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Abstract: Electroencephalography (EEG) is a critical tool for diagnosing neurological disorders, including 
electroclinical seizures, which lack visible symptoms and are detectable only through EEG. We present a 3D 
Convolutional Neural Network integrated with Residual Networks (ResNets) for binary seizure classification. This 
approach incorporates a superlet-based preprocessing with a 3D ResNet-34 architecture to enhance temporal-
frequency feature extraction. This framework can be extended to real-time monitoring systems and other EE-
based neurological disorder classifications. Input features are extracted using a superlet transformation of 22-
channel recordings, producing 4D tensors. Training on over 30,000 EEG recordings from the TUH EEG Seizure 
Corpus (v1.5.2), our model achieves 85% accuracy. However, sensitivity is limited to 50% on imbalanced data, 
indicating a tendency to overfit the majority class. These findings highlight the potential of multidimensional 
models in health prediction. 
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I. INTRODUCTION 

Electroencephalography (EEG) is a neurophysiological technique used to measure the brain’s spontaneous 

electrical activity. Despite having lower spatial resolution than other techniques such as magnetic resonance 

imaging (MRI) and computed tomography (CT), the importance of EEG in detecting electroclinical seizures 

cannot be overstated. It remains the gold standard for diagnosing epilepsy and other seizure disorders, providing 

insights into brain activity that are not accessible through other diagnostic tools. This medical test requires the use 

of electrodes that detect electrical signals from brain cells. 

A standard EEG requires the use of 21 electrodes linked in a vertical and horizontal formation. EEG uses 

the principle of differential amplification, which involves recording voltage differences between pairs of 

electrodes to form EEG waveforms [2]. Prominent spikes in the EEG, as compared to the standard signals, usually 

indicate the detection of abnormal electrical activity in the brain. Electroclinical seizures are a type of undetectable 

seizure, seizures that don’t have any visible occurrence [3]. This makes diagnosis based on clinical observations 

alone particularly difficult. These types of seizures are usually detected through EEG tests. Manual detection of 

electroclinical seizures done by trained neurologists is time-consuming, costly, and prone to human error. To 

address this, the use of artificial intelligence (AI) and machine learning has become prevalent in this field because 

of its ability to increase the rate and the accuracy of electroclinical seizure detections. 3D Convolutional Neural 

Networks (3D CNNs) are utilized to identify patterns in EEG signals [4] accurately. Unlike traditional 2D CNNs 

that are only able to analyze 2D data, 3D CNNs effectively analyze time-frequency data [5]. This makes 3D CNNs 

especially useful for analyzing multidimensional EEG signals and producing accurate results. To further enhance 

the performance of 3D CNNs, Residual Networks (ResNets) are utilized to specifically improve the model's 

accuracy in detecting electroclinical seizures. More specifically, a ResNet-34 model was used to improve feature 

extraction and model performance. ResNet-34 models consist of 34 layers, including convolutional layers and 

batch normalization, which collectively enable the model to learn intricate patterns in the data [6]. ResNets allow 

the model to extract nuanced features from the EEG waveforms. In this study, we used the publicly available EEG 

seizure dataset known as the TUH EEG seizure corpus [1]. It’s the largest of its type and is freely available. These 

datasets contain comprehensive annotations of EEG signals, including stop and end times of seizures, affected 

channels, and seizure types [1]. Inspired by previous works and their contributions to seizure detection in EEG 

fields through the usage of machine learning models, we combined 3D CNNs and ResNet-34. By combining these 

http://www.questjournals.org/


Detecting Electroclinical Seizures with 3D CNNs and ResNets: A Deep Learning Approach to .. 

DOI: 10.35629/076X-12100106                                www.questjournals.org                                               2 | Page  

machine learning techniques, this model can analyze large quantities of multi-axial data while retaining the critical 

patterns and information gathered from the EEG. 

