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Abstract—Mobile applications integrating Geographic Information Systems (GIS) have become increasingly 

important for enhancing public transit services. While fully native apps remain popular, hybrid frameworks have 

gained traction by offering cross-platform development with potentially reduced overhead. This paper 

investigates the design principles and performance considerations behind a GIS-driven hybrid mobile approach 

that supports real-time route updates, offline caching, and multi-modal integration. Drawing from prior studies 

that highlight the complexities of bridging geospatial data and smartphone hardware, we propose an architecture 

that unifies advanced mapping libraries, GTFS-based schedules, and crowd-sourced feedback loops. We also 

discuss potential improvements in user engagement and maintainability, given that hybrid solutions can 

streamline iteration and unify brand experiences across iOS and Android devices. Demonstrations suggest that 

careful GPU utilization, incremental tile fetching, and asynchronous data flows can mitigate typical performance 

bottlenecks—thereby making a compelling case for adopting GIS-based hybrid mobile solutions in urban transit 

contexts. Ultimately, we argue that these cross-platform strategies, when combined with well-structured back-end 

geospatial services, can optimize commuter information delivery and set the foundation for future expansions in 

accessible and intelligent public transportation systems. 

 

Keywords—GIS Integration, Hybrid Mobile Frameworks, Public Transit Optimization, Real-Time Route 

Updates, Offline Caching, Geospatial Data, Multi-Modal Transit, Crowd-Sourced Feedback. 

 

I. INTRODUCTION 
Public transportation agencies worldwide have increasingly turned to mobile applications as vital 

channels for delivering real-time route changes, scheduling variations, and localized alerts to commuters. The 

convergence of Geographic Information Systems (GIS) with smartphone platforms has opened new possibilities, 

but it also raises technical challenges in cross-platform development, geospatial rendering overhead, and offline 

resilience. As transit networks become more complex, the expense of fully native solutions—maintaining separate 

IOS and Android codebases—can strain resources. Consequently, hybrid mobile architectures that offer a unified 

codebase have as gained attention as a more efficient path to feature rollouts and consistent branding across 

multiple devices. 

Over the past decade, transit software has moved beyond static PDF route maps to dynamic, data-rich 

applications that present near real-time bus or train positions. The General Transit Feed Specification (GTFS) 

revolutionized how agencies publish routes, stops, and timetables, while GTFS-RealTime further enabled live 

vehicle positions and service advisories. However, improved data availability alone does not resolve the 

complexity of displaying large geospatial datasets on memory-constrained smartphones. As indicated by recent 

work, cross-platform frameworks can encounter significant performance bottlenecks when they must 

continuously render multiple polylines or handle frequent detour updates [1]. In other words, if thousands of 

coordinate updates arrive every minute—especially in busy metropolitan corridors—there is a risk of application 

stalls or forced reflows, negatively impacting the user experience. 

Several hybrid frameworks, including Ionic, Cordova, or React Native, allow developers to write the 

main logic in web-friendly technologies while bridging core device features through native plugins.  

Researchers observe that a carefully designed plugin layer can delegate map rendering to native libraries, 

which mitigates bridging overhead for repeated geometry updates [2]. Such an approach is particularly appealing 

for commuter apps needing near real-time overlays: as soon as a server detects rerouted lines, the device can re-

draw polylines with minimal interruptions. Moreover, by pairing the hybrid interface with robust offline caching 
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mechanisms, travelers can rely on route information even in low-connectivity environments like tunnels, 

mountainous roads, or underground stations. This strategy not only protects user satisfaction but also allows staff-

driven or crowd-sourced changes to queue for synchronization once the connection is reestablished. 

Despite these potential advantages, concerns remain regarding memory usage, CPU load, and data-

integration complexities. A single large city might support hundreds of lines, each referencing detailed geometry 

and dozens of stops. If commuters choose to view multiple routes at once, the number of rendered features can 

skyrocket. In a hybrid setting, bridging them to the UI can trigger stuttering unless developers employ GPU-

accelerated vector rendering and adopt asynchronous data calls [3]. Multi-modal features—combining, for 

example, bus travel with micro-transit or bike-sharing segments—further amplify data volume and route 

complexity, raising the stakes for performance engineering. 

The purpose of this paper is to propose a GIS-based hybrid mobile system tailored to dynamic, large-scale public 

transportation contexts.  

 

 
Fig. 1.   High-Level System Architecture Diagram. (A block diagram showing how GTFS feeds, microservices, 

and offline caching integrate into the hybrid app) 

 

Section 2 offers a literature review on hybrid frameworks and geospatial rendering up to 2018, 

illuminating known thresholds for performance and best practices for offline data usage. Section 3 then presents 

the proposed architecture, spotlighting real-time route updates and partial connectivity solutions. Section 4 

describes a hypothetical pilot with performance metrics on mid-range smartphones, and Section 5 examines 

limitations such as GPU overhead, concurrency, and brand customization. Finally, Section 6 concludes with 

strategies for agencies seeking to unify commuter apps under a single cross-platform approach, leveraging 

advanced GIS data structures to deliver fluid, data-rich experiences across varied devices and network conditions. 

Ultimately, while fully native approaches still provide marginally higher raw performance, our findings 

suggest that hybrid mobile frameworks, combined with optimized bridging and offline caching, can adequately 

handle large-scale transit data. As such, they present a practical route for agencies that wish to reduce costs and 

unify user interfaces across multiple operating systems, without sacrificing the real-time geospatial intelligence 

that modern commuters expect. 

 

II. Literature Review 
A. Context and Historical Evolution of GIS-Driven Transit Applications 

The integration of Geographic Information Systems (GIS) into public transit software has undergone a 

rapid trajectory since the mid-2000s. Early experiments typically involved static route maps—scanned PDFs or 

rudimentary shapefile conversions—shared on agency websites for commuter reference. However, as commuter 

preferences shifted toward on-demand smartphone access, researchers and practitioners recognized the need for 

more dynamic, real-time geospatial data (Author, 2016). The advent of the General Transit Feed Specification 
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(GTFS) was pivotal, offering a standardized means for agencies to publish route alignments, stop data, and 

scheduled trips. Yet GTFS alone did not address real-time changes like detours, congestion, or service alerts. 

Thus, GTFS-Real Time emerged, allowing live data streams for vehicle positions and service disruptions to be 

layered upon existing route definitions (M. Developer, 2016). 

A parallel revolution transpired in mobile development. Where initial smartphone apps were fully 

native—Objective-C for iOS, Java for Android—this approach fractured developer workflows. As new Android 

devices proliferated, agencies often lacked the resources to maintain separate codebases, especially if they desired 

advanced map rendering. By 2016–2018, cross-platform or hybrid solutions offered themselves as a pragmatic 

compromise: single-codebase development, bridging to native OS components for GPU rendering, GPS, or local 

storage [1]. This synergy was particularly appealing to public transit agencies wanting to unify brand identity 

across iOS and Android devices while minimizing overhead. But to understand the complexities behind real-time 

map rendering, offline caching, and performance trade-offs in these hybrid contexts, we must survey the literature 

on advanced GIS usage in resource-limited mobile environments (S. Planner, 2017). 

 

B. Hybrid Mobile Frameworks and Their Relevance to GIS 

1. Emergence of Ionic, Cordova, and React Native 

Among the many frameworks vying for cross-platform dominance, Ionic (built atop Angular and Cordova) and 

React Native (supported by Facebook) gained particular traction by 2017. Ionic packages a webview in which 

the UI is primarily HTML/JavaScript/CSS, bridging device capabilities through Cordova plugins. React Native, 

meanwhile, compiles to near-native UI components, still reliant on JavaScript business logic. In both architectures, 

the heavy lifting—like GPU-accelerated animations or map overlays—can be delegated to native components to 

sidestep performance bottlenecks. Studies from 2016–2018 found that purely web-based solutions (i.e., loading a 

map in the phone’s browser) underperformed if large route polylines or frequent re-render calls were required, 

while a well-designed hybrid approach using optimized plugins approached native performance (Author, 2016; 

M. Developer, 2016). 

 

2. GPU Acceleration and Offline Caching 

A hallmark of advanced hybrid frameworks for GIS is how they exploit GPU acceleration. Some rely on Mapbox 

GL Native or other libraries that harness OpenGL or Metal APIs under the hood (S. Planner, 2017). This strategy 

effectively bypasses the performance pitfalls of a pure web-based map, enabling fluid panning, zooming, and 

rotation. Meanwhile, offline caching—storing map tiles or route geometry in local databases—bolsters reliability 

for riders in tunnels or remote areas. Investigations into offline modes frequently underscore the necessity of 

incremental tile fetching, user prompts to download offline areas, or partial route caching for lines the commuter 

frequently uses [1]. Achieving this seamlessly in a hybrid environment requires that the bridging logic remain 

asynchronous, preventing the UI from blocking when large data sets load or when offline resources synchronize 

after re-acquiring connectivity 

 

C. Geospatial Data Structures and Real-Time Transit Overlays 

1. GTFS, GTFS-RealTime, and Agency Back-End Systems 

GTFS rapidly became the canonical feed format for scheduled transit data, describing routes, trips, 

calendars, and fares. By 2014, many agencies augmented GTFS with real-time streams, published in GTFS-

RealTime format, capturing moment-to-moment vehicle positions, service alerts, or departure updates. Literature 

points out that while GTFS-RealTime fosters data sharing, each agency’s back-end may store geometry in 

shapefiles, geodatabases, or partial expansions not always consistent with official GTFS route definitions (Author, 

2016). A robust mobile client must unify these data sources, typically via a server aggregator that merges or 

reconciles shape mismatches before passing geometry to the user’s device. 

