Quest Journals Journal of Medical and Dental Science Research Volume 9~ Issue 12 (2022) pp: 97-103 ISSN(Online) : 2394-076X ISSN (Print):2394-0751 www.questjournals.org

Research Paper

Review: Recent Advances in Clinical Therapy for Cardiovascular Disease

¹ Preksha P. Saparia – GCS medical college, hospital and research centre

² Akshat H. Patel – GCS medical college, hospital and research centre,

³Dharmagya Sapariya

⁴Bhavisha Rabadiya

Corresponding author: Preksha P. Saparia, GCS medical college, hospital and research centre, Ahmedabad, Gujarat, India.

ABSTRACT

Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Currently, many methods have been proposed by researchers for the prevention and treatment of CVD; among them, stem cell-based therapies, Gene therapy, antiplatelate therapy, anticoagulant, nanotechnology and 3D- printing. The goal of this analysis was to summarize the recent advances in therapy for cardiovascular disease.

KEY WORDS

Cardiovascular disease (CVD), stem cell, antiplatelate, Gene, nanotechnology, therapy

Received 16 Dec., 2022; Revised 28 Dec., 2022; Accepted 31 Dec., 2022 © *The author(s) 2022. Published with open access at www.questjournals.org*

I. Introduction

In all societies, cardiovascular disease (CVD) is the leading cause of morbidity and mortality, and it is expected that the incidence of CVD will increase in the future. Indeed, as a significant challenge to global health, the social and economic consequences of heart failure are now growing ^{1,2}.

1. **STEM CELLS THERAPY FOR CVD**

A very exciting therapeutic strategy is to regenerate cardiac tissue by replacing lost cells or rejuvenating damaged cells. In fact, stem cell-based therapies for cardiac regeneration can be used to cure CVD in a manner that traditional medicines and newer biological therapies still cannot, even though they are used as established treatments for cardiac damage and heart failure ³. However, due to a number of factors, such as the complexity of the heart, the inability for the heart to remodel after tissue damage, and the ineffectiveness of repair mechanisms, the usage of regenerative cell-based therapies is optimal, although effective cardiac repair strategies remain challenging. As mentioned above, it has long been believed that mammalian heart muscle cells, including those in humans, cannot proliferate. Nevertheless, recent studies have demonstrated a self-renewing resident cardiac stem cell population in the adult mammalian myocardium, and mature cardiomyocytes (CMs) have been shown to be capable of differentiation ^{4,5}. Interestingly, although there has been great enthusiasm regarding this discovery, it is now believed that the turnover rate of these cells is low in the absence of injury. Even in the case of the loss of a large number of cells, such as after myocardial infarction (MI), cardiac stem cells and progenitor cells that reside in the tissue are still unable to proliferate and regenerate fully, so proper heart function cannot be recovered to a pre-lesion level.

Cardiac cell-based therapy has been performed with a wide variety of cell types, including aspirated bone marrow cells, peripheral blood progenitor cells, stem cells, cells expanded through ex

vivo culture, pluripotent stem cells (PSCs), skeletal myoblasts, and endothelial progenitor cells, such as embryonic stem cells (ESCs)^{6,7}. Moreover, different cell delivery pathways have been used, such as direct injection into the myocardium, introduction through the epicardial and coronary arteries, and introduction via intravenous infusion, and these routes have been studied in many clinical settings. In addition to the cell type and administration route, cell-based therapies may also be impacted by other factors. These mainly include the dose of cells being administered, the frequency of cell administration, the timing of administration in relation to the injury (chronic heart failure versus acute MI), the metabolic state of the transplanted cells (previously frozen and thawed cells versus new cells), and the simultaneous use of other drugs, initiation of revascularization and treatment with surgery ^{8,9,10}. Due to the heterogeneity of these methods, it is difficult to perform direct comparisons of clinical studies. In addition, most clinical trials of cell-based therapies for heart disease have only assessed medical endpoints, such as mechanical or clinical improvements in measurements, for example, the ejection fraction on echocardiography or other imaging methods, without reporting the ultimate benefits of such therapies. This study aimed to ultimately improve the patient survival ratio.

The stem cells studied in cardiovascular research ranged from bone marrow to adipose tissue to skeletal muscle stem cells¹¹.

Figure 1: The schematic illustrates the potential of different types of stem cells in the treatment of CAD. Abbreviations: Adipose stem cells (ASC); bone-marrow stem cells (BMSC); cardiac stem cells (CSC); hematopoietic stem cells (HSC); pluripotent stem cells (PSC); stem cells (SC).¹¹

2. GENE THERAPY IN CVD

Gene therapy describes the transfer of genes to a target cell or organ to treat or prevent disease. Successful delivery of a gene to the target is paramount to therapeutic efficacy. In some cases, this can be as simple as transduction of a few cells to secrete a hormone or growth factor; in more stringent cases, the requirement may be as extensive as transduction of most or all cells in the target organ. A number of gene delivery methods have been developed using both viral- and non-viral-based vectors. Nonviral methods include using naked DNA alone or complexed with liposomes.^{12, 13} Naked DNA vectors are simple closed circular DNA plasmids that at a minimum contain a promoter driving a gene of interest and a polyadenylation site.¹⁴ Naked DNA vectors are inefficient, as only a small percentage of target cells express reporter genes after

transfection.¹³ They are easy to produce and are used extensively for applications that do not require high-density gene transfer. Importantly, the gene of interest does not need to encode a specific protein to be of therapeutic value. Mechanisms that use antisense oligonucleotides or short interfering RNA, which can reduce or eliminate protein function, have been uncovered. In the case of short interfering RNA, the promoter drives production of the effector RNA sequence rather than production of a messenger RNA that is then translated into an effector protein.

Viral vectors are more commonly used for cardiovascular applications because they transfer genes to cardiac myocytes much more efficiently than any of the non viral methods. Commonly used viral vectors include retroviruses (including the lentivirus family of which the human immunodeficiency viruses are members), adenoviruses (ADs) and adeno-associated viruses (AAVs). Retroviruses have been used for a number of noncardiac applications, but they do not efficiently transduce cardiomyocytes because they require active cell division for integration and function. Lentiviruses do not require active cell division, so they have been used extensively for cardiac applications. A limitation of lentiviral vectors has been the inability to generate sufficient concentrations of virus for delivery by coronary perfusion. Successful examples of lentiviral gene transfer to the heart predominantly use intramyocardial injection.

One of the limitations for widespread use of gene therapy is efficient delivery of the gene transfer vector to the target. Methods of reported cardiovascular gene delivery include intramyocardial injection, coronary perfusion, and pericardial delivery.¹⁵⁻²². All these techniques are moderately successful, but each is hindered by efficacy, tolerability, or access. See Table 1 for a list of positive and negative points regarding each delivery system.

