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Abstract:  In this paper, we will introduce a new and simple approach of (𝛼, 𝛽)- admissible Geraghty type 

contractive mappings in bipolar metric spaces. Further, we will prove some fixed point theorems for above 

mentioned contractive mappings in complete bipolar metric spaces. At the end, we shall construct some 

comparative examples to show the usability of our main results. As an application we discuss about the Ulam-

Hyers stability.  
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I. Introduction: 
In 1922, Banach [1] introduced Banach contraction principle as the first constructive method to get a 

fixed point for a self map on a complete metric space. Fixed point theory has a wide range of applications in 

various field of sciences and Mathematics. Many authors had generalized the Banach contraction principle. In 

continuation of this, in 1973, Geraghty [5] generalized the Banach contraction principle and gave a new direction 

to the researchers for getting new fixed point theorems. Some of the authors generalized Geraghty contraction in 

various spaces (see [3], [12]). 

In 2012, Samet et al. [13] introduced the concepts of 𝛼-contractive and 𝛼-admissible mappings and 

proved various fixed point theorems of 𝛼-admissible contractive mappings in complete metric spaces. Recently, 

in 2015, Chandok [3] introduced the concept of (𝛼, 𝛽)- admissible Geraghty type contractive mappings and 

proved some fixed point theorems of such kind of mappings in complete metric spaces.  

To get a new approach for fixed point results in 2016, Mutlu and Gürdal [9] introduced the concept of 

bipolar metric space. The major difference between the previously defined spaces and bipolar is of distance 

function. In bipolar metric space, the distance function is from the cartesian product of two different sets to non-

negative real numbers.  

Since then, many authors have proved several fixed point results in bipolar metric space see [4], [6-8], 

[10], [12].  

Here, we will also prove some new fixed point results for Geraghty type contractions via newly defined 
(𝛼, 𝛽)- admissible. 

 

II. Preliminaries: 
We need to recall some basic definitions, introduce some new notations and definitions which is used for the fixed 

point theorems for (𝛼, 𝛽)-admissible Geraghty type contractive mappings in bipolar metric spaces. 

Definition 2.1. In 2016, Mutlu and Gürdal [9] introduced the concept of bipolar metric space. 

Let 𝑋 and 𝑌 are two non-empty sets and 𝑑 ∶ 𝑋 × 𝑌 → [0, ∞) be a function satisfying the following conditions: 

(BP1) 𝑑(𝑥, 𝑦) = 0  if and only if 𝑥 =  𝑦, where (𝑥, 𝑦) ∈ 𝑋 × 𝑌; 

(BP2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 ∩ 𝑌; 

(BP3) 𝑑(𝑥1, 𝑦2) ≤ 𝑑(𝑥1, 𝑦1) + 𝑑(𝑥2, 𝑦1) + 𝑑(𝑥2, 𝑦2) for all 𝑥1, 𝑥2 ∈ 𝑋 and 𝑦1, 𝑦2 ∈ 𝑌. 

Then 𝑑 is called bipolar metric and (𝑋, 𝑌, 𝑑) is called bipolar metric space. 
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If  𝑋 ∩ 𝑌 = ∅,  then space is called disjoint otherwise joint. The set 𝑋 is called left pole and 𝑌 is called right pole 

of bipolar metric space (𝑋, 𝑌, 𝑑)  and any element of left pole (𝑋), right pole (𝑌)  and  𝑋 ∩ 𝑌 is called left element, 

right element and central element respectively. 

Definition 2.2. Let (𝑋, 𝑌, 𝑑)   be a bipolar metric space. Then any sequence (𝑥𝑛) ⊆ 𝑋  is called left sequence and 

is said to be convergent to right element say ‘𝑦’ if 𝑑(𝑥𝑛 , 𝑦) → 0  as  𝑛 → ∞. Similarly, a right sequence (𝑦𝑛) ⊆ 𝑌  

is said to be convergent to a left element say ‘𝑥’ if  𝑑(𝑥, 𝑦𝑛) → 0  as 𝑛 → ∞. 

Definition 2.3. Let (𝑋1, 𝑌1, 𝑑1) and (𝑋2, 𝑌2, 𝑑2)  be two bipolar metric spaces.  

Let 𝑇 ∶  𝑋1 ∪ 𝑌1  →  𝑋2 ∪ 𝑌2  be a function: 

(i)  If 𝑇(𝑋1) ⊆ 𝑋2 and 𝑇(𝑌1)  ⊆ 𝑌2 , then 𝑇 is called covariant map and is denoted by  𝑇 ∶ (𝑋1, 𝑌1, 𝑑1)   ⇉
(𝑋2, 𝑌2, 𝑑2).  
(ii)  If  𝑇(𝑋1)  ⊆ 𝑌2 and 𝑇(𝑌1) ⊆ 𝑋2, then 𝑇 is called contravariant map and is denoted by 𝑇 ∶ (𝑋1, 𝑌1, 𝑑1)   ⤨
(𝑋2, 𝑌2, 𝑑2).  
Definition 2.4. Let (𝑋1, 𝑌1, 𝑑1) and (𝑋2, 𝑌2, 𝑑2)  be two bipolar metric spaces. 

(i)  A map 𝑇 ∶  (𝑋1, 𝑌1, 𝑑1)   ⇉ (𝑋2, 𝑌2, 𝑑2) is called left continuous at a point 𝑥0 ∈ 𝑋1 if for every 𝜖 > 0 there 

exists 𝛿 > 0 such that 𝑑2(𝑇𝑥0, 𝑇𝑦) < 𝜀 whenever 𝑑1(𝑥0, 𝑦) < 𝛿. 
(ii)  A map 𝑇 ∶  (𝑋1, 𝑌1, 𝑑1)   ⇉ (𝑋2, 𝑌2, 𝑑2) is called right continuous at a point 𝑦0 ∈ 𝑌1 if for every 𝜖 > 0 

there exists 𝛿 > 0 such that 𝑑2(𝑇𝑥, 𝑇𝑦0) < 𝜀 whenever 𝑑1(𝑥, 𝑦0) < 𝛿. 
(iii)  A map 𝑇 is called continuous, if it is left continuous at each 𝑥0 ∈ 𝑋1  and right continuous at each 𝑦0 ∈
𝑌1.   
(iv) A contravariant map 𝑇 ∶  (𝑋1, 𝑌1, 𝑑1) ⤨ (𝑋2, 𝑌2, 𝑑2) is continuous if and only if it is continuous as a 

covariant map 𝑇 ∶  (𝑋1, 𝑌1, 𝑑1)   ⇉ (𝑋2, 𝑌2, 𝑑2).   

Definition 2.5. Let  (𝑋, 𝑌, 𝑑) be a bipolar metric space. 

(i)   A sequence {(𝑥𝑛, 𝑦𝑛)} on the set 𝑋 × 𝑌  is called a bisequence on  (𝑋, 𝑌, 𝑑). 
(ii)  If both the sequences (𝑥𝑛) and (𝑦𝑛) converge, then bisequence {(𝑥𝑛 , 𝑦𝑛)} is said to be convergent. If 

both the sequences (𝑥𝑛) and (𝑦𝑛) converge to same point 𝑣 and 

𝑣 ∈  𝑋 ∩ 𝑌, then this bisequence is said to be biconvergent. 