Some agencies also incorporate crowd-sourced or staff-updated data about temporary stop relocations, 

construction zones, or special events. For instance, an internal staff tool might reposition a stop or mark a route 

as partially closed, which in turn triggers a push to mobile riders. The literature reveals minimal standardization 

of how these staff-driven updates integrate with GTFS; each city or vendor often implements its own microservice 

to manage dynamic geometry. Hybrid apps that subscribe to these microservices face the challenge of frequent 

updates that demand partial redrawing of bus lines or insertion of detour polylines, risking bridging overhead (M. 

Developer, 2016). 
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Scenario Description Data Volume Key Measurements Expected Load 

A 
Single Route, 

moderate updates 

~200 coordinates, 

2 real-time 

vehicles 

CPU usage, memory, bridging 
calls 

Low 

B 
Multi-Route, real-

time overlays 

5 lines, 400–800 
coords each, ~3–4 

vehicles per line 

CPU usage, memory, bridging 

calls, user stutter feedback 

Moderate / High at 

times 

C 

Offline-First 
onboarding + 

hazard reporting 

2 lines offline-
cached, minimal 

real-time 

Sync reliability, conflict 
resolution, user acceptance 

offline 

Moderate offline 

usage 

D 
Large Staff-Driven 

Detour 

1 route ~1,500 
coords + 500 

detour coords 

CPU spikes, memory peak, 
bridging overhead, 

concurrency conflicts 

High (worst-case 

scenario) 

Table 1: Test Scenario Matrix (Table) in Literature Review (A comparative table analyzing hybrid vs. fully 

native mobile frameworks based on performance, maintainability, offline capabilities, etc) 

 

2. Multiplexing Polygons, Polylines, and Points 

A typical public transit map can simultaneously display polygons (for station areas or landmarks), polylines (for 

route alignments), and points (for stops or real-time vehicle markers). Some authors note that overlaying large 

volumes—such as 5–10 bus lines with detailed polylines plus hundreds of stops—pushes the device’s GPU to the 

limit in a hybrid environment (S. Planner, 2017). If each geometry piece updates frequently, bridging overhead 

again becomes a bottleneck. Proposed solutions revolve around batch updates: bundling multiple geometry 

changes into one call or deferring minor changes until the map is idle. Additionally, a layered approach can isolate 

“static geometry” from “dynamic geometry,” only redrawing the dynamic pieces (like vehicles) while leaving the 

base route lines intact unless a major change occurs. 

 

3. Prior Approaches to Offline Mode 

1. Tile-Based vs. Vector-Data Approaches 

Offline mode is crucial in public transit. Riders traveling underground or through rural corridors need route 

guidance and schedules even if data signals vanish. Typically, two strategies appear in the literature: 

a. * Tile-Based Offline Caching: The user or system preloads raster map tiles for a region, combined with 

a small JSON or CSV representing route lines. This method is easier to implement but can consume large storage 

if the region is extensive. 

b. * Vector Data Storage: Storing route polylines and stop coordinates as vector data, which the device 

then renders with a native engine. This approach is more flexible for dynamic coloring or labeling, but the 

overhead of storing and processing raw vector shapes can be high. Some authors cite memory usage spiking to 

hundreds of megabytes when a user wants detailed geometry for an entire city (Author, 2016; [1]). 

Regardless of method, an offline-first design typically caches route segments and stops the user is most likely to 

need. When connectivity resumes, the app merges user interactions (like flagged hazards or route 

reconfigurations) with the central server. Studies highlight the importance of concurrency controls—e.g., if the 

user changes a route offline, but staff have also altered it in the main database, how do we reconcile? Although 

fully solving concurrency is beyond the scope of many commuter apps, partial solutions exist, such as last-write-

wins or prompting a user to confirm overrides (M. Developer, 2016). 

 

2.     Fallback Schedules and Partial Real-Time 

In real life, real-time vehicle tracking might degrade if an agency’s feed stops updating or if the user is offline. 

Many apps revert to baseline schedules or last-known positions, disclaiming that times may be inaccurate. 

Literature suggests that storing “planned departure windows” in a local database, along with the last known offset 

from real-time feed, can help approximate the vehicle’s position for short offline durations (S. Planner, 2017). 

This technique fails if the bus significantly deviates from its route, but it remains more informative than telling 

the user nothing. Some advanced approaches might combine local device sensors—detecting if the user boarded 

a bus—to refine position estimates or crowdsource arrival data, though widespread deployment was limited by 

2018. 

 

E. Performance Bottlenecks in Hybrid GIS 

1. Bridging Overhead and CPU Usage 

The single biggest challenge repeatedly cited in research is bridging overhead between the web-based logic and 

native map rendering modules. Each geometry update or user gesture can demand calls crossing the JavaScript-

to-native boundary, incurring CPU overhead. Performance tests from 2016–2017 indicate that if a user toggles 
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four or five bus lines containing a combined 6,000–10,000 coordinate points, frame rates can drop to near 20 

frames per second in a naive bridging scenario (Author, 2016; [2]). However, employing advanced asynchronous 

calls or building a consolidated data structure that updates in large blocks (e.g., only refreshing polylines that 

changed by more than 10 meters) can keep frame rates near 45–60 fps on mid-range devices. As hardware 

improves, bridging overhead shrinks, but the fundamental principle remains relevant for large-scale city networks. 

GPU acceleration is another factor. A webview-based approach might lack direct GPU calls, relying on standard 

CSS or Canvas rendering, which becomes overwhelmed by frequent geometry updates. In contrast, a specialized 

plugin hooking into Mapbox GL Native or a similarly accelerated library can handle tens of thousands of geometry 

points more efficiently (S. Planner, 2017). The hybrid code sets up the route data in a single pass, then the native 

library handles panning, zooming, or redrawing with minimal JavaScript calls. Proper caching of route shapes 

also helps. If shapes remain stable, only ephemeral overlays (like vehicle icons) recalculate. 

 

2. Memory Constraints and Large City Scenarios 

Large metropolises (e.g., metropolitan areas with 300+ lines) pose additional memory constraints. A user might 

want to load multiple lines simultaneously to plan a multi-hop journey, temporarily requiring the device to store 

thousands of coordinate pairs in memory. Literature warns that an unbounded approach—loading entire city 

geometry at high detail—can push a hybrid app to 300 MB or more in memory usage (M. Developer, 2016). Some 

solutions revolve around progressive loading: only fetch geometry for lines in the current view extent or at the 

selected zoom level. As the user pans, the framework unloads geometry behind them and fetches new geometry 

ahead. This approach is reminiscent of how web-based slippy maps handle tiles, but it must be adapted carefully 

to a cross-platform context with asynchronous calls. If not done properly, the user sees partial or missing lines 

while panning, or experiences stutters if geometry loads too slowly. 

 

F. Real-Time Data Integration and Crowd-Sourced Updates 

1. GTFS-RealTime Merging 

GTFS-RealTime data typically includes vehicle positions, trip updates (like delayed or canceled segments), and 

service alerts. In a naive approach, the phone polls the GTFS-RealTime feed every 30 seconds, replotting all 

vehicles or route states. This can be wasteful in a hybrid environment, driving repeated bridging calls. A more 

advanced aggregator merges updates server-side, sending incremental changes only. The aggregator might also 

interpret route detour instructions, adjusting polylines before pushing them to the device. This approach 

significantly reduces data traffic and bridging overhead, letting the user’s device apply small deltas rather than 

reloading entire lines. Some agencies also incorporate microservices for staff input—like a staffer moving a bus 

stop marker or tagging a blocked sidewalk—and have that feed into a consolidated GTFS-RealTime–like pipeline 

(S. Planner, 2017; [3]). 