Gene Delivery Technique	Pro	Con
Myocardial injection		 Small area of gene expression Multiple injection sites needed Acute inflammatory response and potential scarring from the injection
Coronary perfusion-anterograde and retrograde perfusion	 Delivers genes globally across the myocardium Distributes gene vector more homogeneously Cardiac specific 	 Inefficient Delivered into systemic circulation
Aortic cross-clamp LV cavity infusion	• Increased gene transfer efficiency	 Accessibility, need open chest High risk of myocardial injury Not cardiac specific
Cardiopulmonary bypass perfusion and "closed-loop" system	perfusion by separating it from systemic circulation	●Significant morbidity risk from cardiopulmonary bypass procedure (CBP) ●Intended for patients undergoing CBP
Epicardial painting	penetration (atrial) •High degree of	•Accessibility, currently needs open chest
Ultrasound and microbubbles	and cell membrane	•Only slightly improved gene transfer efficiency from myocardial injection alone
Electroporation	 Enhanced transfer of naked DNA via myocardial injection and retrograde perfusion Cardiac specific 	•Pulse needs to be delivered in sync or ventricular fibrillation occurs

Table 1. Delivery Techniques for Gene Therapy¶

LV, left ventricle.

Preclinical angiogenesis studies investigated a variety of angiogenic growth factors including VEGF, FGF, hepatocyte growth factor, platelet-derived growth factor, and hypoxia-inducible factor, among others ²³⁻²⁷. Clinical trials have focused predominantly on VEGF and FGF. Preclinical work showed improved

myocardial function and perfusion by increasing angiogenesis after administration of the gene for either VEGF or FGF to ischemic tissue.⁵ See Table 2 for a summary.

Molecular Target	Stage in Development	Findings	Model Assessed	Reference
Vascular endothelial growth factor (VEGF)	Clinical trials, phase 2/3 Continued safety and efficacy	Safe but not consistently efficacious with increasing myocardial perfusion. Success with secondary end points, ie, increased exercise capacity and reduction in ischemic area	Human	Hedman et al, <i>Gene Ther</i> , 2009 Stewart et al, <i>Mol</i> <i>Ther</i> , 2009
Fibroblast growth factor (FGF)	Clinical trials, phase 2/3 Continued safety and efficacy	Safe but most trials have not increased myocardial perfusion. Some have improved exercise capacity and symptom alleviation	Human	Kukula et al, Am Heart J, 2011
Hepatocyte growth factor (HGF)	Clinical trial, phase 1 Preclinical	Safe with negligible side effects from ADs; HGF in serum not detected after 35 days Increased capillary density and end-diastolic volume Improved cardiac perfusion and reduced apoptosis	Human Rat Pig	Yang et al, <i>Mol</i> <i>Biol Rep</i> , 2009 Jin et al, <i>Gene Ther</i> , 2012 Yang et al, <i>Mol Biol Rep</i> , 2010
Platelet-derived growth factor (PDGF)	Preclinical	Increased capillary growth and collateral formation from single naked DNA injection	Rabbit	Li et al, <i>Microvasc Res</i> , 2010
Hypoxia-inducib le factor (HIF1α)	Clinical trial, phase 1 Preclinical	Preliminary safety of ADs after 1 year Increased myocardial perfusion and improved LV function but no improvement in bioactivity end points	Human Pig	Kilian et al, <i>Circ</i> <i>J</i> , 2010 Heinl-Green et al, <i>Eur Heart J</i> , 2005

Table 2. Gene Therapy Targets for	or Coronary Heart Disease
-----------------------------------	---------------------------

ADs indicate adenoviruses; LV, left ventricle.

Ongoing or completed clinical trials for heart failure gene therapy have included those testing the sarco endoplasmic reticulum calcium-ATPase 2a (SERCA2a), SDF-1, and adenylate cyclase-6 (AC6). Strategies to judge efficacy noninvasively include measuring ejection fraction on echocardiograms, measuring HF symptoms–6-minute walk test, New York Heart Association class, and quality-of-life questionnaire. In addition to these targets, numerous other transgenes have reported efficacy for heart failure in various mouse or other small mammalian models. Preclinical studies with multiple literature reports or with efficacy data in large mammalian models include the S100 calcium-binding protein A1 (S100A1), a c-terminal fragment of the β -adrenergic receptor kinase (β ARKct), and parvalbumin (PVALB). See Table 3 for a summary.

Table 3. Gene Therapy Targets for Heart Failure

Molecular Target	Stage in Development	Findings	Model Assessed	Reference
Sarcoendoplasmic Reticulum calcium-ATPase 2a (SERCA2a)	Clinical trials, phase 2	Decreased HF symptoms, increased functional status, and reversal of negative LV remodelling	Human	Jessup et al, <i>Circulation</i> , 2011
Stromal-derived factor-1 (SDF-1)	Clinical trials, phase 1/2	Safe and improved 6-minute walk test, quality of life, and NYHA class	Human	Penn et al, <i>Circ Res</i> , 2013
Adenylyl cyclase 6 (ADCY6)	Preclinical	IncreasedLVfunction,increasedcAMPlevels,reversalofdysfunctionalβ-ARsignaling,andincreasedsurvivalImprovedLVcontractility	Mice Pig	Rebolledo et al, <i>Hum Gene Ther</i> , 2006 Roth et al, <i>Circulation</i> , 1999, 2002 [.] Takahashi et al, <i>Circulation</i> , 2006 [.] Lai et al, <i>Circulation</i> , 2000
βARKct-carboxy terminal peptide from GRK2	Preclinical	Heart failure rescue Improved β-AR signaling and contractile dysfunction	Rabbit Human cardiomyocytes	Shah et al, <i>Circulation</i> , 2001 Williams et al, <i>Circulation</i> , 2004
S100A1	Preclinical	Increased reuptake SR Ca ²⁺ , lowered Ca ²⁺ leak, enhanced cardiac function, and reversed LV remodelling	Rat cardiomyocytes	Most et al, <i>J Clin</i> <i>Invest</i> , 2004 Pleger et al, <i>Circulation</i> , 2007
Parvalbumin (PVALB)	Preclinical	Increased rate of Ca ²⁺ removal and improved relaxation rate	Rat	Szatkowski et al, J Clin Invest, 2001

HF indicates heart failure; LV, left ventricle; NYHA, New York Heart Association; β ARKct, β -adrenergic receptor kinase; β -AR, β -adrenergic; SR, sarcoplasmic reticulum.

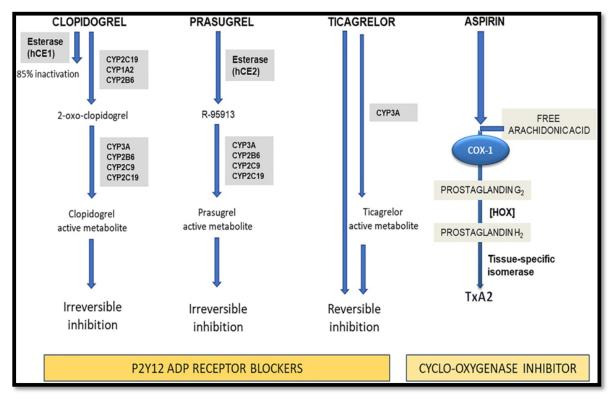
No arrhythmia gene therapy has entered human clinical trials as yet. Preclinical work is under way demonstrating the efficacy and feasibility of gene therapy to treat these arrhythmias. See Table 4 for a summary. To determine efficacy, noninvasive tests include ECG monitoring and electrophysiological studies.