(iii)  A bisequence {(𝑥𝑛 , 𝑦𝑛)} on  (𝑋, 𝑌, 𝑑)  is said to be Cauchy bisequence, if for each 𝜖 > 0 there exists a 

positive integer 𝑁 ∈ ℕ such that 𝑑(𝑥𝑛 , 𝑦𝑚) < 𝜖 for all 𝑛, 𝑚 ≥ 𝑁.  

(iv) A bipolar metric space is said to be complete if every Cauchy bisequence is convergent in this space. 

Definition 2.6. [10] Let 𝑋 and 𝑌 be two non-empty sets. Let 𝑇 ∶  (𝑋, 𝑌)  ⇉ (𝑋, 𝑌) and  

𝛼 ∶ 𝑋 × 𝑌 → [0, +∞). Then 𝑇 is called 𝛼-admissible(covariant) if 

𝛼(𝑥, 𝑦) ≥ 1 ⇒ 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1 

For all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. 
Definition 2.7. [10] Let 𝑋 and 𝑌 be two non-empty sets. Let 𝑇 ∶  (𝑋, 𝑌) ⤨  (𝑋, 𝑌) and  

𝛼 ∶ 𝑋 × 𝑌 → [0, +∞). Then 𝑇 is called 𝛼-admissible(contravariant) if 

𝛼(𝑥, 𝑦) ≥ 1 ⇒ 𝛼(𝑇𝑦, 𝑇𝑥) ≥ 1 

For all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. 
Let Ψ be the family of functions 𝜓 ∶ [0, ∞) → [0, ∞) which satisfying the following conditions: 

(i) 𝜓 is continuous; 

(ii) 𝜓 is strictly increasing 

(iii)  𝜓(0) = 0. 
Let Θ be the family of functions 𝜃 ∶ [0, ∞) → [0,1) such that for any bounded sequence  

{𝑡𝑛} of positive reals, 𝜃(𝑡𝑛) → 1 as 𝑡𝑛 → 0. 

 

III. Main Results: 
In this section, we will introduce new notations for (𝛼, 𝛽)-admissible Geraghty type contractive mappings and 

prove various fixed point theorems for such type of mappings in complete bipolar metric spaces. 

Definition 3.1. Let 𝑋 and 𝑌 be two non-empty sets. Let 𝑇 ∶  (𝑋, 𝑌)  ⇉ (𝑋, 𝑌) be a covariant mapping and 𝛼, 𝛽 ∶
𝑋 × 𝑌 → [0, ∞). Then 𝑇 is called (𝛼, 𝛽)-admissible(covariant) mapping if 𝛼(𝑥, 𝑦) ≥ 1 and 𝛽(𝑥, 𝑦) ≥ 1 implies 

𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1 and 𝛽(𝑇𝑥, 𝑇𝑦) ≥ 1 

for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. 
Definition 3.2. Let 𝑋 and 𝑌 be two non-empty sets. Let 𝑇 ∶  (𝑋, 𝑌)  ⤨ (𝑋, 𝑌) be a contravariant mapping and 

𝛼, 𝛽 ∶ 𝑋 × 𝑌 → [0, ∞). Then 𝑇 is called (𝛼, 𝛽)-admissible(contravariant) mapping if 𝛼(𝑥, 𝑦) ≥ 1 and 𝛽(𝑥, 𝑦) ≥
1 implies 𝛼(𝑇𝑦, 𝑇𝑥) ≥ 1 and 𝛽(𝑇𝑦, 𝑇𝑥) ≥ 1 

for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. 
Definition 3.3. Let 𝑋 and 𝑌 be two non-empty sets. Consider (𝑋, 𝑌, 𝑑) be a bipolar metric space, 𝑇 ∶  (𝑋, 𝑌)  ⤨
(𝑋, 𝑌) be a contravariant mapping and 𝛼, 𝛽 ∶ 𝑋 × 𝑌 → [0, ∞). A mapping 𝑇 is called (𝛼, 𝛽)-Geraghty type 

contractive mapping if there exist a 𝜃 ∈ Θ, such that for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 and 𝜓 ∈ Ψ, 
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 which satisfying the following condition: 

𝛼(𝑥, 𝑇𝑥) 𝛽(𝑇𝑦, 𝑦) 𝜓(𝑑(𝑇𝑦, 𝑇𝑥)) ≤ 𝜃( 𝜓(𝑑(𝑥, 𝑦))) 𝜓(𝑑(𝑥, 𝑦)).                                           (3.1) 

Theorem 3.4. Let (𝑋, 𝑌, 𝑑) be a complete bipolar metric space, 𝑇 ∶  (𝑋, 𝑌)  ⤨ (𝑋, 𝑌) is a contravariant mapping 

and 𝛼, 𝛽 ∶ 𝑋 × 𝑌 → [0, ∞). Suppose that the following condition are satisfied: 

(i) 𝑇 is (𝛼, 𝛽)-admissible mapping; 

(ii) 𝑇 is an  (𝛼, 𝛽)-Geraghty type contractive mapping; 

(iii)  there exist 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1 and 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1; 

(iv)  𝑇  is continuous mapping. 

Then 𝑇 has a fixed point. 

Proof: Let 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1 and 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1. Now we construct the bisequence  {(𝑥𝑛 , 𝑦𝑛)} 

as 𝑇𝑥𝑛 = 𝑦𝑛 and 𝑇𝑦𝑛 = 𝑥𝑛+1 for all 𝑛 ∈ ℕ ∪ {0}. 
Since 𝑇 is  (𝛼, 𝛽)-admissible mapping, 

So, 𝛼(𝑥0 , 𝑦0 ) = 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1,  

     𝛽(𝑥0 , 𝑦0 ) = 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1, 

     𝛼(𝑥1, 𝑦0 ) = 𝛼(𝑇𝑦0 , 𝑇𝑥0 ) ≥ 1,  

     𝛽(𝑥1 , 𝑦0 ) = 𝛽(𝑇𝑦0 , 𝑇𝑥0 ) ≥ 1, 

using mathematical induction, we get 

𝛼(𝑥𝑛+1 , 𝑦𝑛 ) ≥ 1 and 𝛽(𝑥𝑛+1 , 𝑦𝑛 ) ≥ 1 for all 𝑛 ∈ ℕ ∪ {0}.                                                 (3.2) 

Since 𝑇 is  (𝛼, 𝛽)-admissible mapping, 

So, 𝛼(𝑥1, 𝑦1 ) = 𝛼(𝑥1 , 𝑇𝑥1) ≥ 1,  

     𝛽(𝑥1 , 𝑦1 ) = 𝛽(𝑥1 , 𝑇𝑥1 ) ≥ 1, 

hence by induction, we obtain  
𝛼(𝑥𝑛 , 𝑦𝑛 ) ≥ 1 and 𝛽(𝑥𝑛 , 𝑦𝑛 ) ≥ 1 for  𝑛 ∈ ℕ ∪ {0}.                                                            (3.3) 

Putting 𝑥 = 𝑥𝑛  and 𝑦 = 𝑦𝑛  in equation (3.1) and using equation (3.3), we have  

𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )) = 𝜓(𝑑(𝑇𝑦𝑛−1 , 𝑇𝑥𝑛 ))  