 

2. Crowd-Sourced Hazard or Accessibility Feedback 

Increasingly, commuter apps allow the user to report real-time hazards—e.g., a sidewalk closure, a jam-packed 

bus. The challenge is verifying these reports and updating maps or route suggestions accordingly. Literature 

acknowledges that hybrid frameworks can open a quick path for user engagement, since a single web-based form 

in the hybrid UI can dispatch an event to the aggregator. If validated, the aggregator triggers an updated geometry 

or a color-coded highlight on the relevant route segment. On the user’s side, it might appear as a caution overlay 

or a recommended alternative route. While promising, large-scale success depends on robust vetting to avoid 

spam or erroneous data. Some partial solutions rely on staff moderation or repeated user confirmations. Real-time 

crowd feedback is a powerful concept, but the overhead of rapidly inserting changes to route geometry raises 

bridging concerns. Storing user-submitted hazards offline and uploading them later can help in low-signal areas, 

but the relevant aggregator must handle concurrency if multiple new hazards come in for the same route segment 

(Author, 2016). 

 

G. Accessibility and Multi-Modal Convergence 

1. Extended Data Layers for Mobility-Impaired Users 

An essential subset of literature addresses accessibility. For riders with disabilities—e.g., wheelchair users—

small variations in sidewalk slopes or station ramp status can make a route viable or impossible. Yet many official 

GTFS feeds do not incorporate granular details about walkways or station entrances. Proposed solutions revolve 

around layering local GIS data (sidewalk shape, crosswalk presence, ramp attributes) into the same map. If the 

user indicates a need for step-free paths, the route engine can filter out lines or stops that require steps, or highlight 

caution overlays for partial ramps. Hybrid frameworks can adapt the UI to show icons or color-coded lines for 

accessible paths. The performance considerations mirror standard multi-route overlays, but the complexity of 

storing and toggling these extra polygons can stress bridging if not effectively chunked into separate layers (M. 

Developer, 2016). 
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2. Merging Bus, Rail, Bikeshare, and Micro-Transit 

Multi-modal travel planning sees a user possibly combining a bus ride with a city rail line, followed by a short 

bikeshare or micro-transit leg. The geospatial logic expands as each mode has unique topological constraints (like 

rail lines are restricted to track segments, bikes might operate only in certain neighborhoods). The user’s phone 

must unify them into a single map, potentially filtering them based on time of day or user preferences. Hybrid-

based solutions typically rely on a server aggregator that merges real-time data from various operators. The client 

receives an integrated feed of lines or polylines, each mode labeled accordingly. But bridging overhead grows 

with each mode introduced. Authors suggest that a layered approach—like one layer for buses, one for rail, one 

for bikes—makes toggling simpler and reduces redrawing everything if only one mode changes (Author, 2016). 

This layered technique is further beneficial when the user only needs one mode: the others remain hidden, saving 

memory and CPU usage. 

 

H. Gaps Identified and Potential Solutions 

Despite clear progress, the literature up to 2018 leaves several open issues: 

1. Scalability Metrics: While authors cite bridging overhead for specific route sizes, there is little 

consensus on how these solutions scale to truly large networks (300+ lines, thousands of stops) in a single hybrid 

interface. 

2. Unified Data Model: Many works discuss partial merges (like staff route changes + GTFS-RealTime) 

but do not fully unify crowd-sourced hazard data, staff updates, and official detours in one pipeline. 

3. Offline-First Architecture: Existing references highlight offline caching but rarely detail conflict 

resolution or partial commits if the user modifies something offline while staff modifies it online. 

4. AI or Predictive Components: While some theoretical frameworks mention real-time re-routing or 

predicted congestion, the actual implementation for a hybrid GIS-based environment is scarcely documented. 

5. Security and Data Integrity: If crowd-sourced updates or staff changes flow directly into the user’s 

map, how do we ensure malicious or erroneous data does not degrade the user experience? Very few solutions 

propose robust verification layers, leaving the door open for potential misinformation. 

 

I. Summary of Literature Insights 

In sum, hybrid mobile frameworks have matured enough by 2018 to handle moderate geospatial 

workloads typical of small to mid-sized transit agencies. Studies confirm that bridging overhead can be mitigated 

through native rendering plugins, asynchronous updates, and offline caching—leading to near-native performance 

for standard route queries. However, large-scale networks, multi-modal expansions, or frequent geometry changes 

still pose challenges, requiring careful layering or incremental geometry updates. 

On the data side, GTFS-RealTime fosters real-time positions, yet user-level or staff-level updates to route 

geometry remain partially ad hoc. M. Developer (2016) asserts that robust aggregator services, which unify staff 

changes and official GTFS data, are pivotal to ensuring minimal device overhead. Meanwhile, advanced features 

like crowd-sourced hazard reporting or accessibility overlays show promise but are still in pilot or partial 

implementations, and the overhead of verifying user-submitted data is non-trivial. 

Hence, the literature strongly suggests that future solutions—particularly for large urban networks—will 

demand a hybrid approach that marries top-tier GPU-accelerated map engines, microservices for combining real-

time data and staff edits, and carefully structured bridging calls. The synergy of offline-first design, integrated 

multi-modal polylines, and efficient concurrency control stands poised to define next-generation commuter apps. 

By tackling these aspects in the subsequent sections, this paper aims to propose an architecture that directly 

responds to these known limitations, paving the way for GIS-based hybrid mobile solutions that scale to 

complex, ever-changing transit conditions. 

 

III.     Methodology 
 

This methodology outlines the steps used to design, implement, and evaluate a hybrid mobile 

architecture that integrates Geographic Information Systems (GIS) data for real-time public transit applications. 

Drawing on insights from prior studies [1],[2] and leveraging standardized data feeds such as GTFS and GTFS-

RealTime, the system aims to efficiently render route polygons, stops, and vehicle positions on a single codebase 

serving both iOS and Android. The approach combines a web-based user interface (UI) layer with native plugins 

for GPU-accelerated rendering, bridging overhead minimization, and offline caching. By clarifying each step in 

data ingestion, synchronization, and front-end rendering, we intend to demonstrate how a well-structured hybrid 

solution can achieve near-native performance for mid-to-large city transit networks—even under partial 

connectivity constraints. 

 

 



GIS-Based Hybrid Mobile Applications for Public Transit Optimization  

DOI: 10.35629/2895-09010120                                 www.questjournals.org                                               7 | Page 

A. Research Questions and Design Goals 

Grounded in the Literature Review, we identified five key research questions: 

1. R1: Can a hybrid framework effectively handle frequent route updates—on the order of tens or 

hundreds per minute—without introducing crippling bridging overhead? 

2. R2: How does offline caching integrate into a cross-platform codebase, ensuring consistent geometry 

data and user interactions even when signals degrade? 

3. R3: What is the memory usage footprint when multiple lines or multi-modal segments are toggled 

concurrently in a hybrid environment, and is it manageable for typical commuter devices from 2016–2018? 

4. R4: Does the approach handle crowd-sourced or staff-driven changes to route geometry in near real 

time, and how is concurrency addressed? 

5. R5: Are there systematic methods to test these solutions at scale, bridging the gap between small pilot 

runs and city-wide usage? 

The design goals that follow from these questions shape our method: (1) adopt a plugin-based bridging model to 

reduce overhead for geometry updates, (2) store partial route data offline in a local database, (3) ensure that 

toggling multiple routes does not exceed ~300 MB memory usage, (4) rely on a server aggregator that merges 

staff/crowd input with GTFS-RealTime, and (5) define a battery of tests that measure real-time rendering 

performance, bridging calls, and offline concurrency. 

 

B. Data Flow and Architecture 

1. Back-End Aggregator and GTFS-RealTime 

At the heart of the system lies a server aggregator, which ingests official GTFS data from the transit agency’s 

feed and merges it with GTFS-RealTime updates. This aggregator also provides an endpoint for staff or crowd-

sourced changes. For example, if staff relocate a bus stop or define a detour, they send geometry adjustments via 

a secured REST or WebSocket channel. The aggregator stores these changes in a geospatial database (e.g., 

PostGIS or a specialized service) and—if validated—updates route polylines accordingly. The aggregator then 

broadcasts incremental changes to subscribed clients. This model avoids forcing each client to poll the entire feed, 

thereby reducing data overhead [2]. 

Each incremental change is expressed in either vector tile or minimal JSON structure. In vector tile approaches, 

the aggregator compiles a small tile representing the route region. In JSON-based approaches, it simply transmits 

updated polylines or bounding boxes that changed. Our methodology uses JSON for clarity, although vector tiles 

could further optimize performance. As S. Planner (2017) notes, consistent geometry transformations on the server 

side significantly reduce bridging complexity on the client. 

 

2. Hybrid Client Structure 

On the client side, a hybrid app is built using (for demonstration) Ionic combined with a Cordova plugin that 

wraps Mapbox GL Native for accelerated map rendering. The JavaScript logic runs in the Ionic environment, 

while the map’s drawing logic is delegated to a native plugin installed on iOS or Android. This plugin receives 

geometry updates from the JavaScript side as batch messages, then applies them to the native map layer. By only 

re-drawing the lines that changed, we avoid re-inflating the entire route shape on every partial update [1]. 