Table 4. Gene Therapy Targets for Arrhythmia²⁸

Molecular Target	Stage in Development	Findings	Model Assessed	Reference
KCNH2-G628S	Preclinical	Prolonged refractory period by shutting down I_{Kr} , eliminating arrhythmia inducibility	Pig Dog	Sasano et al, <i>Nat Med</i> , 2006 Amit et al, <i>Circulation</i> , 2010 Soucek et al, <i>Heart</i> <i>Rhythm</i> , 2012
Cardiac sodium channel 4a (SCN4a)	Preclinical	Reduced VT inducibility, increased V_{max} causing rapid conduction, and decreased electrogram fragmentation	Dog	Lau et al, <i>Circulation</i> , 2009
Connexin 32	Preclinical	Improved gap junctional conductance but no antiarrhythmic effect and larger infarct size	Dog	Boink et al, J Am Coll Cardiol, 2013
Connexin 40	Preclinical	Enhanced atrial conduction and prevented atrial fibrillation	Pig	Igarashi et al, <i>Circulation</i> , 2012
Connexin 43	Preclinical	Improved conduction and reduced arrhythmia susceptibility	Pig	Greener et al, <i>J Am</i> <i>Coll Cardiol</i> , 2012 Igarashi et al, <i>Circulation</i> , 2012 Bikou et al, <i>Cardiovasc</i> <i>Res</i> , 2011
Sarcoendoplasmic reticulum calcium-ATPase 2a (SERCA2a)	Preclinical	Reduced VT and VF during reperfusion Reduced premature ventricular contraction and nonsustained VT Decreased APD alternans	Pig Rat Guinea Pig	Prunier et al, Circulation, 2008 [.] Lyon et al, Circ Arrhythm Electrophysiol, 2011 Cutler et al, Circ Arrhythm Electrophysiol, 2009
Adenylyl cyclase 1 (ADCY1)	Preclinical	Increased beating rate, provided stable pacemaker effects	Dog	Boink et al, J Interv Card Electrophysiol, 2011
Adenylyl cyclase 6 (ADCY6)	Preclinical	Provided biological pacing during catecholaminergic stimulation	Pig	Ruhparwar et al, <i>Tissue</i> Eng Part A, 2010
Kir2.1	Preclinical	Increased pacemaking	Guinea Pig	Miake et al, <i>Nature</i> , 2002, <i>J Clin Invest</i> , 2003

VT indicates ventricular tachycardia; VF, ventricular fibrillation; APD, action potential duration.

3. ANTIPLETES THERAPY IN CVD²⁹


Platelets have a key role in normal hemostasis and in the pathogenesis of atherothrombotic events, such as acute coronary syndrome. Following plaque rupture, platelets adhere to the subendothelial matrix, become activated and then aggregate to form a prothrombotic surface that promotes clot formation and subsequently

vascular occlusion. Multiple pathways are involved in platelet activation, including those activated by adenosine diphosphate (ADP), thromboxane A2, epinephrine, serotonin, collagen, and thrombin.

Antiplatelet medications remain a cornerstone of therapy for atherosclerotic cardiovascular and cerebrovascular diseases. In primary prevention (patients with cardiovascular risk factors but no documented events, symptoms or angiographic disease), there is little evidence of benefit of any antiplatelet therapy, and such therapy carries the risk of excess bleeding. Where there is documented disease (secondary prevention), stable patients benefit from long-term antiplatelet monotherapy, aspirin being first choice in those with coronary heart disease and clopidogrel in those with cerebrovascular disease; moreover, recent evidence shows that low-dose rivaroxaban in combination with aspirin confers added benefit, in patients with stable cardiovascular and peripheral arterial disease. In patients with acute cerebrovascular disease, aspirin combined with clopidogrel reduces subsequent risk, while in acute coronary syndrome, dual antiplatelet therapy comprising aspirin and a P2Y₁₂ inhibitor (clopidogrel, prasugrel or ticagrelor) confers greater protection than aspirin monotherapy, with prasugrel and ticagrelor offering greater antiplatelet efficacy with faster onset of action than clopidogrel. Although greater antiplatelet efficacy is advantageous in preventing thrombotic events, this must be tempered by increased risk of bleeding, which may be a particular issue in certain patient groups.

Pharmacology of antiplatelet

The principal agents in clinical use are aspirin (acetylsalicylic acid) and the $P2Y_{12}$ receptor inhibitor drugs clopidogrel, prasugrel and ticagrelor (Figure 2).

Figure :2 Antiplatelet drug mechanisms of action

Figure 2 shows Antiplatelet drug mechanisms of action. The thienopyridines clopidogrel and prasugrel prevent ADP from binding its specific P2Y₁₂ receptor and cause its irreversible inhibition; ticagrelor exerts reversible P2Y₁₂ receptor antagonism. While clopidogrel and prasugrel require hepatic metabolism to produce the active drug metabolite, ticagrelor is not a prodrug and has a direct inhibitory action, although additionally undergoing a cytochrome-dependent oxidation that also produces an active metabolite contributing to the pharmacological effect. Aspirin irreversibly blocks the enzymatic activity of cyclooxygenase-1 (COX-1), which is a key enzyme in the metabolism of arachidonic acid to produce prostanoids. COX-1 converts arachidonic acid to the unstable intermediate prostaglandin G2 (PGG2). Further metabolism of PGG2 by hydroperoxidases (HOX) leads to prostaglandin H2 synthesis that is finally converted into prostanoids by tissue-specific isomerases (platelets mainly contain thromboxane A2 [TxA2] synthase resulting in production and release of TxA2). By acting on COX-1, aspirin reduces TxA2-dependent platelet activation. CYP: cytochrome P450. hCE: human carboxylesterase

Because of much recent interest in the concomitant use of direct oral anticoagulants DOACs with antiplatelets for cardiovascular prevention, largely thanks to the results of the COMPASS trial (Table 5),³⁰ which will be discussed below.