 

 This study aims to develop and evaluate a 3D CNN-ResNet hybrid model for detecting electroclinical 

seizures from long periods of EE data. The main objective of this model is to improve automatic detection 

accuracy in hours of EEG data.  

 

II. RELATED WORKS 

EEG seizure detection has garnered attention in recent years because of its potential to improve the 

identification and prediction of seizures. Historically, seizure detection from EEG signals has been manually 

interpreted by qualified neuroscientists. These methods were time-consuming and prone to human error. Early 

computational approaches in the early 2000s to classify EEG signals consisted of support vector machines (SVMs) 

and random forests. Tzallas et al. (2012) proposed a seizure detection system using time-frequency (t-f) analysis 

to classify EEG segments for epileptic seizures [7]. By combining the short-time Fourier transform and several t-

f distributions, they achieved promising results. However, these methods struggle with the complexity and 

multidimensionality of EEG data, limiting their ability to accurately predict seizures in large quantities, unlike 

convolutional neural networks (CNNs). The emergence of deep learning introduced various machine learning 

models, further advancing this field of study. Convolutional neural networks (CNNs) emerged as a powerful tool 

for feature extraction and pattern recognition within EEG graphs. Schirrmeister et al. (2017) demonstrated the 

effectiveness of CNNs. By utilizing CNNs, they achieved a performance comparable to the widely used filter 

bank typical spatial pattern (FBCSP) algorithms [8]. CNN models were able to learn to use spectral power 

modulations in the alpha, beta, and high gamma frequencies in EEG graphs. This proves the networks to be useful 

for spatially mapping the learned features and revealing the topography of features in different frequency bands. 

Similarly, Truong et al. (2018) developed a CNN-based model for seizure detection using the CHBMIT EEG 

dataset, achieving high accuracy and robustness [?]. These studies underscored the potential of CNNs in 

automating EEG analysis. However, they were limited by their reliance on 2D CNN models, which are less suited 

for the multidimensional nature of EEG data. To address this limitation, researchers have explored the use of 3D 

Convolutional Neural Networks (3D CNNs) for EEG analysis. Liu et al. (2021) proposed a 3D representation of 

EEG and an end - to - end EEG three-branch 3D convolutional neural network (3D CNN) [10]. The 3D-CNN 

achieved exemplary performance and has the potential to enhance classification effects across different motor 

stages. Another significant advancement in deep learning is the introduction of ResNets, which excel in the 

automated hierarchical feature extraction in raw data domains with vast numbers of samples. Cheah et al. (2021) 

investigated the use of plain EEG signals as the classifier input into ResNet [11]. Their proposed ResNet18 

architecture achieved promising results in classifying multiple emotional channels based on EEG signals. Lee et 

al. (2024) used a hybrid model combining ResNet and long short-term memory (LSTM) [12]. This study 

demonstrated greater sensitivity and a lower FPR as compared to conventional methods. Our research builds on 

these foundations by proposing a novel approach that combines 3D CNNs with ResNet-34 for the detection of 

electroclinical seizures. By utilizing 3D CNNs in combination with ResNet-34, it addresses existing limitations 

in analyzing multidimensional EEG signals and builds on pre-existing research on the use of ResNet. In addition 

to the integration of superlet transforms, an advanced preprocessing technique, our methodology offers a robust 

solution for automating the detection of electroclinical seizures. 

 

Despite these advancements, few studies have explicitly combined superlet-transformed EEG features 

with 3D convolutional architectures. Our research bridges this gap by incorporating residual connections into a 

3D CNN framework, enabling more efficient learning from temporal-frequency EEG data. 