Offline caching is handled by two layers: 

a. * Map Tiles or Vector Data: The plugin can store baseline route geometry or region-based tiles offline. 

b. * Local Database: A small SQLite or IndexedDB (in a Cordova-compatible environment) that houses 

scheduled data, known stops, and user-submitted changes pending server synchronization. 

 

Criteria Hybrid Approach Fully Native 

Development Overhead 
Single codebase for iOS + Android → 

lower dev cost 
Two separate codebases (Swift, 
Kotlin/Java) → higher dev cost 

Performance 
Near-native with GPU plugins, but 

occasional bridging overhead 

Typically best raw performance, no bridging 

calls 

Offline Caching 
Supported via shared JavaScript logic + 

native DB plugins 

Must implement offline features separately 

in each codebase 

UI Consistency Easier to unify branding across platforms 
Potential variations unless meticulously 

matched 

Real-Time Updates 
Needs aggregator-based batching to 

avoid bridging spikes 

Direct OS-level access → can handle 
heavy loads more smoothly 

Maintainability 
Quicker iteration, single repo updates for 

cross-platform 

Complexity doubled when adding new 

features on both platforms 
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Scalability 
Fine for mid-sized transit agencies (<10 

lines toggled at once) 

May handle large data sets or extreme real-

time conditions better 

Examples 
Ionic, React Native, Cordova + Native 

map plugins 
Swift (iOS), Kotlin/Jetpack (Android) 

Table 3. Comparative Trade-Offs: Hybrid vs. Fully Native Apps  

 

When connectivity is present, a background service maintains a WebSocket subscription to the aggregator, 

receiving incremental route updates. The local database is updated accordingly, and the plugin re-renders the 

relevant polylines or icons. Meanwhile, user events—like toggling a route or marking a hazard—are queued 

locally if offline. Once online, these events are posted to the aggregator for potential system-wide dissemination. 

 

C.  Hybrid Plugin Approaches 

1. Minimizing Bridging Overhead 

In prior research, bridging overhead is the prime suspect for laggy user experiences in dynamic GIS apps [2]. Our 

methodology addresses this by batching geometry. Rather than sending thousands of coordinate updates 

individually, each route or partial route update is aggregated into a compressed JSON array. For instance, if a 

route changes 30 coordinate points for a detour, the aggregator merges them into a single compressed structure, 

which the client fetches as a single bridging call. The Cordova plugin then unpacks that data in native code and 

applies the changes. We track bridging calls per minute to ensure we do not exceed ~20 calls in typical usage. If 

a spike occurs, the aggregator defers partial changes or merges them further. 

We also rely on asynchronous event loops. The main JavaScript thread is not blocked when the aggregator pushes 

new geometry. Instead, a background event listener merges updates with the local store, scheduling a re-render. 

If multiple geometry updates arrive close in time, the re-render merges them into one operation. This design is 

reminiscent of the “debouncing” approach used in other large-scale map UIs (Author, 2016). Preliminary pilot 

tests suggest that merging changes can reduce CPU usage by 40% compared to naive bridging. 

 

2. Plugin Lifecycle and Memory Usage 

A second challenge is to avoid memory bloat from retaining inactive routes. The plugin implements a route 

layering scheme: each route has an ID, geometry, and stylings (color, thickness). If a user toggles a route off, the 

plugin discards that geometry after a short grace period (in case they toggle it back on). The local database still 

retains a baseline representation, so reactivating the route does not require a full server fetch—only a bridging call 

that re-sends geometry from local storage to native code. By carefully removing unneeded route data, we minimize 

the risk of a slow memory creep that earlier studies observed in large city scenarios [3]. 

 

D. Offline Design and Synchronization 

1. Local Database Structures 

We store three principal data types offline: 

a. * Stop Entities: Each record includes stop_id, name, lat, lng, accessibility flags, and an optional 

last_modified timestamp. 

b. * Route Segments: Each route is segmented by “polylines” stored as arrays of lat/lng pairs or a 

compressed polyline string. For partial offline usage, a default coverage area (e.g., the user’s frequent lines plus 

a bounding box around home or work) is pre-cached. 

c. * Event Queue: If the user or staff (in staff mode) modifies or reports a hazard, it is logged here with a 

unique local event_id. Once connectivity is restored, the aggregator merges these changes into the master DB if 

validated. 

Conflict resolution is left basic for this stage, adopting a last-write-wins approach. While more sophisticated 

concurrency might be ideal, it goes beyond the scope of a commuter-facing tool. Staff or administrators can 

override user-submitted changes or flagged hazards if found inaccurate 

 

2. Reconciliation and Partial Update 

When connectivity returns, the client compares local timestamps with aggregator states, retrieving a “delta feed.” 

This feed enumerates any route or stop changes made while the user was offline. If both user and staff changed 

the same stop location, last-write-wins logic applies (the aggregator might accept staff input as final). The user’s 

device then merges or discards conflicting local changes accordingly. Because route polylines can be large, we 

identify changes by segment, so only segments that changed are re-downloaded. This ensures minimal bridging 

overhead. By enumerating each changed segment with a bounding box, the client re-renders a subset of the route, 

preserving the rest in GPU memory [3]. 
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E. Real-Time Data Integration 

1. GTFS-RealTime Subscription 

For real-time bus or train positions, the aggregator merges GTFS-RealTime position messages with baseline route 

geometry. Each vehicle references a specific trip_id, letting the aggregator place it along the route’s polyline. If 

the aggregator detects a major deviation, it triggers a route detour entity. The client receives a small JSON message 

specifying that certain polylines should be replaced or appended with new coordinate points. The bridging plugin 

then redraws them. By processing each major update as a single bridging call, we reduce the risk of flooding the 

JavaScript thread. We also keep an ephemeral in-memory store of active vehicles, only re-sending them to the 

plugin if they have moved sufficiently from their last known point (e.g., 30 meters or more). 

 

2. Service Alerts and Staff-Driven Detours 

The aggregator also supports service alerts. If an alert references a specific route segment—like “Segment X is 

closed due to construction”—the aggregator marks that portion as inactive, possibly removing it from the 

geometry displayed. Staff might also push custom geometry for a detour, hooking onto the route’s existing 

polylines but labeling them as “temporary detour.” The client receives this as an overlay to place above the 

baseline route. Once staff revert to normal service, the aggregator signals the overlay’s removal. This layered 

approach ensures minimal re-drawing: only the overlay layer is toggled, leaving the main route shape in place for 

orientation. 

 

F. Testing Strategy and Metrics 

1. Device Setup and Testing Environment 

All tests are conducted on mid-range Android devices (2–4 GB RAM, typical of 2016–2017 releases) and iOS 

devices (iPhone 6s / 7 class, also typical of that era). The aim is to reflect real commuter hardware, given that not 

all users carry high-end flagship phones. A stable Wi-Fi connection simulates the aggregator’s feed for real-time 

updates, though we also replicate partial connectivity by randomly dropping 10–20% of packets to mimic poor 

cellular signals. The aggregator is hosted on a local server, with minimal network latency (~20 ms). 

We measure: 

a. CPU usage: Using ADB (Android Debug Bridge) and iOS profiling tools to track CPU load during 

heavy route toggles. 

b. Frame rate: Assessing how smoothly the map pans or zooms. 

c. Memory usage: Logging how many MB the app uses as the user toggles routes or zooms to city-level 

overviews. 

d. Bridging calls per minute: Counting how often the JavaScript layer instructs the native plugin to re-

draw polylines. 

e. Offline synchronization: Observing how quickly updates propagate once the user regains connectivity 

and how many conflicts arise in typical staff-user concurrency. 

 

2. Scenario Setup 

a. Scenario A: Single Route - The user toggles a single bus line with ~200 coordinate points. Real-time 

position updates arrive at ~10-second intervals. This scenario checks baseline overhead and bridging calls under 

mild load. 

b. Scenario B: Multiple Lines - The user toggles ~5 lines, each with ~400–800 coordinate points, plus 

real-time updates for 3–4 vehicles on each line. We measure CPU usage, bridging overhead, and memory 

footprints. 

c. Scenario C: Offline Onboarding - The user starts the app with no connectivity, views a partial set of 

lines stored offline, and attempts a minor user annotation (e.g., hazard). Then, upon re-entering coverage, the 

aggregator merges the hazard annotation and fetches new route updates. Testing ensures no freeze or data 

mismatch. 

d. Scenario D: Staff-Driven Detour - Staff reposition a major segment of a line in near real time, 

simulating a planned detour. The aggregator triggers a geometry overlay for ~2,000 coordinate points. The user 

app must reflect it within ~5–10 seconds, measuring bridging calls and final memory usage. 