                         ≤  𝛼(𝑥𝑛 , 𝑇𝑥𝑛 )𝛽(𝑇𝑦𝑛−1 , 𝑦𝑛−1 )𝜓(𝑑(𝑇𝑦𝑛−1 , 𝑇𝑥𝑛 ))  

                         ≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 )))𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 )).                                                       (3.4) 

Similarly, putting 𝑥 = 𝑥𝑛+1 and 𝑦 = 𝑦𝑛  in equation (3.1) and using equation (3.3), we get 𝜓(𝑑(𝑥𝑛+1 , 𝑦𝑛 )) =

𝜓(𝑑(𝑇𝑦𝑛 , 𝑇𝑥𝑛 ))  ≤  𝛼(𝑥𝑛 , 𝑇𝑥𝑛 )𝛽(𝑇𝑦𝑛 , 𝑦𝑛 )𝜓(𝑑(𝑇𝑦𝑛 , 𝑇𝑥𝑛 )) 

                                                                ≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )))𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )).                         (3.5)                            

From equation (3.4), we get 

𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )) ≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 )))𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 ))     

                        ≤ 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 )).                                                                                        (3.6) 

Hence, by using the properties of 𝜓, we conclude that 

                         𝑑(𝑥𝑛 , 𝑦𝑛 ) ≤ 𝑑(𝑥𝑛 , 𝑦𝑛−1 ) for all 𝑛 ∈ ℕ. 
From equation (3.5), we get 

 𝜓(𝑑(𝑥𝑛+1 , 𝑦𝑛 ))   ≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )))𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )) 

                               ≤ 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )).                                                                                     (3.7) 

Hence, by using the properties of 𝜓, we conclude that 

                         𝑑(𝑥𝑛+1 , 𝑦𝑛 ) ≤ 𝑑(𝑥𝑛 , 𝑦𝑛 ) for all 𝑛 ∈ ℕ. 

From the above, we conclude that the sequences {𝑑(𝑥𝑛 , 𝑦𝑛−1 )} and {𝑑(𝑥𝑛 , 𝑦𝑛 )} are monotonically decreasing 

and for the non-negative monotonically decreasing sequences  {𝑑(𝑥𝑛 , 𝑦𝑛−1 )} and {𝑑(𝑥𝑛 , 𝑦𝑛 )}, there exist some 

𝑟1 ≥ 0 and 𝑟2 ≥ 0, such that 

        𝑑(𝑥𝑛 , 𝑦𝑛−1 ) →  𝑟1 , 𝑑(𝑥𝑛 , 𝑦𝑛 ) →  𝑟2  as 𝑛 → ∞                                                            (3.8) 

Further from equation (3.6), it implies that 

                
𝜓(𝑑(𝑥𝑛 ,𝑦𝑛 ))

𝜓(𝑑(𝑥𝑛−1 ,𝑦𝑛−1 ))
≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 ))) < 1.                                                           (3.9)                                  

As 𝑛 → ∞ in above inequality, we obtain 

lim
𝑛→∞

𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 ))) = 1 and 𝜃 ∈ Θ,  lim
𝑛→∞

𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 ))) = 0, which gives that    

                     lim
𝑛→∞

 𝑑(𝑥𝑛 , 𝑦𝑛−1 ) = 𝑟1 = 0.                                                                           (3.10) 

Further from equation (3.7), it implies that 

                
𝜓(𝑑(𝑥𝑛+1 ,𝑦𝑛 ))

𝜓(𝑑(𝑥𝑛+1 ,𝑦𝑛 ))
≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 ))) < 1.                                                                (3.11) 

As 𝑛 → ∞ in above inequality, we obtain that 

lim
𝑛→∞

𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 ))) = 1,  

and 𝜃 ∈ Θ. 
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  lim
𝑛→∞

𝜓(𝑑(𝑥𝑛 , 𝑦𝑛)) = 0,  

which gives that    

 lim
𝑛→∞

 𝑑(𝑥𝑛 , 𝑦𝑛 ) = 𝑟2 = 0.                                                                                                   (3.12) 

Now, we shall prove that {(𝑥𝑛 , 𝑦𝑛 )} is a Cauchy bisequence. Let us assume that {(𝑥𝑛 , 𝑦𝑛 )} is not Cauchy 

bisequence. Then there exist 𝛿 > 0 for which we can find subsequence (𝑥 𝑛𝑘 , 𝑦𝑚𝑘
) with 𝑛𝑘 > 𝑚𝑘 > 𝑘 such that  

𝑑(𝑥 𝑛𝑘 , 𝑦𝑚𝑘
) ≥ 𝛿.                                                (3.13) 

Further, corresponding to 𝑚𝑘, we can choose 𝑛𝑘 such that it is the smallest integer with  

 𝑛𝑘 > 𝑚𝑘 which satisfying equation (3.13), we get 

                                              𝑑(𝑥 𝑛𝑘−1 , 𝑦𝑚𝑘
) < 𝛿.                                                                (3.14)                                                      

Using triangle inequality, we obtain 

0 < 𝛿 ≤  𝑑(𝑥 𝑛𝑘 , 𝑦𝑚𝑘
) ≤ 𝑑(𝑥 𝑛𝑘 , 𝑦𝑛𝑘−1

) + 𝑑(𝑥 𝑛𝑘−1 , 𝑦𝑛𝑘−1
) + 𝑑(𝑥 𝑛𝑘−1 , 𝑦𝑚𝑘

).                   (3.15) 

Letting 𝑘 → ∞ and using equations (3.10), (3.12) and (3.14), we obtain 

                        lim
 𝑘→∞ 

 𝑑(𝑥 𝑛𝑘 , 𝑦𝑚𝑘
) = 𝛿.                                                                                 (3.16)                                                                                                

Again, using triangle inequality, we have 

𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1) ≤ 𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘
) + 𝑑(𝑥 𝑛𝑘 , 𝑦𝑛𝑘

) + 𝑑(𝑥 𝑛𝑘 , 𝑦𝑛𝑘−1
).                                         (3.17) 

Letting 𝑘 → ∞ and using equations (3.10), (3.12) and (3.13), we get 

                            lim
                      𝑘→∞ 

 𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1) = 𝛿.                                                                             (3.18) 

Putting 𝑥 = 𝑥 𝑛𝑘  and 𝑦 = 𝑦𝑚𝑘
 in equation (3.1), we get 

𝜓(𝑑(𝑥 𝑛𝑘 , 𝑦 𝑚𝑘 ) = 𝜓 (𝑑(𝑇𝑦𝑛𝑘−1
, 𝑇𝑥 𝑚𝑘 ))   

≤  𝛼(𝑥 𝑚𝑘 , 𝑇𝑥 𝑚𝑘 )𝛽(𝑇𝑦𝑛𝑘−1
, 𝑦𝑛𝑘−1

)𝜓 (𝑑(𝑇𝑦𝑛𝑘−1
, 𝑇𝑥 𝑚𝑘 )) 

                             ≤ 𝜃( 𝜓 (𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))) 𝜓 (𝑑(𝑥𝑚𝑘

, 𝑦𝑛𝑘−1
)).                                        (3.19) 

Therefore,  

 𝜓(𝑑(𝑥 𝑛𝑘 , 𝑦 𝑚𝑘 )  ≤ 𝜃( 𝜓 (𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))) 𝜓 (𝑑(𝑥𝑚𝑘

, 𝑦𝑛𝑘−1
)).           