 

III. METHODOLOGIES 

3.1 Dataset 

The data used in this study were obtained from TUH’s EEG Seizure Corpus (v1.5.2) dataset, which contains 

around 30,000 recordings totaling 504 hours of EEG recordings [1]. This dataset includes both seizure and non-

seizure instances in the patient and annotated segments regarding the start and end of the seizure. We performed 

feature extraction from the EEG signals to put the data into our machine learning models. We first used the raw 

data files in the formats of CSV and EDF. These contained the features and the target labels of the signals, whether 

there was a seizure or not. For more accurate analysis, we chunked the signals into 20-second windows. The 

window is assigned a binary value in one-hot encoding format, where 0 indicates no seizure and 1 indicates a 

seizure. The model will output two logits that produce the prediction after applying the SoftMax and ArgMax. 
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3.2 Data Transformation 

To make the dataset suitable for machine-learning modeling and analysis, a TCP montage was 

constructed. EEG montages refer to the pattern in which electrodes are placed on the scalp during an EEG. 

Electrodes are placed in 3 main regions of the scalp: temporal, central, and parietal. In addition to focusing the 

EEG data into a specific area, we down-sampled the data set from 250 Hz (samples per second) for each recording 

to 100 Hz. By reducing the Hz, inaccurate data collection and redundant signals from the wave signals will be 

ignored, increasing the accuracy of the model used to predict electroencephalography seizures. We then scaled up 

the data so the background activities have an intensity of 10e-2, since the original recording was done in 

microvolts. A superlet transform was then applied to extract features from the EEG signals. The superlet transform 

is a tool that decomposes signals into wavelets—waves that capture frequencies at different scales. We applied 

the adaptive superlet transform on the twenty-two derivations separately, and then merged the twenty-two 

scalograms to form a 3D tensor in the shape of (22, 64, 2000), where 22 is the number of derivations, 64 is the 

number of frequencies superlet focused on (64 different frequencies in the range between 0.5 Hz  

 

Data transformation of the TUH EEG dataset to create a visual representation of EEG signals in each 

electrode channel. And 50 Hz), and 2000 represents the time (20 seconds * 100 Hz sample frequency). The data 

is then augmented with another dimension for 3D convolutional layers, yielding features in the shape of 1 * 22 * 

64 * 2000. Each feature is stored along with its target as a PyTorch state dictionary. Due to the imbalanced 

distribution of data (90% of the targets in a zero vector), we filtered these “null cases” out from the rest of the 

dataset. They are only used when the data loader detects an overwhelmingly positive sample to balance the label 

the model sees. The data loader is responsible for randomly polling samples in a batch. In our configuration, the 

batch size is 16, so every iteration of the data loader will yield a tensor in the shape (16, 1, 22, 64, 2000). Internally, 

the data loader keeps track of the number of zeros and the total number of elements seen in the targets. When the 

ratio between zero targets and total targets is off proportion, it will force a load of positive or negative examples 

to balance it out.  

 

3.3 3D Resnet-34 Training 

Since we are handling a batch of 4D features, the original design of ResNet-34 is not directly applicable 

to our task. We modified the internal structure of the classic network to adapt to our task using 3D convolutions 

and more preprocessing layers. Due to the nature of EEG data, the spectral result of such a signal often results in 

a highly skewed distribution. Considering the magnitude of feature elements may be crucial to the analysis, we 

did not simply scale and transform the data to [0, 1]. Instead, we added a 3D batch normalization layer in the 

network to learn about the overall data distribution and normalization parameters while training. Recall that the 

feature is the shape (1, 22, 64, 2000). The next step is to convert this skewed shape into a relatively similar 

magnitude. We applied a 3D convolution to the feature to boost its channels while decreasing the time dimension, 

then passed the result through a nonlinearity and max pooling to halve the time further. Using rectangular strides 

can prevent the derivation and frequency axis from being altered. The third convolution layer uses a (1, 2, 2) stride 

instead of (1, 1, 2), halving the frequency axis down to 32. Each feature is in the shape of (64, 22, 32, 32) before 

going into the residual blocks. The residual block is identical to the ResNet paper, except for switching out 2D 

convolutions with 3D. Adhering to the original design, we only used the basic block described in the paper, with 

the first 3x3x3 convolution layer having a stride of 2. After four layers, the data is squished down enough to (512, 

3, 4, 4). This tensor is passed through an adaptive average pool to reduce the feature size to (512, 1, 1, 1). We 

flattened the tensor and used a simple multilayer perceptron to truncate down the data to two logits. The MLP 

consists of a fully connected layer mapping 512 features to 256, followed by a batch normalization, a ReLU, a 

dropout, and a final fully connected layer mapping 256 features to 2 logits. 
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We trained the model using the AdamW optimizer with a learning rate of 0.003 and cross-entropy loss. 

