating barycentric subdivision, we can subdivide K until

$$\operatorname{mesh}(\operatorname{sd}^r K) \le \left(\frac{n}{n+1}\right)^r \operatorname{mesh}(K) < \delta_K/2.$$

This is possible because $\left(\frac{n}{n+1}\right)^r$ goes to zero as r goes to infinity. It follows that sd^r K has all simplices of diameter less than $\delta_K/2$ and so, for each $v \in sd^r$ K, the diameter of $O_k(v)$ is less than δ_K . Thus each $O_K(v)$ is contained in some $f^{-1}(O_L(w))$. This determines a vertex map $\emptyset: v \to w$, which satisfies $f(O_K(v)) \in O_L(\emptyset(v))$, a simplicial approximation.

V. Properties and Results

Any two simplices of the same dimension are homeomorphic .-

- The realization |K| depends only on the combinatorial structure, not the embedding.
- Complexes can be subdivided (barycentric subdivision) without altering realizations.
- Simplicial approximations are strongly linked to homology and homotopy, enabling the computation of fundamental groups and invariants of spaces.

VI. Conclusion

A rigorous foundation for simplicial complexes . Starting with their geometric and abstract definition .

Acknowledgment

I thank everyone I returned to who helped me in this work.

References

- [1]. Rolfsen, D., Knots and Links, AMS Chelsea Publ, Providence, RI, 2003.
- [2]. Royden, H. L., Real Analysis, Third edition, Macmillan Publ. Co., New York, 1988
- [3]. Sagan, H., Space-Filling Curves, Springer-Verlag, New York, 1994.
- [4]. Schmidt, E., Uber den Jordanschen Kurvensatz, Sitzber. Akad. Berlin, (1923), 318 329.
- [5]. Spanier, E. H., Algebraic Topology, Springer-Verlag, Berlin Heidelberg New York, 1994.
- [6]. Stanton, D., White, D., Constructive Combinatorics, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1986.
- [7]. Steen, L. A., Seebach, J. A., Counterexamples in Topology, Dover Publ. Inc., Mineola, NY, 1995.
- [8]. Uspensky, J. V., Theory of Equations, McGraw-Hill Book Co., New York, NY, 1948.
- [9]. Vassiliev, V. A., Introduction to Topology (Student Mathematical Library, V. 14), A. Sossinski (Translator), American Mathematical Society, Providence, RI, 2001.
- [10]. Walker, J.W., A homology version of the Borsuk-Ulam theorem, Amer. Math. Monthly, 90(1983), 466–468.