On taking limit 𝑘 → ∞, we obtain 

𝜓(𝛿)  ≤ 𝜃( 𝜓 (𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))) 𝜓(𝛿),  

that is 

 1 ≤  lim
𝑘→∞ 

 𝜃( 𝜓 (𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))) 

⇒  lim
𝑘→∞ 

 𝜃( 𝜓 (𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))) = 1. 

Consequently, we get 

lim
𝑘→∞

𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1) = 0,  

which is a contradiction. 

Hence, {(𝑥𝑛 , 𝑦𝑛)} is a Cauchy bisequence and (𝑋, 𝑌, 𝑑) is a complete bipolar metric space. So, {(𝑥𝑛 , 𝑦𝑛 )}  is 

convergent and in fact biconvergent. So, there exists 𝑢 ∈ 𝑋 ∩ 𝑌 such that  

(𝑥𝑛 ) → 𝑢, (𝑦𝑛 ) → 𝑢 as 𝑛 → ∞. 

As 𝑇 is a continuous mapping, so 

  lim
𝑛→∞ 

𝑇𝑥𝑛 =  lim
 𝑛→∞ 

𝑦𝑛  implies that 𝑇  lim
𝑛→∞ 

𝑥𝑛 = 𝑢. 

By combining both, we get  

𝑇𝑢 = 𝑢.  
Hence, 𝑇 has a fixed point. 

Example 3.5. Let 𝑋 = [0, +∞) and 𝑌 = (−∞, 0] and let 𝑑 ∶ 𝑋 × 𝑌 → [0, +∞) be a function such that 𝑑(𝑥, 𝑦) =
|𝑥 − 𝑦| for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 
Then, clearly (𝑋, 𝑌, 𝑑) be a complete bipolar metric space. 

Define 𝑇 ∶  (𝑋, 𝑌)  ⤨ (𝑋, 𝑌) such that 𝑇𝑥 = −
𝑥

2
 is a continuous mapping and 𝛼, 𝛽 ∶ 𝑋 × 𝑌 → [0, ∞) such that 

𝛼(𝑥, 𝑦) = 𝛽(𝑥, 𝑦) = 1 for(𝑥, 𝑦) ∈ 𝑋 × 𝑌.  
Clearly, 𝑇 is (𝛼, 𝛽)-admissible mapping and there exist 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1 and 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1 

and 𝑋 ∩ 𝑌 = {0} and 𝑇0 = 0. 

 Taking 𝜓(𝑡) = 𝑡 and 𝜃(𝑡) =
1

2
 . 

Left hand side of equation (3.1) becomes 

 𝛼(𝑥, 𝑇𝑥) 𝛽(𝑇𝑦, 𝑦) 𝜓(𝑑(𝑇𝑦, 𝑇𝑥)) =  
1

2
|𝑥 − 𝑦|,  

Right hand side becomes 
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𝜃( 𝜓(𝑑(𝑥, 𝑦))) 𝜓(𝑑(𝑥, 𝑦)) = 
1

2
|𝑥 − 𝑦|. 

 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 

which implies equation (3.1) holds. 

 Hence, 𝑇 is an  (𝛼, 𝛽)-Geraghty type contractive mapping. 

All the conditions of Theorem 3.4 are satisfied.  

So, 𝑇 has a fixed point and 𝑥 = 0 is the fixed point of 𝑇. 
Definition 3.6. Let 𝑋 and 𝑌 be two non-empty sets. Consider (𝑋, 𝑌, 𝑑) be a bipolar metric space, 𝑇 ∶  (𝑋, 𝑌)  ⤨
(𝑋, 𝑌) be a contravariant mapping and 𝛼, 𝛽 ∶ 𝑋 × 𝑌 → [0, ∞). A mapping 𝑇 is called (𝛼, 𝛽)-Generalized Geraghty 

type rational contractive mapping if there exist a  

𝜃 ∈ Θ, such that for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 and 𝜓 ∈ Ψ, 

 which satisfying the following condition: 

𝛼(𝑥, 𝑇𝑥) 𝛽(𝑇𝑦, 𝑦) 𝜓(𝑑(𝑇𝑦, 𝑇𝑥)) ≤ 𝜃( 𝜓(𝑀(𝑥, 𝑦))) 𝜓(𝑀(𝑥, 𝑦)),                                      (3.20) 

where 𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑇𝑦, 𝑦),
 𝑑(𝑥,𝑇𝑥)𝑑(𝑇𝑦,𝑦)

1+𝑑(𝑥,𝑦)
,

 𝑑(𝑥,𝑇𝑥)𝑑(𝑇𝑦,𝑦)

1+𝑑(𝑇𝑦,𝑇𝑥)
 }.                                  

Theorem 3.7. Let (𝑋, 𝑌, 𝑑) be a complete bipolar metric space, 𝑇 ∶  (𝑋, 𝑌)  ⤨ (𝑋, 𝑌) is a contravariant mapping 

and 𝛼, 𝛽 ∶ 𝑋 × 𝑌 → [0, ∞). Suppose that the following condition are satisfied: 

(i) 𝑇 is (𝛼, 𝛽)-admissible mapping; 

(ii) 𝑇 is an  (𝛼, 𝛽)-Generalized Geraghty type rational contractive mapping; 

(iii)  there exist 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1 and 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1; 

(iv)  𝑇  is continuous mapping. 

Then 𝑇 has a fixed point. 

Proof: Let 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1 and 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1. Now we construct the bisequence {(𝑥𝑛 , 𝑦𝑛)} 

as 𝑇𝑥𝑛 = 𝑦𝑛 and 𝑇𝑦𝑛 = 𝑥𝑛+1 for all 𝑛 ∈ ℕ ∪ {0}. 
Since 𝑇 is  (𝛼, 𝛽)-admissible mapping, 

So, 𝛼(𝑥0 , 𝑦0 ) = 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1,  

     𝛽(𝑥0 , 𝑦0 ) = 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1, 

     𝛼(𝑥1, 𝑦0 ) = 𝛼(𝑇𝑦0 , 𝑇𝑥0 ) ≥ 1,  

     𝛽(𝑥1 , 𝑦0 ) = 𝛽(𝑇𝑦0 , 𝑇𝑥0 ) ≥ 1, 

using mathematical induction, we get 

𝛼(𝑥𝑛+1 , 𝑦𝑛 ) ≥ 1 and 𝛽(𝑥𝑛+1 , 𝑦𝑛 ) ≥ 1 for all 𝑛 ∈ ℕ ∪ {0}.                                               (3.21) 

Since 𝑇 is  (𝛼, 𝛽)-admissible mapping, 

So, 𝛼(𝑥1, 𝑦1 ) = 𝛼(𝑥1 , 𝑇𝑥1) ≥ 1,  

     𝛽(𝑥1 , 𝑦1 ) = 𝛽(𝑥1 , 𝑇𝑥1 ) ≥ 1, 

hence by induction, we obtain 

𝛼(𝑥𝑛 , 𝑦𝑛 ) ≥ 1 and 𝛽(𝑥𝑛 , 𝑦𝑛 ) ≥ 1 for all 𝑛 ∈ ℕ ∪ {0}.                                                      (3.22)                           