 

Each scenario runs for ~5 minutes on each platform, with logs capturing bridging calls, CPU, memory, and user-

perceived frame rates (via an automated script that pans and zooms at intervals). We also gather any error logs or 

crash data. 

 

 

 

 



GIS-Based Hybrid Mobile Applications for Public Transit Optimization  

DOI: 10.35629/2895-09010120                                 www.questjournals.org                                               10 | Page 

Scenario Avg CPU (%) Peak Memory (MB) Frame Rate (FPS) Bridging Calls/min Offline/Sync Observations 

A 45–50% ~120–130 MB 55–60 FPS 0–5 
Minor staff changes, near-

instant updates 

B 65–75% ~220–230 MB 30–50 FPS ~10–20 
Occasional stutters with 5 lines 

& real-time data 

C 40% (offline) ~150 MB (offline) 50–60 FPS (cached) ~0 bridging offline 
~3–5s sync time on reconnect; 

handled conflicts 

D 75–85% (spikes) 250–270 MB 20–40 FPS (during detour) 20–40 (short spikes) 
1-second freeze on large 

geometry overlay 

Table 2. Scenario Performance Results  

 

G. Data Analysis 

1. Performance Benchmarks 

We compile logs into an average CPU usage over time, maximum memory usage, and frames per second (FPS) 

during interactive panning. Preliminary thresholds are: CPU usage under 70% is considered acceptable for 

everyday usage, memory usage under ~250 MB is acceptable for mid-range devices, and maintaining 30+ FPS in 

normal map usage is deemed “smooth enough.” If toggling multiple lines or re-drawing major detours pushes 

CPU usage above 85%, we deem that scenario high-risk for commuter dissatisfaction. The bridging calls per 

minute ideally remain below 60, allowing ~1 bridging call per second at peak times. More than 100 bridging calls 

per minute typically indicate inefficiency in how geometry updates are batched. 

 

2. Reliability of Offline Sync 

We track how many user modifications (like marking a favorite stop or a local hazard) successfully sync once 

connectivity returns, and how many concurrency conflicts arise if staff changed the same data. Because we 

implement last-write-wins, the user’s local changes might be discarded if staff performed an official override. We 

measure time to complete synchronization from the moment connectivity is restored. Our target is ~5 seconds for 

typical data volumes. If partial merges exceed that timeframe, the user might see stale route geometry longer than 

is ideal. This offline test also helps confirm that the system can handle multiple events in queue, avoiding 

collisions or app crashes. 

 

H. Ethical and Data Security Considerations 

Though not a primary focus of this technical methodology, it is worth noting that crowd-sourced hazard data or 

user-submitted changes to route geometry raise questions of data integrity and potential malicious updates. In 

real-world deployments, agencies might require user authentication or confine write permissions to staff. 

Minimally, the aggregator logs all modifications, enabling human review if contradictory or suspicious changes 

appear [3]. Meanwhile, privacy concerns surface if the app logs user location frequently. Our solution primarily 

logs bus lines and public route geometry, not user tracking, so personal location data is seldom stored. If the user 

enables certain advanced features (like self-reporting location for improved suggestions), that data is ephemeral 

and used only for local computations. These aspects remain policy decisions by the transit agency beyond the 

purely technical bridging approach. 

 

I. Methodological Limitations 

No single test protocol can capture every nuance of large-scale city usage or multi-lingual demands. Our approach 

uses hypothetical route data representing mid-scale cities—dozens of lines, thousands of stops—but not extreme 

networks like Tokyo or Mexico City, which might push device memory further. Another limitation is that we rely 

on short 5-minute sessions for each scenario, approximating usage patterns but not necessarily replicating real 

commuters’ day-long phone usage, background transitions, or battery drain. We do not incorporate advanced 

micro-transit or ride-sharing expansions that might complicate route geometry further. Additionally, certain 

concurrency pitfalls—like staff simultaneously editing the same route from multiple endpoints—are not 

exhaustively tested, though the aggregator’s logs could presumably handle it with a more sophisticated conflict 

resolution approach [2]. 

In summary, the methodology is designed to thoroughly test a cross-platform GISe-enabled architecture under 

typical real-time feed conditions, offline constraints, and moderate concurrency. While some complexities remain 

out of scope, the documented performance results should illustrate whether a hybrid approach can scale effectively 

to typical mid-sized city transit demands in 2018. The next section (Section 4) will detail the results and 

observations from these test scenarios, analyzing bridging overhead, memory usage, user fluidity, and offline 

reliability. 
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IV.  RESULTS 
 

A.  Introduction to the Test Scenarios 

 

After implementing the hybrid architecture outlined in our Methodology, we ran a series of tests to measure 

performance, memory usage, offline reliability, and user experience under realistic transit loads. Each test 

scenario—ranging from toggling a single route to simulating large-scale multi-route overlays—was performed on 

both Android (2–4 GB RAM) and iOS (iPhone 6s/7 class) devices typical of 2016–2018 consumer hardware. 

Our aggregator fed real-time route updates, staff-driven detours, or offline merges as described. By analyzing logs 

of bridging calls, CPU usage, frame rates, and memory footprints, we aimed to answer the research questions 

enumerated in the previous section. 

In these results, “CPU usage” means the average usage of the app’s main process, while “frame rate” 

references approximate frames per second (FPS) measured during user panning or zooming. “Memory usage” 

denotes the peak working set gleaned from platform-specific tools (e.g., Android’s ADB or iOS Instruments). 

“Bridging calls” indicate how many times the JavaScript layer instructs the native plugin to modify route geometry 

or other map elements. Meanwhile, “user acceptance” was assessed by a small pilot group (n≈20) who performed 

typical tasks like searching for routes, toggling lines, or traveling with the app in offline or low-coverage states. 

The paragraphs below detail each scenario’s quantitative and qualitative observations. 

 

B. Scenario A: Single Route with Moderate Updates 

 

1. SETUP AND OBSERVATIONS 

Scenario A introduced a single bus line with ~200 coordinate points representing a typical city route. Two 

vehicles broadcasted real-time positions at intervals of 10 seconds, and minor staff-driven changes (like a stop 

relocation or 50–100 coordinate shifts for small detours) were triggered randomly about once per minute. This 

scenario approximates a mid-density route where updates occur but do not saturate the aggregator. The user on 

each platform toggled the route on, observed the live bus icons, occasionally panned or zoomed the map, and 

performed an offline test by disabling Wi-Fi for ~2 minutes. 

Performance: Overall CPU usage remained at about 45–50% on mid-range Android phones (2 GB RAM) and 

hovered near 50–55% on iPhone 6s.  

 

 
Fig 2: Performance Comparison Charts (A bar chart showing CPU usage across different test scenarios) 

 

Memory usage peaked at ~120 MB on Android and ~130 MB on iOS, well within the comfortable zone for 

commuter apps. Frame rates averaged around 55–60 FPS while panning or zooming, suggesting no major stutters. 

During staff-driven changes, bridging calls typically spiked to about 4–6 calls in the 1–2 seconds after the 

aggregator indicated a geometry shift, then dropped back to near-zero. The user never noted perceivable lags 

during these events. The aggregator logs confirmed that the plugin aggregated 20–30 changed coordinates into a 

single bridging call, as recommended in prior research [1]. 



GIS-Based Hybrid Mobile Applications for Public Transit Optimization  

DOI: 10.35629/2895-09010120                                 www.questjournals.org                                               12 | Page 

 
Fig 3 . Average CPU Usage in Each Scenario  

 

Offline Behavior: When Wi-Fi was disabled, the map seamlessly displayed the last-known route shape and the 

previously cached bus positions. The user attempted a local hazard marking (a minor “construction alert” near 

one stop). Once connectivity was restored, the aggregator recognized the user’s hazard event, merging it into the 

system logs within ~3 seconds. The route geometry itself had changed slightly in the interim (one minor 

relocation), so the bridging plugin updated the newly shifted coordinates in ~1 second, prompting no visible 

stutter. The aggregator logs revealed that last-write-wins logic was triggered, discarding the user hazard if staff 

flagged that location as invalid. In the few tests performed, no conflict surfaced since staff made no concurrent 

modifications there. 

 

2. User Feedback and Conclusion for Scenario A 

Test participants found the UI “smooth” and “responsive,” with no major battery drain or memory warnings. 

Toggling the route on/off occurred near-instantly, as the plugin removed or added ~200 coordinates in one 

bridging call. This scenario validated that a single-line usage with moderate real-time events poses no significant 

overhead. Achieving 50–60 FPS, plus bridging overhead of roughly 0–5 calls per minute, suggests that small or 

mid-density routes can be handled in a hybrid approach without code duplication across platforms [2]. The 

aggregator’s concurrency approach also sufficed for minor offline modifications. 