TABLE 5. Major randomised controlled clinical trials testing antiplatelet strategies in the secondary prophylaxis of cardiac and peripheral arterial disease³⁰

TRIAL	Study population	Study treatment (experimental treatment vs. control) and duration	Primary efficacy outcomes	NNT	NNH
MONOTHER	APY				
CAPRIE ⁷	Patients with prior ischaemic stroke, MI or symptomatic atherosclerotic peripheral arterial disease $(n =$ 19 185)	Clopidogrel vs. aspirin 1–3 y	Composite of ischaemic stroke, MI or vascular death	196 (104, 5720)	No significant effect
EUCLID ⁸	Patientswithsymptomaticperipheralarterialdisease $(n = 13\ 885)$	Ticagrelor vs. clopidogrel Median 30 mo	Composite of cardiovascular death, MI or ischaemic stroke	No significant effect	No significant effect
GLOBAL LEADERS ⁹	Patients with stable coronary disease or ACS undergoing PCI $(n = 15968)$	Aspirin + ticagrelor for 1 mo followed by ticagrelor monotherapy vs. aspirin + ticagrelor/clopidogrel for 12 mo followed by aspirin monotherapy	A composite of all-cause mortality or nonfatal centrally adjudicated new Q-wave MI at 2 y	No significant effect	No significant effect
TWILIGHT- ACS ¹⁰	Patients undergoing PCI at high risk of ischaemic or bleeding events (n = 7119)	3 mo of aspirin + ticagrelor followed by ticagrelor monotherapy vs. 12 mo of aspirin + ticagrelor	Bleeding Academic Research Consortium type 2, 3, or 5 bleeding at 12 mo Secondary endpoint: a composite of death from any cause, nonfatal MI or nonfatal stroke at 12 mo	No significant effect	-32 (-22, -37)

TICO ¹¹	Patients with ACS treated with drug-eluting stents (n = 3056)	Ticagrelor monotherapy (90 mg twice daily) after 3-mo DAPT vs. ticagrelor-based 12-mo DAPT	1-y net adverse clinical event, defined as a composite of major bleeding and adverse cardiac and cerebrovascular events (death, MI, stent thrombosis, stroke or target-vessel revascularisation). Secondary endpoint: major adverse cardiac and cerebrovascular events.	50 (29, 222)	No significant effect
ANTIPLATEI	LET PLUS ANTICOA	GULANT THERAPY			
COMPASS ¹²	Patientswithhistoryofperipheralarterydisease of the lowerextremities, of thecarotidarteriescoronaryarterydisease $(n = 7470)$	Aspirin plus rivaroxaban vs. aspirin Mean 23 mo	Cardiovascular death, MI or stroke	52 (44, 131)	362 (151, 534)
ATLAS ACS 2-TIMI 51 ¹³	Patients with a recent ACS $(n = 15526)$	Rivaroxaban either 2.5 mg or 5 mg twice daily <i>vs.</i> placebo (on top of standard antiplatelet therapy) Up to 31 mo (mean 13 mo)	Composite of death from cardiovascular causes, MI or stroke	63 (19, 453) for 2.5 mg twice daily 53 (43, 468) for 5 mg twice daily	83 (56, 254) for 2.5 mg twice daily 56 (48, 157) for 5 mg twice daily
VOYAGER PAD ¹⁴	Patients with peripheral artery disease who had undergone revascularisation (n = 6564)	Aspirin plus rivaroxaban <i>vs.</i> aspirin Mean 28 mo	Composite of acute limb ischaemia, major amputation for vascular causes, MI, ischaemic stroke or death from cardiovascular causes	39 (23, 140)	No significant effect
DAPT					
CURE ¹⁵	Patients with ACS with non-STEMI within 24 h from	Clopidogrel vs. placebo (on a background of aspirin)	Composite of cardiovascular death, nonfatal MI or stroke at 12 mo	48 (31, 88)	100 (56, 287)

*Corresponding Author: Preksha P. Saparia

	randomisation $(n = 12562)$	3–12 mo			
CLARITY ¹⁶	Patients with STEMI (<i>n</i> = 3491)	Clopidogrel vs. placebo (on a background of aspirin ranging 150–325 mg daily) Patients were to receive study medication daily up to and including the day of coronary angiography. For patients who did not undergo angiography, study drug was to be administered up to and including d 8 or hospital discharge, whichever came first	Death, recurrent MI At 30 d	16 (10, 19)	No significant effect
COMMIT ¹⁷	Patients with MI (93% ST elevation MI, 7% non-ST elevation MI; $n = 45852$)	Clopidogrel vs. placebo (on a background of aspirin 162 mg) Up to 4 weeks	Death, repeat infarction, stroke At 30 d	111 (71, 330)	No significant effect
DAPT ¹⁸	Patients undergoing PCI with drug-eluting stent insertion ($n = 9961$)	Following 12 mo of treatment with clopidogrel or prasugrel plus aspirin, patients randomised to continue thienopyridine treatment vs. placebo for further 18 mo (on top of aspirin)	Stent thrombosis Major adverse cardiovascular and cerebrovascular events (a composite of death, MI or stroke)	100 (92, 146) 63 (42, 116)	111 (106, 127)
TRITON-TI MI 38 ¹⁹	Patients with ACS scheduled for PCI $(n = 13\ 608)$	Prasugrel vs. clopidogrel (on a background of aspirin 75–162 mg) 6–15 mo	Cardiovascular death, MI or stroke	45 (32, 87)	166 (89, 500)
PLATO ²⁰	Patients with ACS within 24 h from randomisation ($n =$ 18 624)	Ticagrelor vs. clopidogrel (on a background of aspirin 75–100 mg) 12 mo	A composite of death from vascular causes, MI or stroke at 12 mo	53 (12, 115)	No significant effect
PEGASUS-T IMI 54 ²¹	Patients who had had a MI 1 to 3 y previously $(n = 21162)$	Ticagrelor 90 mg twice daily vs. ticagrelor 60 mg twice daily vs. placebo Median 33 mo	Composite of cardiovascular death, MI or stroke	85 (49, 306) for 90 mg 82 (47, 245) for 60 mg	65 (48, 135) for 90 mg 80 (59, 191) for 60 mg

Review: Recent Advances In Clinical Therapy For Cardiovascular Disease

THEMIS-PCI 22	Patients 50 y or older, with type 2 diabetes receiving antihyperglycaemic drugs for at least 6 mo, with stable coronary artery disease, and previous PCI ($n =$ 11154)	Ticagrelor <i>vs.</i> placebo (on a background of aspirin) Median 3.3 y	Composite of cardiovascular death, MI or stroke (median follow up 3.3 y)	77 (45, 389)	111 (51, 187)
HOST-EXA M ²³	Patients on DAPT without clinical events for $6-18$ mo after PCI with drug-eluting stents or aspirin 100 mg once daily for 24 mo ($n = 5438$)	Monotherapy with clopidogrel 75 mg daily <i>vs.</i> aspirin 100 mg daily 24 mo	Composite of all-cause death, nonfatal MI, stroke, readmission due to ACS, and Bleeding Academic Research Consortium bleeding type 3 or greater at 24 mo	50 (32, 132)	- (harm from bleeding included in primary composite endpoint)

NNT: number needed to treat for primary efficacy outcome (with 95% confidence intervals). Negative value indicates control treatment more efficacious on primary outcome than experimental treatment.

Values for NNT and NNH are only given for clinical outcomes and if the difference in efficacy or harm attained statistical significance in the study.

ACS, acute coronary syndrome; MI, myocardial infarction; PCI, percutaneous coronary intervention.

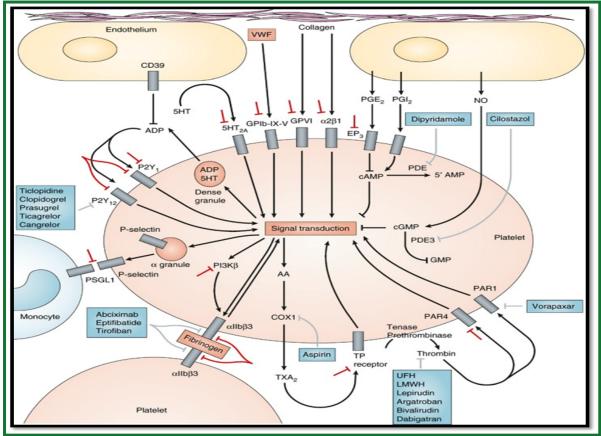


Figure:3 Platelet function and molecular targets of antiplatelet agents.