Putting 𝑥 = 𝑥𝑛  and 𝑦 = 𝑦𝑛  in equation (3.20) and using equation (3.22), we have  

𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )) = 𝜓(𝑑(𝑇𝑦𝑛−1 , 𝑇𝑥𝑛 ))   ≤  𝛼(𝑥𝑛 , 𝑇𝑥𝑛 ) 𝛽(𝑇𝑦𝑛−1 , 𝑦𝑛−1 ) 𝜓(𝑑(𝑇𝑦𝑛−1 , 𝑇𝑥𝑛 )) 

                                                                   ≤ 𝜃( 𝜓(𝑀(𝑥𝑛 , 𝑦𝑛−1 )))𝜓(𝑀(𝑥𝑛 , 𝑦𝑛−1 )),           (3.23)                       

where 𝑀(𝑥𝑛 , 𝑦𝑛−1 ) = 𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑦𝑛−1 ), 𝑑(𝑥𝑛 , 𝑇𝑥𝑛 ), 𝑑(𝑇𝑦𝑛−1 , 𝑦𝑛−1 ),   

                                        
 𝑑(𝑥𝑛 ,𝑇𝑥𝑛 ),𝑑(𝑇𝑦𝑛−1 ,𝑦𝑛−1 )

1+𝑑(𝑥𝑛 ,𝑦𝑛−1 )
,

 𝑑(𝑥𝑛 ,𝑇𝑥𝑛 ),𝑑(𝑇𝑦𝑛−1 ,𝑦𝑛−1 )

1+𝑑(𝑇𝑦𝑛−1 ,𝑇𝑥𝑛 )
}. 

𝑀(𝑥𝑛 , 𝑦𝑛−1 ) = 𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑦𝑛−1 ), 𝑑(𝑥𝑛 , 𝑦𝑛 ), 𝑑(𝑥𝑛 , 𝑦𝑛−1 ),   

                              
 𝑑(𝑥𝑛 ,𝑦𝑛 ),𝑑(𝑥𝑛 ,𝑦𝑛−1 )

1+𝑑(𝑥𝑛 ,𝑦𝑛−1 )
,

 𝑑(𝑥𝑛 ,𝑦𝑛 ),𝑑(𝑥𝑛 ,𝑦𝑛−1 )

1+𝑑(𝑥𝑛 ,𝑦𝑛 )
}, 

                        =  𝑚𝑎𝑥{ 𝑑(𝑥𝑛 , 𝑦𝑛−1 ), 𝑑(𝑥𝑛 , 𝑦𝑛 )}.                                                               (3.24) 

Now, if 𝑀(𝑥𝑛 , 𝑦𝑛−1 ) =  𝑑(𝑥𝑛 , 𝑦𝑛 ), then equation (3.23) becomes 

𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )) ≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )))𝜓(𝑑(𝑥𝑛 , 𝑦𝑛))        

                         < 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )).  

which is a contradiction by using the properties of 𝜓. 

So, 𝑀(𝑥𝑛 , 𝑦𝑛−1 ) =  𝑑(𝑥𝑛 , 𝑦𝑛−1 ) and equation (3.23) becomes           

𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )) ≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 )))𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1))         

                         ≤ 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 )).                                                                                     (3.25) 

By the properties of 𝜓, we can say that 𝑑(𝑥𝑛 , 𝑦𝑛 ) ≤ 𝑑(𝑥𝑛 , 𝑦𝑛−1 ) for all 𝑛 ∈ ℕ. 

Similarly, putting 𝑥 = 𝑥𝑛+1 and 𝑦 = 𝑦𝑛  in equation (3.20) and using equation (3.22), we get 𝜓(𝑑(𝑥𝑛+1 , 𝑦𝑛 )) =

𝜓(𝑑(𝑇𝑦𝑛 , 𝑇𝑥𝑛 ))    ≤  𝛼(𝑥𝑛 , 𝑇𝑥𝑛 )𝛽(𝑇𝑦𝑛 , 𝑦𝑛 )𝜓(𝑑(𝑇𝑦𝑛 , 𝑇𝑥𝑛 )) 

                                                                  ≤ 𝜃( 𝜓(𝑀(𝑥𝑛 , 𝑦𝑛 )))𝜓(𝑀(𝑥𝑛 , 𝑦𝑛 )),                   (3.26)                             

where 𝑀(𝑥𝑛 , 𝑦𝑛 ) = 𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑦𝑛 ), 𝑑(𝑥𝑛 , 𝑇𝑥𝑛 ), 𝑑(𝑇𝑦𝑛 , 𝑦𝑛 ),   
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 𝑑(𝑥𝑛 ,𝑇𝑥𝑛 ),𝑑(𝑇𝑦𝑛 ,𝑦𝑛 )

1+𝑑(𝑥𝑛 ,𝑦𝑛 )
,

 𝑑(𝑥𝑛 ,𝑇𝑥𝑛 ),𝑑(𝑇𝑦𝑛 ,𝑦𝑛 )

1+𝑑(𝑇𝑦𝑛 ,𝑇𝑥𝑛 )
}. 

𝑀(𝑥𝑛 , 𝑦𝑛 ) = 𝑚𝑎𝑥{ 𝑑(𝑥𝑛 , 𝑦𝑛 ), 𝑑(𝑥𝑛 , 𝑦𝑛 ), 𝑑(𝑥𝑛+1 , 𝑦𝑛),   

                              
 𝑑(𝑥𝑛 ,𝑦𝑛 ),𝑑(𝑥𝑛+1 ,𝑦𝑛 )

1+𝑑(𝑥𝑛 ,𝑦𝑛)
,

 𝑑(𝑥𝑛 ,𝑦𝑛 ),𝑑(𝑥𝑛+1 ,𝑦𝑛 )

1+𝑑(𝑥𝑛+1 ,𝑦𝑛 )
}, 

                    =  𝑚𝑎𝑥{ 𝑑(𝑥𝑛 , 𝑦𝑛+1 ), 𝑑(𝑥𝑛 , 𝑦𝑛 )}.                                                                  (3.27) 

Now, if 𝑀(𝑥𝑛 , 𝑦𝑛 ) =  𝑑(𝑥𝑛+1 , 𝑦𝑛 ), then equation (3.26) becomes 

𝜓(𝑑(𝑥𝑛+1, 𝑦𝑛 )) ≤ 𝜃( 𝜓(𝑑(𝑥𝑛+1 , 𝑦𝑛 )))𝜓(𝑑(𝑥𝑛+1 , 𝑦𝑛))        

                           < 𝜓(𝑑(𝑥𝑛+1 , 𝑦𝑛 )).  

which is a contradiction by using the properties of 𝜓. 