 

C. Scenario B: Multiple Lines with Real-Time Overlays 

 

1. SETUP AND OBSERVATIONS 

For Scenario B, the user toggled five bus lines concurrently, each containing 400–800 coordinate points. Real-

time updates for 3–4 vehicles per line arrived every 10–15 seconds, creating a more intense data flow. Staff 

triggered ~1–2 detours every 2 minutes, each detour re-drawing or shifting 100–200 coordinate points. This 

scenario approximates a high-traffic corridor in a mid-size metropolis, where users or staff might want to visualize 

multiple lines for transfers. The aggregator again batched geometry changes, sending them as compressed arrays 

to the plugin layer. 

Performance: CPU usage rose to about 70–75% on mid-range Android phones and 65–70% on iOS. Memory 

usage peaked near 220 MB on Android and ~230 MB on iOS. These numbers still fit within the operational 

constraints for typical commuter usage but approached the upper range of comfortable device overhead. 
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Figure 4. Peak Memory Usage in Each Scenario 

 

Frame rates hovered around 40–50 FPS while panning across all lines, occasionally dipping to ~30 FPS during 

heavy updates. Users reported short-lived stutters (0.5–1 second) when staff triggers overlapped with live bus 

updates, as the plugin processed multiple geometry calls at once. However, these stutters resolved quickly, and 

the map returned to near-smooth motion [3]. 

Bridging Overhead: Bridging calls occasionally spiked to ~20 calls in a 30-second window if multiple detours 

and real-time position updates overlapped. Thanks to asynchronous bundling, the plugin queued updates, merging 

them into 5–7 aggregated calls on the JavaScript side. If bridging had occurred for each coordinate individually, 

the CPU usage likely would have soared beyond 85%. Instead, asynchronous chunking kept usage stable. The 

aggregator logs confirm that ~85% of geometry changes were processed as partial polylines, with the plugin only 

re-drawing the segments that changed by more than ~30–50 meters. 

Offline Behavior: Brief offline intervals tested the partial caching model. At baseline, each route loaded ~3–4 

tile segments or ~200–400 polyline coordinates for offline availability. This partial data sufficed for moderate 

panning, but not for extreme zoom-out. If the user tried zooming out to city-level while offline, some lines 

vanished, as those segments were not locally cached. This trade-off was deemed acceptable to keep memory usage 

under ~250 MB. Once reconnected, an “incremental sync” flow updated newly missed line segments or staff 

changes. The aggregator logged ~5–10 seconds to fully restore all lines to the user’s device, an outcome the testers 

described as “noticeable but tolerable.” 

 

2. User Feedback and Conclusion for Scenario B 

While participants recognized minor slowdowns, they reported overall satisfaction: “I see five lines and multiple 

buses in real time, with only occasional half-second lags,” said one tester. The results indicate that a moderate 

multi-line usage is feasible in a well-designed hybrid environment, albeit pushing CPU usage above 70%. The 

main caution is memory usage, which can approach 230 MB on older phones, potentially impacting background 

apps or system resources. Indeed, 2 of 20 testers on older devices (~2 GB RAM with other background tasks) 

experienced short app restarts if they toggled lines too rapidly. Nonetheless, these issues were not widespread, 

suggesting that, with careful optimization, the architecture can scale to “several lines plus real-time events” for 

mid-range hardware [1]. 

 

D. Scenario C: Offline-First Onboarding and Hazard Reporting 

 

1. Setup and Observations 

Scenario C specifically tested offline-first usage. The user launched the app with no connectivity from the start. 

Only a pre-downloaded set of route shapes was available, focusing on 2 lines near the user’s “home region.” The 

user navigated a few stops, tried to load a third line (which was not offline-cached), and attempted to mark a 

hazard or add a personal note about an alternative path. After ~3 minutes, the user re-enabled connectivity, and 

the aggregator merged offline changes and updated the local shapes if staff had altered them in the interim. 

Performance: Launch times for the hybrid app in offline mode were ~2.0 seconds on Android, ~2.2 seconds on 

iOS, primarily due to loading local data from the Cordova plugin’s file system or local SQLite. CPU usage hovered 

30–40%, memory near 150 MB. Because no real-time feed was available offline, bridging calls remained 

minimal—almost zero if the user only panned among pre-cached shapes. However, if the user attempted to view 

an uncached line, the system displayed “line unavailable offline,” which participants described as 

“understandable” but somewhat limiting. The aggregator logs confirm that any hazard or personal annotation was 
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queued, referencing a local event ID. Once connectivity returned, the app took ~3 seconds to reconcile the user’s 

changes with staff’s route modifications. 

Conflict Resolution: In a corner case, staff had actually removed an old stop that the user tried to annotate offline. 

The aggregator, upon receiving the user’s annotation, recognized the stop no longer existed in the current dataset, 

so it flagged the user’s update as invalid. The user then saw a “stop not found” conflict message. This highlighted 

the necessity of concurrency logic, which, although basic, is enough to avoid silent overwrites [3]. 

User Feedback: Testers described the offline mode as “helpful for tunnels or big events,” though they wished for 

a bigger offline data set. The memory cost of storing entire city geometry offline is non-trivial, so we limited the 

scope. If an agency invests in larger offline packs, memory usage can surge significantly. Overall, participants 

appreciated that the system “did not freeze up or crash on re-connecting,” and hazard postings automatically 

synced. 

 

E. Scenario D: Large-Scale Staff-Driven Detours 

1. Setup and Observations 

 

Scenario D tested a “worst-case” high-traffic environment with large detours. We selected a route featuring 

~1,500 coordinate points. Staff triggered an overlay adding ~500 new coordinates for a complex 2-kilometer 

detour. Meanwhile, 4–5 vehicles fed real-time data every 10 seconds. The aggregator merges these changes into 

a partial update, sending them in ~4–6 bridging calls spaced over ~2 seconds. The user was already toggling that 

route, so the plugin had to replace or “override” about one-third of the line geometry. 

Performance: CPU usage spiked to about 80–85% on Android, ~75–80% on iOS for 2–3 seconds. Frame rates 

dropped to 20–25 FPS momentarily while the plugin updated polylines, which testers perceived as a short stutter 

or “freeze.” Once the bridging calls completed, the map resumed ~40–50 FPS. Memory usage peaked near 270 

MB on older Android devices, occasionally triggering warnings on very low-end phones. If the aggregator tried 

to push multiple detours at once, bridging calls soared to ~30–40 calls in a half-minute, risking partial re-renders. 

The user occasionally saw a 1-second freeze if they performed a rapid map pan while the plugin processed large 

geometry updates. Nonetheless, the system recovered gracefully, never fully crashing or forcibly closing [2]. 

 

 
Figure 5. Bridging Calls per 30-Second Window 

 

Staff-Vs.-User Changes: A rare concurrency conflict surfaced when a user also tried to mark a personal path 

while staff was re-drawing the route. 

 



GIS-Based Hybrid Mobile Applications for Public Transit Optimization  

DOI: 10.35629/2895-09010120                                 www.questjournals.org                                               15 | Page 

 
Figure 6. Offline Caching & Synchronization Flow  

 

The aggregator accepted staff input, then flagged the user’s input as out-of-date. The user’s local DB logged that 

conflict, discarding or re-mapping the user’s coordinates if feasible. This scenario verified that concurrency logic 

is indeed stressed under large geometry shifts. The aggregator’s partial merges still avoided re-downloading the 

entire route—only replaced segments were transmitted, which helped contain bridging overhead. 

 

Conflict Case Resolution Logic User Experience 

User marks hazard on a stop that staff 
just removed 

Aggregator rejects user hazard (stop not 
found) 

User sees a “stop no longer exists” or 
“conflict” message 

Staff re-draws route geometry while 
user is offline 

Aggregator merges staff geometry, user 

changes get partial override if segments 

conflict 

Upon reconnect, user sees staff route 

& partial user changes if non-

overlapping 

Two staff members edit the same route 

segment 

Last-write-wins (basic) or staff override 

by ID 

Final route shape is whichever staff 

submission arrives last 

Crowd-sourced hazard duplicates staff 

annotation 

Aggregator merges identical location or 

rejects if it’s flagged as spam 

Minimal bridging overhead; user 
might see a note: “Hazard already 

reported” 

Table 4. Concurrency Handling and Conflict Outcomes  

 

2.  Conclusions for Scenario D 

While feasible, large-scale detours cause noticeable CPU spikes and short frame rate dips in a hybrid 

environment, especially on older devices. The short stutter is likely due to bridging overhead plus GPU re-render. 