Initial platelet adhesion to damaged vessel walls is mediated by the binding of exposed collagen to platelet surface glycoprotein (GP) VI and integrin $\alpha 2\beta 1$ and by the binding of von Willebrand factor (VWF) to the platelet surface GPIb-IX-V complex. This complex is also a receptor for other platelet ligands (thrombospondin, collagen and P-selectin), leukocyte integrin aMB2, and procoagulant factors (thrombin, kininogen, factor XI and factor XII). Thrombin, generated by the coagulation cascade, is a potent activator of human platelets through two platelet surface receptors: protease-activated receptor (PAR)-1 and PAR-4. Three groups of platelet surface receptors provide important positive feedback loops for platelet activation: P2Y1 and P2Y12 are stimulated by ADP released from platelet dense granules; 5-hydroxytryptamine 2A receptors (5HT_{2A}) are stimulated by 5-hydroxytryptamine (5-HT; also known as serotonin) released from platelet dense granules; and the thromboxane prostanoid (TP) receptor is stimulated by thromboxane A₂ (TXA₂) generated by the platelet cyclooxygenase (COX)-1-dependent signaling pathway. Platelet-to-platelet aggregation is mediated by fibrinogen and, at high shear flow, by VWF binding to activated integrin aIIbb3. Perpetuation of platelet-to-platelet aggregation is augmented by other receptors, including junctional adhesion molecule A (JAMA) and JAMC, growth-arrest specific gene 6 receptor, and ephrin. Platelet-monocyte adhesion is initially mediated by the binding of platelet surface P-selectin to its constitutively expressed cognate receptor, P-selectin glycoprotein ligand-1 (PSGL-1), on the monocyte surface. Activated platelets, monocytes and microparticles bind coagulation factors and provide a surface for the generation of a fibrin clot. Approved antiplatelet agents and their molecular targets are shown in boxes. Indirect inhibitors (unfractionated heparin [UFH], low-molecular-weight heparin [LMWH]) and direct inhibitors (lepirudin, argatroban, bivalirudin and dabigatran) of thrombin, unlike PAR-1 antagonists, are anticoagulants rather than specific antiplatelet drugs. However, their inhibition of thrombin results in reduced platelet activation. Investigational strategies for novel antiplatelet agents are shown by the symbols adjacent to: GPIb-IX-V, GPVI, $\alpha 2\beta 1$, EP₃, 5HT_{2A}, PAR-4, P2Y₁, P2Y12, PSGL1, PI3Kβ, αIIbβ3 and the TP receptor. AA, arachidonic acid; EP3, prostaglandin E2 receptor EP₃ subtype; NO, nitric oxide; PDE, phosphodiesterase; PG, prostaglandin; PI3Kβ, phosphoinositide 3-kinase β-isoform. Modified from Michelson AD. Nat Rev Drug Discov. 2010 with permission³¹

Based on the results of the TRA 2P-TIMI 50 (Thrombin Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events – Thrombolysis in Myocardial Infarction) trial in patients with stable atherosclerotic disease,³² vorapaxar may be used in addition to standard antiplatelet therapy in the secondary prophylaxis of ischemic events in patients with a history of MI or symptomatic peripheral artery disease (PAD; Table 6).

Agent	Structure	Administration	Mechanism	Indication
Aspirin	Acetylsalicylic acid	Oral	COX-1 inhibition	CAD, PAD, CVD, CABG, CEA, coronary and peripheral stents
Ticlopidine	Thienopyridine	Oral	P2Y ₁₂ inhibition	CVD, coronary stents
Clopidogrel	Thienopyridine	Oral	P2Y ₁₂ inhibition	Prior MI, stroke or symptomatic PAD, as monotherapy; ACS or coronary stenting, in combination with aspirin
Prasugrel	Thienopyridine	Oral	P2Y ₁₂ inhibition	ACS patients undergoing PCI with stenting, in combination with aspirin

 Table 6: Approved antiplatelet agents in cardiovascular disease

Ticagrelor	Triazolopyrimidine	Oral	P2Y ₁₂ inhibition	ACS patients, in combination with aspirin
Cangrelor	Adenosine triphosphate analog	Intravenous	P2Y ₁₂ inhibition	P2Y ₁₂ inhibitor naïve PCI patients
Abciximab	F _{ab} fragment of mouse human chimeric antibody 7E3	Intravenous	GPIIb-IIIa inhibition	PCI
Tirofiban	Non-peptide mimetic based on RGD	Intravenous	GPIIb-IIIa inhibition	ACS, PCI
Eptifibatide	KGD-containing cyclic heptapeptide	Intravenous	GPIIb-IIIa inhibition	ACS, PCI
Vorapaxar	Tricyclic himbacine derivative	Oral	PAR-1 inhibition	Prior MI, PAD

Recently, we synthesized a series of new diadenosine tetraphosphate (Ap₄A) analogs and evaluated these Ap4A derivatives as platelet aggregation inhibitors, and with respect to their effects on platelet P2Y₁, P2Y₁₂, and P2X1 receptors.^{33,34} Based on the results of these experiments, 1 compound (GLS-409) that synergistically inhibited P2Y₁ and P2X₁ without affecting P2X1 was selected for studies on antiplatelet efficacy (Table 7).³³

Agent	Structure	Administration	Mechanism	Possible field of application
GLS-409	Diadenosine tetraphosphate derivative	Intravenous	$ \begin{array}{c} Synergistic \\ inhibition & of \\ P2Y_1 & and \\ P2Y_{12} \end{array} ACS, PCI \\ \end{array} $	
PZ-128	Cell-penetrating lipopeptide	Intravenous	PAR-1 inhibition	ACS, PCI
BMS-98612 0	2-methoxy-6-[6-methoxy-4-[[5-methyl -2-(4-morpholinyl)-4-thiazolyl]methox y]-2-benzofuranyl]-imidazo[2,1-b]-1,3, 4-thiadiazole	Oral	PAR-4 inhibition	CAD, PAD, CVD
Τroa6, Τroa10	Hexa- and deca-peptides derived from the C-terminal region of trowaglerix	Intravenous	Glycoprotein VI inhibition	ACS, PCI
BI1002494	(R)-4-{(R)-1-[7-(3,4,5-trimethoxy-phe nyl)-[1,6]naphthyridin-5-yloxy]-ethyl} pyrrolidin-2-one	Oral	Spleen tyrosine kinase inhibition	CAD, PAD, CVD
ML-355	<i>N</i> -(benzo[<i>d</i>]thiazol-2-yl)-4-((2-hydrox y-3-methoxybenzyl)amino) benzenesulfonamide	Oral	12-lipoxygena se inhibition	CAD, PAD, CVD

ACS-acute coronary syndrome; CAD-coronary artery disease; CVD- cerebrovascular disease; PAD- peripheral artery disease; PAR-protease-activated receptor; PCI-percutaneous coronary intervention.