So, 𝑀(𝑥𝑛 , 𝑦𝑛 ) =  𝑑(𝑥𝑛 , 𝑦𝑛 ) and equation (3.26) becomes           

𝜓(𝑑(𝑥𝑛+1 , 𝑦𝑛 )) ≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛)))𝜓(𝑑(𝑥𝑛 , 𝑦𝑛))         

                            ≤ 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 )).                                                                                      (3.28) 

By the properties of 𝜓, we can say that 𝑑(𝑥𝑛+1 , 𝑦𝑛 ) ≤ 𝑑(𝑥𝑛 , 𝑦𝑛 ) for all 𝑛 ∈ ℕ. 
From the above, we conclude that the sequences {𝑑(𝑥𝑛 , 𝑦𝑛−1 )} and  {𝑑(𝑥𝑛 , 𝑦𝑛 )} are monotonically decreasing 

and for the non-negative monotonically decreasing sequences {𝑑(𝑥𝑛 , 𝑦𝑛−1 )} and  {𝑑(𝑥𝑛 , 𝑦𝑛 )}, there exist some 

𝑟1 ≥ 0 and  𝑟2 ≥ 0 such that 

            𝑑(𝑥𝑛 , 𝑦𝑛−1 ) →  𝑟1 ,    𝑑(𝑥𝑛 , 𝑦𝑛 ) →  𝑟2  as 𝑛 → ∞                                                   (3.29) 

Further from equation (3.25), it implies that 

                
𝜓(𝑑(𝑥𝑛 ,𝑦𝑛 ))

𝜓(𝑑(𝑥𝑛−1 ,𝑦𝑛−1 ))
≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 ))) < 1.                                                         (3.30) 

As 𝑛 → ∞ in above inequality, we obtain 

lim
𝑛→∞

𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 ))) = 1 and 𝜃 ∈ Θ,  lim
𝑛→∞

𝜓(𝑑(𝑥𝑛 , 𝑦𝑛−1 ))) = 0, which gives that    

                     lim
𝑛→∞

 𝑑(𝑥𝑛 , 𝑦𝑛−1 ) = 𝑟1 = 0.                                                                           (3.31) 

Further from equation (3.28), it implies that 

                
𝜓(𝑑(𝑥𝑛+1 ,𝑦𝑛 ))

𝜓(𝑑(𝑥𝑛+1 ,𝑦𝑛 ))
≤ 𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 ))) < 1.                                                                (3.32) 

As 𝑛 → ∞ in above inequality, we obtain 

lim
𝑛→∞

𝜃( 𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 ))) = 1 and 𝜃 ∈ Θ,   

So, lim
𝑛→∞

𝜓(𝑑(𝑥𝑛 , 𝑦𝑛 ))) = 0, which gives that    

                     lim
𝑛→∞

 𝑑(𝑥𝑛 , 𝑦𝑛 ) = 𝑟2 = 0.                                                                              (3.33) 

Now, we shall prove that {(𝑥𝑛 , 𝑦𝑛 )} is a Cauchy bisequence. Let us assume that {(𝑥𝑛 , 𝑦𝑛 )} is not Cauchy 

bisequence. Then there exist 𝛿 > 0 for which we can find subsequence (𝑥 𝑛𝑘 , 𝑦𝑚𝑘
) with 𝑛𝑘 > 𝑚𝑘 > 𝑘 such that  

𝑑(𝑥 𝑛𝑘 , 𝑦𝑚𝑘
) ≥ 𝛿.                                                (3.34) 

Further, corresponding to 𝑚𝑘, we can choose 𝑛𝑘 such that it is the smallest integer with     
𝑛𝑘 > 𝑚𝑘 which satisfying equation (3.34), we get 

                                              𝑑(𝑥 𝑛𝑘−1 , 𝑦𝑚𝑘
) < 𝛿.                                                                (3.35)                                                      

Using triangle inequality, we obtain 

0 < 𝛿 ≤  𝑑(𝑥 𝑛𝑘 , 𝑦𝑚𝑘
) ≤ 𝑑(𝑥 𝑛𝑘 , 𝑦𝑛𝑘−1

) + 𝑑(𝑥 𝑛𝑘−1 , 𝑦𝑛𝑘−1
) + 𝑑(𝑥 𝑛𝑘−1 , 𝑦𝑚𝑘

).                 (3.36) 

Letting 𝑘 → ∞ and using equations (3.31), (3.33) and (3.34), we obtain 

                        lim
 𝑘→∞ 

 𝑑(𝑥 𝑛𝑘 , 𝑦𝑚𝑘
) = 𝛿.                                                                                 (3.37) 

Again, using triangle inequality, we have 

𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1) ≤ 𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘
) + 𝑑(𝑥 𝑛𝑘 , 𝑦𝑛𝑘

) + 𝑑(𝑥 𝑛𝑘 , 𝑦𝑛𝑘−1
).                                       (3.38) 

Letting 𝑘 → ∞ and using equations (3.31), (3.33) and (3.34), we get 

                            lim
                      𝑘→∞ 

 𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1) = 𝛿.                                                                              (3.39) 

Putting 𝑥 = 𝑥 𝑛𝑘  𝑎𝑛𝑑 𝑦 = 𝑦𝑚𝑘
 in equation (3.20), we get 

𝜓(𝑑(𝑥 𝑛𝑘 , 𝑦 𝑚𝑘 ) = 𝜓 (𝑑(𝑇𝑦𝑛𝑘−1
, 𝑇𝑥 𝑚𝑘 ))  

                            ≤  𝛼(𝑥 𝑚𝑘 , 𝑇𝑥 𝑚𝑘 ) 𝛽(𝑇𝑦𝑛𝑘−1
, 𝑦𝑛𝑘−1

) 𝜓 (𝑑(𝑇𝑦𝑛𝑘−1
, 𝑇𝑥 𝑚𝑘 )) 

                              ≤ 𝜃( 𝜓 (𝑀(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))) 𝜓 (𝑀(𝑥𝑚𝑘

, 𝑦𝑛𝑘−1
)),                                        (3.40) 

where 𝑀(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
) = 𝑚𝑎𝑥{𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1

), 𝑑(𝑥 𝑚𝑘 , 𝑇𝑥𝑚𝑘
), 𝑑(𝑇𝑦 𝑛𝑘−1 , 𝑦𝑛𝑘−1

), 

                                                            
 𝑑(𝑥 𝑚𝑘 ,𝑇𝑥𝑚𝑘

) 𝑑(𝑇𝑦 𝑛𝑘−1 ,𝑦𝑛𝑘−1
) 

1+𝑑(𝑥 𝑚𝑘 ,𝑦𝑛𝑘−1
)

,
  𝑑(𝑥 𝑚𝑘 ,𝑇𝑥𝑚𝑘

)𝑑(𝑇𝑦 𝑛𝑘−1 ,𝑦𝑛𝑘−1
)

1+𝑑(𝑇𝑦𝑛𝑘−1
,𝑇𝑥 𝑚𝑘 )

 },        

                                     = 𝑚𝑎𝑥{𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
), 𝑑(𝑥 𝑚𝑘 , 𝑦𝑚𝑘

), 𝑑(𝑥 𝑛𝑘 , 𝑦𝑛𝑘−1
), 
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 𝑑(𝑥 𝑚𝑘 ,𝑦𝑚𝑘

) 𝑑(𝑥 𝑛𝑘 ,𝑦𝑛𝑘−1
) 

1+𝑑(𝑥 𝑚𝑘 ,𝑦𝑛𝑘−1
)

,
  𝑑(𝑥 𝑚𝑘 ,𝑦𝑚𝑘

)𝑑(𝑥 𝑛𝑘 ,𝑦𝑛𝑘−1
)

1+𝑑(𝑇𝑦𝑛𝑘−1
,𝑇𝑥 𝑚𝑘 )

 }.                 