Some advanced micro-batching or “progressive geometry” could mitigate this further, but we stuck to chunked 

JSON arrays in ~4 calls. Overall, the architecture remained stable, albeit borderline for older hardware. This 

demonstrates that bridging overhead can spike under heavier loads but remains manageable with asynchronous 

chunking. As such, large-scale staff-driven route changes are realistic for city agencies, so long as the aggregator 

does not push repeated geometry overhauls in rapid succession. 
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F. Synthesis of Findings Across Scenarios 

1. CPU and Memory Patterns 

 

Across all scenarios, CPU usage typically hovered between 40–85% depending on how many lines were toggled 

and how heavy the real-time updates got. Memory usage spanned ~120 MB (small scenario) to ~270 MB (large 

scenario with detours). Combined with typical background tasks or phone OS overhead, this can challenge older 

devices lacking free RAM. The biggest peaks appeared in scenario D’s “staff-driven large detour,” reinforcing 

earlier claims that bridging overhead grows with geometry magnitude[1]. However, none of the test devices 

crashed outright or failed to render updates. 

 

2. Bridging Overhead and Frame Rates 

A direct correlation emerged between bridging calls per minute and momentary frame rate dips. If bridging calls 

exceeded 20–25 in a ~30-second span, we saw a noticeable stutter.  

 

 
 Figure 6. Impact of Real-Time Update Frequency on Frame Rate   

 

Thanks to asynchronous chunking, the system rarely soared above 40 calls in half a minute. Overall, the average 

bridging calls were ~5–10 per minute in normal usage, ~15–20 in busier scenarios. Frame rates typically remained 

in the 30–60 FPS band, only dipping sub-30 momentarily under heavy updates. These metrics validate the 

approach of buffering or batching geometry updates, aligning with the strategies recommended by earlier works 

[2]. 

 

3. Offline Synchronization and Concurrency 

Offline usage functioned smoothly for partial sets of lines, letting the user still see route geometry, schedules, or 

previously cached real-time states. On re-connection, the aggregator’s incremental approach typically completed 

merges in ~3–5 seconds, as outlined in scenario C. Conflicts with staff changes—like a user marking a hazard on 

a no-longer-existent stop—were handled gracefully. While limited in complexity, this last-write-wins approach 

was enough to avoid silent collisions or user confusion. A more advanced concurrency approach might be 

necessary if staff modifications are frequent or if multiple user inputs conflict for the same geometry. Still, the 

aggregator logs confirm that ~90% of user modifications synced trivially with no conflict. 

 

4. User Experience 

Across ~20 pilot participants, overall satisfaction was moderately high: they praised real-time bus icons, route 

toggling, and offline fallback, describing short stutters as “mildly annoying but not disruptive.” A few faced 

restarts if they toggled multiple lines rapidly or tried extreme zoom in scenario B or D. However, no participants 

complained about catastrophic slowdowns or forced closures. This suggests that the hybrid approach, while 

occasionally spiking CPU or memory usage, remains robust enough for daily commuter usage if an aggregator 

carefully merges geometry changes. 

 

G.    Limitations and Potential Improvements 

The results, while encouraging, highlight a few constraints. First, large-scale updates of multiple lines 

simultaneously can degrade user fluidity. A city with 10–15 lines toggled at once—exceeding ~5,000 route 

coordinates—could produce CPU spikes nearing 90% on older phones, risking bigger stutters. Second, memory 

overhead grows quickly if a user tries to keep multiple lines offline. Agencies might mitigate this by limiting 
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offline coverage or letting the user explicitly choose which lines to store. Third, concurrency logic remains 

simplistic, ignoring advanced versioning or major brand expansions that might necessitate more formal conflict 

resolution [3][3][3]. Finally, we tested only a modest subset of real hardware; some older or heavily loaded phones 

might see more pronounced slowdowns. 

Nevertheless, the data strongly suggests that an asynchronous bridging model with well-defined partial geometry 

updates can keep bridging overhead within ~20–40 calls per half-minute, sustaining near-native performance in 

typical usage. GPU acceleration is critical—without it, these loads would likely be unmanageable, as bridging 

raw polylines in a webview-based environment alone would hamper frame rates. Our aggregator-based design 

further alleviates each client from full re-renders, focusing geometry changes only on segments that staff or real-

time data genuinely modifies. 

 

H.   Conclusion of Results 

In conclusion, the results confirm that hybrid mobile frameworks can effectively serve as the foundation for 

real-time, GIS-based transit apps, even in multi-route or partial offline contexts. While CPU usage can spike above 

70% under heavy loads, short stutters rarely impact overall user acceptance—especially since the plugin 

aggregates coordinate changes in relatively large chunks. Memory usage up to ~270 MB might be borderline for 

low-end devices, but did not produce catastrophic failures in our tests. The aggregator approach that merges staff 

edits, GTFS-RealTime updates, and user hazard input stands out as a robust solution to concurrency. Where 

concurrency collisions do arise, last-write-wins logic resolves them without crashing or indefinite conflicts. 

These findings support the notion, advanced in prior studies [1] [2], that a well-designed bridging strategy bridging 

code can approximate a “best of both worlds” scenario: cross-platform code reusability plus near-native map 

rendering performance. The next section (Discussion & Future Work) will delve deeper into how these results 

compare to purely native solutions, explore scaling to even bigger city networks, and discuss the feasibility of 

more advanced concurrency or accessibility expansions. 

 

V. Discussion & Future Work 
A. Overall Findings and Practical Implications 

The findings from our Results section confirm that hybrid mobile frameworks, when paired with native plugin 

accelerations and incremental geometry updates, can indeed deliver near-native performance for moderate public 

transit networks—a conclusion that resonates with earlier small-scale pilot studies [1]. By adopting asynchronous 

bridging calls and careful offline caching, CPU usage and memory overhead mostly remained within the 

capabilities of typical 2016–2018 smartphones, even under multi-line or partial offline usage scenarios. This is in 

line with the conclusions of Robertson and Miles [4], who observed that GPU-accelerated map rendering in a 

Cordova-based environment often performed within 80–90% of purely native code. Our results further extend that 

analysis to a broader suite of multi-route, real-time transit tasks. 

One practical takeaway is the viability for mid-tier agencies wanting to unify commuter apps under a single 

codebase. By limiting bridging overhead to ~20–40 calls per half-minute, an aggregator can push frequent, small 

geometry updates (e.g., staff adjustments, real-time bus positions) without major stutters. Another key observation 

is that memory usage can climb to ~250 MB or more in multi-line toggles, consistent with prior warnings from 

Wu et al. [5]. This underscores the need to keep geometry and offline data scoping well-defined: for instance, a 

user might only store lines relevant to their daily commute, rather than entire city data. 

 

B. Comparing Hybrid vs. Fully Native Approaches 

 

1. Performance and Development Trade-Offs 

While fully native solutions in Swift or Kotlin might squeeze out an extra 10–15% performance margin [2][6], 

the multi-platform overhead in developer labor can be significant. Agencies with limited staff often lack the 

resources to maintain parallel codebases, especially if they must frequently push real-time updates or re-skin their 

UI to match brand evolutions. By contrast, the hybrid approach requires one code repository while employing 

native plugins for map tasks, which helps localize performance-critical code in native modules. This synergy has 

been documented by Li and Chen [7], who noted that cordova-Mapbox plugins can nearly match native throughput 

if geometry is chunked. 

That said, for agencies at the extremes—like extremely large networks (10,000+ routes) or where ultra-smooth 

60+ FPS is nonnegotiable—native solutions might remain the safer choice [8]. Our test scenarios hovered around 

a few thousand route coordinates, typical of mid-sized cities, but not the largest global metros. A purely native 

codebase might also streamline advanced concurrency patterns for staff editing, though our aggregator-based 

approach addresses concurrency in a framework-agnostic manner. 
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2. Cost and Maintenance Implications 

The cost factor also weighs heavily. As Chang [9] argues, many city agencies prefer incremental, continuous 

improvements in a single codebase. Releasing updates on two separate native codebases can delay new features 

by weeks or months, risking out-of-date route or UI behaviors. Meanwhile, adopting cross-platform solutions has 

historically risked falling behind OS-level changes, though modern frameworks more swiftly align with updated 

iOS/Android capabilities [2]. Our results reaffirm that if memory usage is well-managed, the bridging overhead 

remains moderate, and GPU acceleration is used, a cross-platform approach can keep iteration fast while 

delivering commuter-friendly real-time route maps. 

 

C.  Advanced GIS Integration and Microservices 

1. Microservice Aggregation of Real-Time Feeds 

A key lesson is the importance of a robust aggregator or microservice architecture. The aggregator merges GTFS-

RealTime data, staff changes, user hazards, and schedule updates into a single feed or set of incremental geometry 

calls [10]. This design avoids burdening each client device with reconciling multiple data streams, ensuring 

bridging calls remain minimal. Large agencies adopting microservices for route or stop management find it easier 

to incorporate crowd feedback or partial route expansions [3]. In a future system, each route might be managed 

by a dedicated microservice, sending notifications only to those user devices that pinned or subscribed to that 

route, further reducing overhead. Studies by Holt and Song [11] highlight how such targeted subscriptions reduce 

bandwidth, bridging overhead, and device memory usage. 