4. NANOTECHNOLOGY IN CVD THERAPY³⁵

Generally, smart nanocarriers encapsulate two parts: targeting moieties and therapeutic drugs. Therefore, targeting moieties, including peptides, antibodies, ligands, and cell membranes, could drive the nanoplatforms to the lesion microenvironment and target the components of interest (Figure 4). Owing to their high capacity and easy modification, diverse therapeutic drugs, such as chemicals, proteins, peptides, and nucleic acids, have previously been loaded into nanocarriers. Tables 8 summarize recently reported nanocarriers to deliver different drugs in detail.

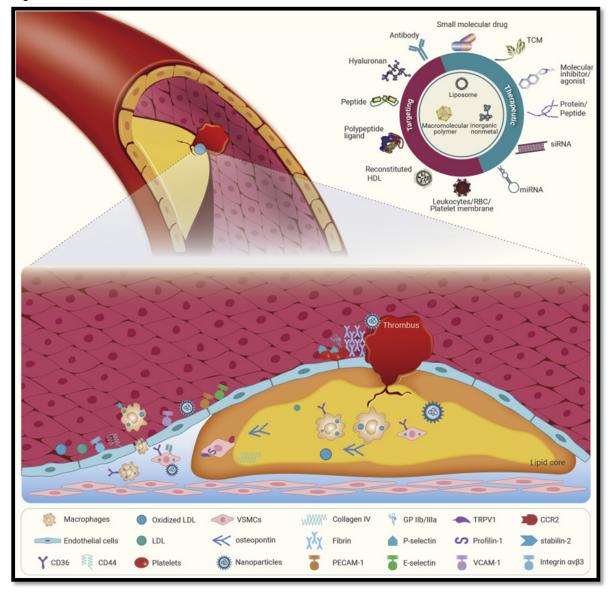
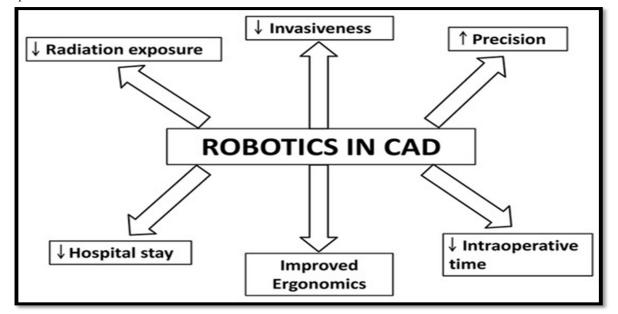


Figure 4. Multiple smart nanoplatforms targeting the lesion in the progression of atherosclerosis

The surface modification of nanoplatforms via peptides, antibodies, ligands, and cell membranes could target different cells or components in the plaque to achieve precise delivery of chemicals, proteins, peptides, or nucleic acids and finally release these cargos to exert therapeutic effects.

Empty Cell Loaded Nano drug rn	fo Disorders Mechanis m of action	Surface modificatio ns		Administra tion route
-----------------------------------	---	------------------------------	--	--------------------------


Statins	atorvast atin	HA-ATV-N P	atheroscler osis	suppressi on of inflammat ion	hyaluronan	<i>in vitro</i> ; <i>in vivo</i> , Apoe-/- mice	intravenous injection
	atorvast atin	Oxi-COS/M M-AT-nps	atheroscler osis	suppressi on of inflammat ion	proteins derived from macrophage s membrane	<i>in vitro</i> ; <i>in vivo</i> , Apoe-/- mice	intravenous injection
Rapamycin	rapamyc in	PFN1-CD- mnps	atheroscler osis	suppressi on of inflammat ion	profilin-1 antibody	<i>in vitro</i> ; <i>in vivo</i> , Apoe-/- mice	intravenous injection
	rapamyc in	liposome	atheroscler osis	suppressi on of inflammat ion	membrane protein from leukocytes	<i>in vivo</i> , Apoe-/- mice	retro-orbital injection
Traditional Chinese medicine	Sal B, PNS	RGD-S/P-lp ns	AMI		RGD peptide ligand	<i>in vivo</i> , SD rats receiving experime ntal MI	intravenous injection
Small molecule agonists/inhib itors	SMI 687700 2	rHDL NPs	atheroscler osis	inhibition of monocyte recruitme nt; suppressi on of plaque inflammat ion	Apoa-I	<i>in vitro</i> ; <i>in vivo</i> , Apoe-/- mice, cynomol gus monkeys	intravenous injection
Small molecule agonists/inhib itors	SNO	SNO-HDL NPs	atheroscler osis		Apoa-I	<i>in vitro;</i> <i>in vivo,</i> Apoe-/- mice	intravenous injection
siRNA	siCamk 2g	G0-C14 PLGA NPs	atheroscler osis	promotio n of efferocyto sis	S2P peptide (CRTLTVR KC)	<i>in vitro</i> ; <i>in vivo</i> , Ldlr–/– mice	intravenous injection
miRNA	miR-14 5	PAM	atheroscler osis	promotio n of the contractil e VSMC phenotyp e	MCP1/CCL 2	<i>in vitro</i> ; <i>in vivo</i> , Apoe-/- mice	intravenous injection

miRNA switches	miRNA switches	mRNA-p5R HH nanoparticle	Restenosis	specific inhibition of the VSMCs and inflammat ory cells		<i>in vitro</i> ; <i>in vivo</i> , C57BL6/ J mice undergoi ng femoral artery wire injury	intravenous injection
-------------------	-------------------	--------------------------------	------------	--	--	---	--------------------------

HA-ATV-NP, hyaluronan-atorvastatin nanoparticle; Oxi-COS/MM-AT-nps, oxidation-sensitive chitosan oligosaccharide nanoparticles of amphiphilic/macrophage membrane-coated and atorvastatin-loaded nanoparticles; PFN1-CD-MNPs, low ph-sensitive cyclodextrin paramagnetic iron oxide nanoparticles conjugated with profilin-1 antibody; Sal B, salvianolic acid B; PNS, panax notoginsenoside; RGD-S/P-lpns, arginyl-glycyl-aspartic acid modified, Sal B and PNS co-loaded lipid-polymer hybrid nanoparticles; SMI 6877002, lipophilic small-molecule inhibitor of the CD40-TRAF6 interaction; rHDL NPs, reconstituted high-density lipoprotein nanoparticles; SNO, S-nitrosylated phospholipid, an NO donor compound; SNO-HDL NPs, S-nitrosylated phospholipid (1,2-dipalmitoyl-*sn*-glycero-3-phosphonitrosothioethanol) assembled with S-containing phospholipids and apolipoprotein A-I; G0-C14, a cationic lipid–like material; S2P peptide (CRTLTVRKC), a peptide recognizing the macrophage receptor stabilin-2; PS, phosphatidylserine; PAM, peptide amphiphile micelle; MCP1/CCL2, monocyte chemoattractant protein-1/C-C motif chemokine ligand 2; miRNA switches, modified mRNA encoding for the cyclin-dependent kinase inhibitor p27Kip1 that contains one complementary target sequence of miR126 at its 5'UTR.