Therefore,  

                  𝜓(𝑑(𝑥 𝑛𝑘 , 𝑦 𝑚𝑘 )  ≤ 𝜃( 𝜓 (𝑀(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))) 𝜓 (𝑀(𝑥𝑚𝑘

, 𝑦𝑛𝑘−1
)).                    (3.41) 

On taking limit 𝑘 → ∞, we obtain 

𝜓(𝛿)  ≤ 𝜃( 𝜓 (𝑀(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))) 𝜓(𝛿), 

that is, 

 1 ≤  lim
𝑘→∞ 

 𝜃( 𝜓 (𝑀(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))), 

which implies that  lim
𝑘→∞ 

 𝜃( 𝜓 (𝑀(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1
))) = 1. 

Consequently, we obtain  

 lim
𝑘→∞ 

 𝑀(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1) = 0 ,  

this implies that 

lim
𝑘→∞

𝑑(𝑥 𝑚𝑘 , 𝑦𝑛𝑘−1) = 0.   

 which is a contradiction. 

Hence, {(𝑥𝑛 , 𝑦𝑛)} is a Cauchy bisequence and (𝑋, 𝑌, 𝑑) is a complete bipolar metric space. So, {(𝑥𝑛 , 𝑦𝑛 )}  is 

convergent and in fact biconvergent. So, there exists 𝑢 ∈ 𝑋 ∩ 𝑌 such that  

(𝑥𝑛 ) → 𝑢, (𝑦𝑛 ) → 𝑢 as 𝑛 → ∞. 

As 𝑇 is a continuous mapping, so 

  lim𝑇
𝑛→∞ 

𝑥𝑛 =  lim
 𝑛→∞ 

𝑦𝑛  implies that 𝑇  lim
 𝑛→∞ 

𝑥𝑛 = 𝑢, 

By combining both, we get  

𝑇𝑢 = 𝑢.  
Hence, 𝑇 has a fixed point. 

 

Example 3.8. Let 𝑋 = {0,1,2} and 𝑌 = {2,3} and let 𝑑 ∶ 𝑋 × 𝑌 → [0, +∞) be a function such that 𝑑(𝑥, 𝑦) =
|𝑥 − 𝑦| for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 
Then, clearly (𝑋, 𝑌, 𝑑) is a complete bipolar metric space. 

Define 𝑇 ∶  (𝑋, 𝑌)  ⤨ (𝑋, 𝑌) such that 𝑇0 = 2, 𝑇1 = 2, 𝑇2 = 2  and 𝑇3 = 1 is a continuous mapping and 𝛼, 𝛽 ∶
𝑋 × 𝑌 → [0, ∞) such that 𝛼(𝑥, 𝑦) = 𝛽(𝑥, 𝑦) = 1 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌. Clearly, 𝑇 is (𝛼, 𝛽)-admissible mapping 

and there exist 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1 and 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1 and 𝑋 ∩ 𝑌 = {2} and 𝑇2 = 2. 

Taking 𝜓(𝑡) = 𝑡 and 𝜃(𝑡) =
1

2
 .  

 
(𝑥, 𝑦) 𝑑(𝑇𝑦, 𝑇𝑥) 𝑑(𝑥, 𝑦) 𝑑(𝑥, 𝑇𝑥) 𝑑(𝑇𝑦, 𝑦)  𝑑(𝑥, 𝑇𝑥)𝑑(𝑇𝑦, 𝑦)

1 + 𝑑(𝑥, 𝑦)
 

 𝑑(𝑥, 𝑇𝑥)𝑑(𝑇𝑦, 𝑦)

1 + 𝑑(𝑇𝑦, 𝑇𝑥)
 

𝑀(𝑥, 𝑦) 

(0,2) 0 2 2 0 0 0 2 

(0,3) 1 3 2 2 1 2 3 

(1,2) 0 1 1 0 0 0 1 

(1,3) 1 2 1 2 2

3
 

1 2 

(2,2) 0 0 0 0 0 0 0 

(2,3) 1 1 0 2 0 0 2 

 

From the above data, the condition of (𝛼, 𝛽)-Generalized Geraghty rational contractive mapping is satisfied. 

Hence, all the condition of above Theorem are satisfied.  

So, 𝑇 has a fixed point and 2 is fixed point under 𝑇. 
Theorem 3.9. Let (𝑋, 𝑌, 𝑑) be a complete bipolar metric space, 𝑇 ∶  (𝑋, 𝑌)  ⤨ (𝑋, 𝑌) is a contravariant mapping 

and 𝛼, 𝛽 ∶ 𝑋 × 𝑌 → [0, ∞). Suppose that the following condition are satisfied: 

(i) 𝑇 is (𝛼, 𝛽)-admissible mapping; 

(ii) 𝑇 is an  (𝛼, 𝛽)-Geraghty type contractive mapping; 

(iii)  there exist 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1 and 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1; 

(iv)  𝑇  is continuous mapping; 

(v) If for all 𝑥, 𝑦 ∈ 𝐹(𝑇), 𝐹(𝑇) denotes the set fixed point of 𝑇, with 𝑥 ≠ 𝑦 and 

 𝑥, 𝑦 ∈ 𝑋 ∩ 𝑌 such that 𝛼(𝑥 , 𝑇𝑥 ) ≥ 1, 𝛼(𝑦 , 𝑇𝑦) ≥ 1 and 𝛽(𝑥, 𝑇𝑥) ≥ 1, 𝛽(𝑦 , 𝑇𝑦) ≥ 1. 
Then, 𝑇 has a unique fixed point.  

Proof: Following the proof of Theorem 3.4., 𝑇 has fixed point. To prove the uniqueness of fixed point of 

contravariant mapping 𝑇 in complete bipolar metric space, let us assume, if possible, 𝑢 and 𝑣 are two distinct 

fixed point of 𝑇 such that 𝛼(𝑢 , 𝑇𝑢 ) ≥ 1, 𝛼(𝑣 , 𝑇𝑣) ≥ 1 and 𝛽(𝑢, 𝑇𝑢) ≥ 1, 𝛽(𝑣 , 𝑇𝑣) ≥ 1 and 𝑢, 𝑣 ∈ 𝑋 ∩ 𝑌. 



Fixed point theorems for (𝛼, 𝛽)-admissible Geraghty type contractive mappings in bipolar .. 

DOI: 10.35629/0743-10106472                                  www.questjournals.org                                            71 | Page 

Now applying, equation (3.1), we obtain 

𝜓(𝑑(𝑣, 𝑢)) = 𝜓(𝑑(𝑇𝑣, 𝑇𝑢)) ≤ 𝛼(𝑢, 𝑇𝑢)𝛽(𝑇𝑣, 𝑣)𝜓(𝑑(𝑇𝑣, 𝑇𝑢)), 

                                                                            ≤ 𝜃( 𝜓(𝑑(𝑢, 𝑣))) 𝜓(𝑑(𝑢, 𝑣)), 

               <  𝜓(𝑑(𝑢, 𝑣)). 

which is a contradiction. So, 𝑑(𝑣, 𝑢) = 0 ⇒ 𝑢 = 𝑣. 
Hence, 𝑇 has a unique fixed point. 

Example 3.10. In the Example 3.5, we can easily say that 𝑇 satisfies all the conditions of Theorem 3.9. So, 𝑇 has 

a unique fixed point. 