Convolutional layer weights were initialized with the Kaiming normal distribution and ReLU nonlinearity, while 

batch normalization layers were initialized with a weight of 1 and bias of 0. The TUH EEG Seizure Corpus was 

divided into training and evaluation sets. The model was trained on the training set and evaluated on the separate 

evaluation set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. RESULTS 

The modified 3D ResNet-34 model was evaluated on the TUH EEG Seizure Corpus (v1.5.2) using a 

stratified 80-20 training-testing split. Model performance was assessed using accuracy, precision, recall, F1-score, 

and confusion-matrix analysis. During training, both loss and accuracy stabilized after approximately 350 epochs, 

suggesting convergence without severe overfitting (Figure 3). 

The final model achieved an overall accuracy of 85.2%, a precision of 0.87, a recall (sensitivity) of 0.50, 

and an F1-score of 0.63 on the test set. This indicates that most seizure predictions were correct; however, the 

relatively low recall reveals that a substantial portion of seizure events were missed. This imbalance stems 

primarily from the dataset’s class distribution, in which non-seizure segments constitute roughly 90 % of the total 

samples. 

 

The confusion matrix (Figure 4) illustrates this discrepancy: 1,150 of 1,350 non-seizure segments were 

correctly classified, while only 100 of 200 seizure segments were correctly detected. False negatives remain the 

dominant source of error, reflecting the model’s conservative bias toward the majority (non-seizure) class. 

 

 

  

 

Figure 1: Modified 3D ResNet-34 architecture for EEG 

seizure detection.  
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Figure 3: Confusion matrix for the 3D ResNet-34 EEG seizure model.  

 

V. DISCUSSION 
This model has high computational costs. Training on a single RTX 3060 takes about eight hours for two 

thousand epochs. Inference is faster but still requires 2-3 minutes for 800 preprocessed cases, and real-time 

detection would take longer due to the computational expense of the superlet transformation. The model is also 

biased toward negative cases, leading to a higher rate of false negatives, as shown in the confusion matrix. In 

seizure detection, false negatives are especially concerning because missed events can compromise patient safety. 

Despite the model's 85% accuracy, the high rate of false negatives remains a significant issue. This limitation is 

primarily due to the severe class imbalance in the TUH corpus, where about 90% of EEG segments show no 

seizure activity. Despite efforts to balance the data, the model remains biased, resulting in more false negatives. 

Compared to prior CNN-based EEG classifiers, our hybrid 3D ResNet-34 achieved comparable accuracy 

with improved spatial-temporal representation learning. However, limitations include computational expense, 

sensitivity to class imbalance, and limited generalizability beyond the TUH dataset. Future work may explore 

lightweight architectures, attention mechanisms, and cross-domain training on multi-institutional EEG data. 

Because our model was trained and evaluated only on the TUH corpus, its performance on data from 

other institutions is unknown. Differences in electrode placement, sampling rates, and patient demographics may 

affect model accuracy, which is a common challenge in medical AI. 

 

VI. CONCLUSION 
This study demonstrates the feasibility of using a 3D ResNet-34 architecture integrated with superlet-

transformed EEG data for electroclinical seizure detection. Achieving an accuracy of 85%, the model highlights 

the promise of deep learning in medical diagnostics. However, the challenge of data imbalance and computational 

overhead remains a significant barrier. Future work will focus on optimizing efficiency and enhancing 

generalization for clinical deployment. 
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