5. ROBOTICS IN CVD THERAPY ³⁶

Robots have been in place in mass production industries for many years. However, their introduction in medicine was fairly recent and started in the fields of surgery and radiotherapy. In cardiology, they have been in use for more than a decade for surgeries like mitral valve repair, coronary artery bypass graft and septal defect closure. The technology is fast evolving with reports emerging about their potential applications in percutaneous coronary intervention and atrial fibrillation ablation . Robotics provide the operator with advantages such as improved ergonomics, precision and sometimes shortening of intraoperative time (Figure 5) . There have been reports that robot-assisted surgery can shorten patient hospital stay and improve patient perception (Figure 5) . This schematic illustrates the potential applications by which nanotechnology, stem cells, robotics, new drugs and 3-D printing can be used in the treatment of coronary artery disease. Abbreviations: coronary artery bypass graft (CABG), coronary artery disease (CAD), percutaneous coronary intervention (PCI). The upward arrow represents an increase of blood flow.

Figure 5: The schematic illustrates the potential advantages of using robotics in the treatment of CAD. The upward or downward arrows represent an increase or a decrease of blood flow, respectively.

In the field of interventional cardiology, robotics are being used for catheter-based surgical procedures. Conventional angiography radiation exposure for CAD patients is estimated at 7 mSV, and this exposure can be increased by up to 5 times in complicated surgeries . Robotic guided surgery has potential to limit this radiation exposure. In addition, they can also reduce contrast induced nephrotoxicity and associated mortality in patients (Figure 5) . In terms of patient related outcomes, the robotic assisted surgery has potential benefits as it can accurately measure the size of the lesions (which can be miscalculated using 2D angiography) which could improve long-term health. Hence, they reduce radiation exposure for the surgeon and the patient as well as improve precision by rendering accurate measurements of lesions (Figure 5) . Granada et al. published the first robotic interventions for cardiac patients . They performed coronary angioplasty and reported 100% success rate (measured in terms of less than 30% residual stenosis along with the absence of major cardiac complications) in all of their patients (80 subjects). In a multicenter study published by Weisz et al., a percutaneous coronary intervention was performed for patients with coronary artery disease . They used similar success criteria (measured in terms of less than 30% residual stenosis along with absence of major cardiac complications) and reported a 97.6% rate of success (164 patients). They also reported a significant reduction (95%) in operator radiation exposure .

Robotics has also been used to perform coronary artery bypass grafting in CAD patients. The procedure, including the harvesting of the mammary arteries and anastomosis, can be performed endoscopically . The results of the clinical studies are summarized in Table 9. Although there are reported benefits for robotically assisted bypass grafting, high costs and long learning curves have slowed down its progress towards becoming used routinely . Robotically assisted hybrid coronary revascularization, which involves coronary artery bypass graft as well as percutaneous coronary intervention, has also been developed as a treatment modality for CAD. There have been reported benefits such as reduced morbidity and shortened hospital stays due to the minimally invasive nature of the procedure .

S. No.	Author's Name	Results	Additional Com ments
1.	Dogan et al.	They reported a patency rate of 100%.	TECAB was performed on hearts arrested intraoperatively.
2.	Kappert et al.	Reduced duration of surgery (down from 280 to 186 minutes); All of them had normal wound healing	TECAB was performed on a beating heart. 3 patients had to undergo re-exploration due to bleeding.
3.	Mohr et al.	Successful procedure in 22 patients (5 of them had to be converted to manual procedure); At discharge, patency was 100% and 95.4% at 3 months; In the TECAB group, success rate was 50%.	TECAB was performed on beating $(n = 8)$ and arrested $(n = 27)$ heart.

	1 / 1 / 0 1 / 1 / 1	4 1 e.•
Table 9: Summary of clinica	l studies for robotic assisted	coronary artery bypass grafting.

TECAB: Totally endoscopic coronary artery bypass graft; S. No: Serial number.

The current state of robotic surgery is promising in the treatment of CAD. These systems are of excellent quality with high-end technology. Their proposed benefits in the form of improved precision, increased visibility, improved ergonomics and reduced radiation exposure have been documented, which have translated into improved patient recovery times with reduced hospital stays. They also provide a distinct advantage for procedures that are difficult to be performed using endoscopy or catheters. However, their translation into full-fledged clinical usage is inhibited by high cost and the learning curve needed to master these procedures. It remains to be determined, with further technological advancement, whether this technology will be accepted into routine clinical practice and replace conventional technologies.

6. **3D- PRINTING IN CVD THERAPY**³⁷

Three-dimensional (3D) printing is a novel imaging modality which involves creating patient-specific models of cardiovascular structures. As percutaneous and surgical therapies evolve, spatial recognition of complex cardiovascular anatomic relationships by cardiologists and cardiovascular surgeons is imperative. Handheld 3D printed models of cardiovascular structures provide a facile and intuitive road map for procedural and surgical planning, complementing conventional imaging modalities. Moreover, 3D printed models are efficacious educational and communication tools.

Three-dimensional (3D) printing is at the crossroads of printer and materials engineering, noninvasive diagnostic imaging, computer-aided design, and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices³⁸

II. CONCLUSION

Despite great progress in cardiovascular research, CAD remains one of the most common causes of morbidity and mortality worldwide. However, significant inter-collaborative efforts between researchers, clinicians and other related professionals have led to multi-faceted and novel strategies to be developed to treat CAD and its associated conditions. Though some of these strategies have strong evidence supporting their clinical use, some others are still in the experimental stage. Despite only early evidence being available on some of these novel treatment modalities, the results are promising and hold the potential to become alternatives to current treatment options in the future.