Clearly, ‘0’ is unique fixed point of 𝑇. 
Theorem 3.11. Let (𝑋, 𝑌, 𝑑) be a complete bipolar metric space, 𝑇 ∶  (𝑋, 𝑌)  ⤨ (𝑋, 𝑌) is a        contravariant 

mapping and 𝛼, 𝛽 ∶ 𝑋 × 𝑌 → [0, ∞). Suppose that the following condition are satisfied: 

(i) 𝑇 is (𝛼, 𝛽)-admissible mapping; 

(ii) 𝑇 is an  (𝛼, 𝛽)-Generalized Geraghty type rational contractive mapping; 

(iii)  there exist 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0 , 𝑇𝑥0 ) ≥ 1 and 𝛽(𝑥0 , 𝑇𝑥0 ) ≥ 1; 

(iv)  𝑇  is continuous mapping; 

(v) If for all 𝑥, 𝑦 ∈ 𝐹(𝑇), 𝐹(𝑇) denotes the set fixed point of 𝑇, with 𝑥 ≠ 𝑦 and 

 𝑥, 𝑦 ∈ 𝑋 ∩ 𝑌 such that 𝛼(𝑥 , 𝑇𝑥 ) ≥ 1, 𝛼(𝑦 , 𝑇𝑦) ≥ 1 and 𝛽(𝑥, 𝑇𝑥) ≥ 1, 𝛽(𝑦 , 𝑇𝑦) ≥ 1. 
Then, 𝑇 has a unique fixed point.  

Proof: Following the proof of Theorem 3.7., 𝑇 has fixed point. To prove the uniqueness of fixed point of 

contravariant mapping 𝑇 in complete bipolar metric space, let us assume, if possible, 𝑢 and 𝑣 are two distinct 

fixed point of 𝑇 such that 𝛼(𝑢 , 𝑇𝑢 ) ≥ 1, 𝛼(𝑣 , 𝑇𝑣) ≥ 1 and 𝛽(𝑢, 𝑇𝑢) ≥ 1, 𝛽(𝑣 , 𝑇𝑣) ≥ 1 and 𝑢, 𝑣 ∈ 𝑋 ∩ 𝑌. 
Now applying, equation (3.20), we have 

𝜓(𝑑(𝑣, 𝑢)) = 𝜓(𝑑(𝑇𝑣, 𝑇𝑢)) ≤ 𝛼(𝑢, 𝑇𝑢)𝛽(𝑇𝑣, 𝑣)𝜓(𝑑(𝑇𝑣, 𝑇𝑢)), 

                                                     ≤ 𝜃( 𝜓(𝑀(𝑢, 𝑣))) 𝜓(𝑀(𝑢, 𝑣)). 

where 𝑀(𝑢, 𝑣) = 𝑚𝑎𝑥. {𝑑(𝑢, 𝑣), 𝑑(𝑢, 𝑇𝑢), 𝑑(𝑇𝑣, 𝑣),
 𝑑(𝑢,𝑇𝑢)𝑑(𝑇𝑣,𝑣)

1+𝑑(𝑢,𝑣)
,

 𝑑(𝑢,𝑇𝑢)𝑑(𝑇𝑣,𝑣)

1+𝑑(𝑇𝑣,𝑇𝑢)
 }.  

Hence,𝜓(𝑑(𝑣, 𝑢))  ≤ 𝜃( 𝜓(𝑀(𝑢, 𝑣))) 𝜓(𝑑(𝑢, 𝑣)) <  𝜓(𝑑(𝑢, 𝑣)), 

which is a contradiction. So, 𝑑(𝑣, 𝑢) = 0 ⇒ 𝑢 = 𝑣. 
Hence, 𝑇 has a unique fixed point. 

Example 3.12. In the Example 3.8., we can easily say that 𝑇 satisfies all the conditions of Theorem 3.11. So, 𝑇 

has a unique fixed point.  

Clearly, ‘2’ is unique fixed point of 𝑇. 
 

IV. Application to Ulam-Hyers Stability 
Let (𝑋, 𝑌, 𝑑) be a bipolar metric space and 𝑇 ∶  (𝑋, 𝑌)  ⤨ (𝑋, 𝑌) is a contravariant mapping. Let us consider the 

fixed point equation 

𝑇𝜉 = 𝜉,                                                                                                                              (4.1) 

and  

for some 𝜀 > 0 

𝑑(𝜉, 𝑇𝜉) < 𝜀 for 𝜉 ∈ 𝑋 or 𝑑(𝑇𝜂, 𝜂) < 𝜀 for 𝜂 ∈ 𝑌.                                                      (4.2) 

Any point 𝜉 ∈ 𝑋 ∪ 𝑌 which satisfies the above equation (4.2) is called an 𝜀-solution of the mapping 𝑇. We say 

that the fixed point problem (4.1) is Ulam-Hyers stable in a bipolar metric space if there exists a function 𝜒 ∶
[0, ∞) → [0, ∞) with 𝜒(𝑡) > 0 for all 𝑡 > 0 such that for each 𝜀 > 0 and an 𝜀-solution 𝜉 ∈ 𝑋 ∪ 𝑌, there exists a 

solution 𝜂 of the fixed point equation (4.1) such that 

𝑑(𝜉, 𝜂) < 𝜒(𝜀) or 𝑑(𝜂, 𝜉) < 𝜒(𝜀).                                                                                   (4.3) 

Theorem 4.1.  Let (𝑋, 𝑌, 𝑑) be a complete bipolar metric space, 𝑇 ∶  (𝑋, 𝑌)  ⤨ (𝑋, 𝑌) is a   contravariant mapping 

and 𝛼, 𝛽 ∶ 𝑋 × 𝑌 → [0, ∞) and all the conditions of Theorem 3.4 are     holds with 𝜓(𝑡) = 𝑡, 𝛼, 𝛽 = 1 . In addition 

to this if [𝑡(𝐼 − 𝜃(𝑡))]−1: [0, ∞) → [0, ∞) exists. 

Then, fixed point equation (4.1) is Ulam-Hyers stable. 

Proof:   By the proof of Theorem 3.4, 𝑇 has a fixed point say 𝜉. For arbitrary 𝜀 > 0 and 𝜂 be a 𝜀-solution of the 

mapping 𝑇 with 𝜂 ∈ 𝑌 that is  

𝑑(𝑇𝜂, 𝜂) < 𝜀 for 𝜂 ∈ 𝑌. 

Now,  

𝑑(𝜉, 𝜂) ≤ 𝑑(𝜉, 𝑇𝜉) + 𝑑(𝑇𝜂, 𝑇𝜉) + 𝑑(𝑇𝜂, 𝜂),  

             ≤ 𝑑(𝑇𝜂, 𝜂) + 𝜃(𝑑(𝜉, 𝜂))𝑑(𝜉, 𝜂) , 

𝑑(𝜉, 𝜂) (1 − 𝜃(𝑑(𝜉, 𝜂))) ≤ 𝑑(𝑇𝜂, 𝜂) < 𝜀.  

Therefore, 𝑑(𝜉, 𝜂) < 𝜒(𝜀),  
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Where 𝜒(𝜀) = [𝑡(𝐼 − 𝜃(𝑡))]−1 .  

Similarly, we can prove for a 𝜀-solution of the mapping 𝑇 with 𝜉 ∈ 𝑋. 

Hence, the fixed point equation (4.1) is Ulam-Hyers stable.  
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