III REFERENCE

- A. Saeed, J. Kampangkaew, V. Nambi; Prevention of cardiovascular disease in women; Methodist Debakey Cardiovasc. J., 13 (4) (2017), pp. 185-192.
- [2]. D.P. Leong, P.G. Joseph, M. McKee, S.S. Anand, K.K. Teo, J.D. Schwalm, S. Yusuf;
- [3]. Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease;Circ. Res., 121 (6) (2017), pp. 695-710.
- [4]. X. Song, H. Qu, Y. Wang, T. Yang, J. Rong, H. Zhou; What can we do to optimize stem and progenitor cell therapy for heart failure?; Discov. Med., 25 (137) (2018), pp. 113-130.
- [5]. N. Gurusamy, A. Alsayari, S. Rajasingh, J. Rajasingh; Adult stem cells for regenerative therapy; Prog. Mol. Biol. Transl. Sci., 160 (2018), pp. 1-22.
- [6]. C. Frati, M. Savi, G. Graiani, C. Lagrasta, S. Cavalli, L. Prezioso, P. Rossetti, C. Mangiaracina, F. Ferraro, D. Madeddu, E. Musso, D. Stilli, A. Rossini, A. Falco, A.D. Angelis, F. Rossi, K. Urbanek, A. Leri, J. Kajstura, P. Anversa, E. Quaini, F. Quaini;Resident cardiac stem cells;Curr. Pharm. Des., 17 (30) (2011), pp. 3252-3257.
- [7]. Y. Wen, J. Ding, B. Zhang, Q. Gao; Bone marrow-derived mononuclear cell therapy for nonischaemic dilated cardiomyopathy-a meta-analysis; Eur. J. Clin. Invest., 48 (4) (2018).
- [8]. M. Qadura, D.C. Terenzi, S. Verma, M. Al-Omran, D.A. Hess; Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies; Stem Cells, 36 (2) (2018), pp. 161-17.
- [9]. J.L. Chan, J.G. Miller, Y. Zhou, P.G. Robey, D.F. Stroncek, A.E. Arai, V. Sachdev, K.A. Horvath; Intramyocardial bone marrow stem cells in patients undergoing cardiac surgical revascularization; Ann. Thorac. Surg. (2019).
- [10]. J. Ye, Y. Yeghiazarians; Cardiac stem cell therapy: have we put too much hype in which cell type to use?; Heart Fail. Rev., 20 (5) (2015), pp. 613-619.
- [11]. M. Vanderheyden, S. Vercauteren, S. Mansour, L. Delrue, B. Vandekerckhove, G.R. Heyndrickx, I. Van Haute, B. De Bruyne, F. Timmermans, W. Wijns, J. Bartunek; Time-dependent effects on coronary remodeling and epicardial conductance after intracoronary injection of enriched hematopoietic bone marrow stem cells in patients with previous myocardial infarction;Cell Transplant., 16 (9) (2007), pp. 919-925.
- [12]. Kandaswamy E, Zuo L. Recent Advances in Treatment of Coronary Artery Disease: Role of Science and Technology. Int J Mol Sci. 2018 Jan 31;19(2):424.
- [13]. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation. 1990; 82:2217–2221.
- [14]. Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science. 1990; 249:1285–1288.
- [15]. Prazeres DM, Ferreira GN, Monteiro GA, Cooney CL, Cabral JM. Large-scale production of pharmaceutical-grade plasmid DNA for gene therapy: problems and bottlenecks. Trends Biotechnol. 1999; 17:169–174.
- [16]. Donahue JK, Heldman AW, Fraser H, McDonald AD, Miller JM, Rade JJ, Eschenhagen T, Marban E. Focal modification of electrical conduction in the heart by viral gene transfer. Nat Med. 2000; 6:1395–1398.
- [17]. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK, Dec GW, Semigran MJ, Rosenzweig A. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA. 1998; 95:5251–5256.
- [18]. Lesh MD, Pring M, Spear JF. Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modeling study. Circ Res. 1989; 65:1426–1440.
- [19]. Chapman GD, Lim CS, Gammon RS, Culp SC, Desper JS, Bauman RP, Swain JL, Stack RS. Gene transfer into coronary arteries of intact animals with a percutaneous balloon catheter. Circ Res. 1992; 71:27–33.
- [20]. French BA, Mazur W, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation. 1994; 90:2414–2424.
- [21]. March KL, Woody M, Mehdi K, Zipes DP, Brantly M, Trapnell BC. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol. 1999; 22:123–129.

- [22]. Maurice JP, Hata JA, Shah AS, White DC, McDonald PH, Dolber PC, Wilson KH, Lefkowitz RJ, Glower DD, Koch WJ. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest. 1999; 104:21–29.
- [23]. Kikuchi K, McDonald AD, Sasano T, Donahue JK. Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation. 2005; 111:264–270.
- [24]. Jin YN, Inubushi M, Masamoto K, Odaka K, Aoki I, Tsuji AB, Sagara M, Koizumi M, Saga T. Long-term effects of hepatocyte growth factor gene therapy in rat myocardial infarct model. Gene Ther. 2012; 19:836–843.
- [25]. Yang ZJ, Chen B, Sheng Z, Zhang DG, Jia EZ, Wang W, Ma DC, Zhu TB, Wang LS, Li CJ, Wang H, Cao KJ, Ma WZ. Improvement of heart function in postinfarct heart failure swine models after hepatocyte growth factor gene transfer: comparison of low-, medium- and high-dose groups. Mol Biol Rep. 2010; 37:2075–2081.
- [26]. Li J, Wei Y, Liu K, Yuan C, Tang Y, Quan Q, Chen P, Wang W, Hu H, Yang L. Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model. Microvasc Res. 2010; 80:10–17.
- [27]. Kilian EG, Sadoni S, Vicol C, Kelly R, van Hulst K, Schwaiger M, Kupatt C, Boekstegers P, Pillai R, Channon K, Hetzer R, Reichart B. Myocardial transfection of hypoxia inducible factor-lalpha via an adenoviral vector during coronary artery bypass grafting – A multicenter phase I and safety study. Circ J. 2010; 74:916–924.
- [28]. Heinl-Green A, Radke PW, Munkonge FM, Frass O, Zhu J, Vincent K, Geddes DM, Alton EW. The efficacy of a 'master switch gene' HIF-1alpha in a porcine model of chronic myocardial ischaemia. Eur Heart J. 2005; 26:1327–1332.
- [29]. Julie A. Wolfram and J. Kevin Donahue, Gene Therapy to Treat Cardiovascular Disease :Journal of the American Heart Association. 2013;2:e000119,
- [30]. Gabriella Passacquale,Pankaj Sharma,Divaka Perera,Albert Ferro: Antiplatelet therapy in cardiovascular disease: Current status and future directions:January 2022;
- [31]. Eikelboom JW, Connolly SJ, Bosch J, et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N Engl J Med. 2017; 377(14): 1319-1330.
- [32]. Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov. 2010;9:154–69
- [33]. Morrow DA, Braunwald E, Bonaca MP, et al. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med. 2012;366:1404–13.
- [34]. Gremmel T, Yanachkov IB, Yanachkova MI, et al. Synergistic inhibition of both P2Y1 and P2Y12 adenosine diphosphate receptors as novel approach to rapidly attenuate platelet-mediated thrombosis. Arterioscler Thromb Vasc Biol. 2016;36:501–9.
- [35]. Yanachkov IB, Chang H, Yanachkova MI, et al. New highly active antiplatelet agents with dual specificity for platelet P2Y and P2Y adenosine diphosphate receptors. Eur J Med Chem. 2015;107:204–18.
- [36]. Qinqin Hu, Zheyan Fang, Junbo Ge, and Hua Li; Nanotechnology for cardiovascular diseases :The Innovation 3(2): 100214, March 29, 2022
- [37]. Eswar Kandaswamy and Li Zuo* ;Recent Advances in Treatment of Coronary Artery Disease: Role of Science and Technology; Int J Mol Sci. 2018 Feb; 19(2): 424
- [38]. Giannopoulos, A., Mitsouras, D., Yoo, SJ. et al. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 13, 701–718 (2016).
- [39]. Vukicevic M, Mosadegh B, Min J, et al. Cardiac 3D Printing and its Future Directions. J Am Coll Cardiol Img. 2017 Feb, 10 (2) 171–184.