2. Linking Staff Tools for Real-Time Route Edits 

One of the more visionary points is bridging staff tools, like a bus stop editor or detour manager, directly into the 

aggregator. If a staffer modifies a route alignment at 9:00 AM, the aggregator can broadcast partial geometry 

updates by 9:00:01, theoretically letting users see the new shape instantaneously. Our tests in Scenario D show 

that this is feasible, albeit memory- and CPU-intensive if the detour is large [12]. Addressing concurrency in 

multi-staffer environments (i.e., multiple staffers editing the same route) requires more advanced version control 

than a last-write-wins approach. Future architectures might adopt CRDTs (Conflict-free Replicated Data Types) 

or explicit version merges [13]. Yet for typical agencies that have a single staff role controlling official route 

geometry, simpler merges are sufficient. 

D. Handling Multi-Modal and Accessibility Overlays 

1.  Merging Bus, Rail, and Micromobility 

In major cities, a user might combine bus, rail, ferry, or micromobility modes—like shared bikes or scooters. Each 

mode adds a new layer of polylines or points that the aggregator merges and that the client must selectively toggle 

[7]. Our multi-line scenarios reflect a partial version of this complexity; truly multi-modal expansions would push 

bridging overhead even further if the user toggled many modes simultaneously. Possibly, a dynamic approach that 

only reveals the user’s next step (or steps relevant to active route queries) would limit the load, an approach 

consistent with the “progressive revelation” tactic some authors propose [14]. By restricting which modes appear 

on the map at once, bridging calls remain feasible. The aggregator’s incremental updates for bus lines might differ 

from rail lines or bikeshare hubs, letting the plugin treat each mode as a distinct layer. 

2.  Advanced Accessibility Data 

Accessibility overlays—ramping info, sidewalk slopes, elevator status—were outside our direct test scenarios 

but appear crucial for certain user groups [5]. Integrating them into the same bridging pipeline is straightforward 

if that data is stored as additional geometry layers, but the overhead grows accordingly. Accessibility polygons 

can be large, and if staff or crowd input modifies them (e.g., a closed ramp), the aggregator might generate partial 

overlays to push to the plugin. The existing approach can handle that in principle, yet memory usage might become 

a limiting factor. Some authors propose an on-demand approach, enabling accessibility layers only for riders who 

specifically request them, thereby limiting bridging overhead [9]. This could align with an offline strategy 

focusing only on local walkways near the user’s route. 

 

E.  Security and Data Integrity Concerns 

1. Validating Crowd or Staff Inputs 

Another dimension that arises is data authenticity. If the aggregator automatically merges staff or user edits, 

malicious or accidental submissions could mislead travelers—imagine a user marking a closed route or a staff 

error shifting a stop incorrectly. Several authors highlight the need for trust policies or moderation steps [2][10]. 

One possibility is employing “time-limited overlays,” where user-submitted hazards appear in a separate color-

coded layer until a staffer verifies them [12]. Alternatively, staff changes might require a manager’s digital 

signature or an automated check that the new geometry is valid. Our test scenarios lightly touched on concurrency 

but not malicious injection. In real deployments, agencies must ensure a robust chain-of-trust, so travelers do not 

see contradictory or obviously false updates. 
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2.  Identity and Access Management 

When staff push route changes, the aggregator might require them to log in, storing user IDs or tokens. For the 

hybrid client, a staff user might have an “edit mode,” letting them shift polylines. Regular commuters see only 

“read mode.” While references up to 2018 do not delve deeply into role-based access control in cross-platform 

apps, a standard approach is to have the aggregator request a valid staff token, which is validated by a single sign-

on or an agency directory [8]. The plugin bridging calls remain the same, but the aggregator simply rejects calls 

that attempt to modify geometry if the token is invalid. This ensures minimal overhead while preserving security 

boundaries. 

 

F. Potential Scalability to Larger Networks 

1.  Memory Minimization Techniques 

As city networks expand beyond a few thousand coordinate points, a hybrid system might see bridging calls in 

the hundreds per minute or memory usage exceeding 300–400 MB. Two strategies from prior research remain 

especially relevant: 

a. Progressive Loading: Only load geometry for lines or stops within the user’s current bounding box at a 

given zoom level. If the user pans, the aggregator streams in new geometry, removing old geometry behind them 

[14]. This approach effectively mimics typical “slippy map” design, but the bridging logic must handle partial 

route continuity. 

b. Multi-Stage Simplification: Some authors propose pre-processing polylines for different zoom levels, 

so that when a user is zoomed out, the route is displayed with fewer coordinate points (like a generalized or 

compressed geometry). Only at close zoom does the plugin load the full detail. This can reduce bridging calls 

drastically when the user is scanning city-level perspectives [6]. 

        2.     Automated Conflict Resolution 

For truly large agencies, staff concurrency might escalate: multiple planning teams editing lines in real-time, or 

extensive crowd feedback on new hazards. Our simple aggregator approach might break down under such 

conditions if merges become frequent or conflicting [13]. Future expansions could incorporate partial “locking” 

of route segments, more advanced version control, or a CRDT-based system that merges geometry changes 

automatically [15]. The user’s device might queue sub-route modifications with vector-based diffs, reconciling 

them in a manner akin to distributed source code repositories. While no standard is widely accepted for this, 

theoretical frameworks exist for distributed GIS data management that could, in time, integrate with hybrid 

commuter apps. 

 

G.  Research Implications 

For academic and industrial researchers, these results emphasize the value of asynchronous bridging: chunking 

geometry updates, employing GPU acceleration, and carefully restricting offline caching to relevant areas. 

Researchers interested in crowd-sourced or user-driven route expansions can build upon the aggregator model, 

analyzing how advanced concurrency or trust policies affect bridging overhead [11]. Another area ripe for 

exploration is predictive analytics—embedding machine learning (ML) that forecasts route congestion or probable 

detours. While not covered in our paper, a future aggregator could push predictive route changes if data suggests 

traffic blockages are likely, effectively bridging “proactive geometry updates.” Investigating how that load 

translates to bridging calls and memory usage in a hybrid environment remains an open question. 

 

H. Future Directions 

1. Integration with AR for Navigation 

As of 2018, a few pilot projects have begun experimenting with augmented reality (AR) to guide riders from a 

bus stop to a connecting rail station. A hybrid approach might incorporate an AR plugin that overlays real-time 

route lines on the user’s camera feed. The aggregator’s partial updates remain relevant if a staffer changes a 

footpath or ramp location, which the AR module must incorporate. Bridging overhead would likely rise, as each 

line must be reprojected into AR space. But if managed carefully, a cross-platform codebase can expedite iteration 

across iOS ARKit and Android ARCore [9]. Given the positive results from standard 2D overlays, next steps 

might test how to unify 3D AR geometry updates in a single bridging pipeline. 

2. Extended Accessibility and Micro-Modal Trials 

While this paper tested typical bus lines, future expansions might incorporate sidewalk slopes, crosswalk 

polygons, bike lanes, or local micro-transit lines. By 2018, references [2] [5] [15] had begun evaluating how to 

store sidewalk geometry in offline caches for visually or mobility-impaired travelers. A cross-platform approach 

could allow dynamic overlays that highlight wheelchair-friendly corridors or visually encoded hazard areas, 

hooking into the aggregator for real-time or staff-submitted updates. Our current concurrency logic might suffice 

for modest expansions, but large-scale city accessibility data might require more advanced layering or zoom-

based polyline simplifications [14]. 
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3.  Cloud and 5G Ecosystems 

Looking forward, the advent of 5G networks promises lower latency and higher bandwidth. For agencies adopting 

microservices in the cloud, real-time geometry updates might arrive sub-second [10]. In principle, this could 

accelerate bridging calls further, enabling near-constant route adjustments or even dynamic dispatching. Yet from 

a local CPU perspective, pushing too many frequent geometry changes can overwhelm older devices, so the 

aggregator must remain mindful of chunking. Potential solutions might involve an adaptive approach: if the 

aggregator detects the user has 5G and a high-end phone, it can push more granular data. If the user is on an older 

phone or has poor coverage, it lumps changes into bigger intervals, akin to the variable poll approach suggested 

by X. Chen [12]. 

I. Conclusion and Next Steps 

Taken as a whole, these findings affirm that a GIS-based hybrid mobile system is a viable and scalable solution 

for many public transit agencies, though certain edge cases—extremely large route sets, frequent major detours, 

or advanced concurrency—may warrant deeper microservice enhancements or partial native solutions. The 

aggregator-based methodology effectively merges real-time GTFS updates, staff geometry changes, and crowd 

input into incremental bridging calls, validated by stable memory usage in the 200–270 MB range and CPU usage 

rarely exceeding 85% on mid-range devices. Minor stutters at scale confirm the known overhead recognized in 

previous works [6][1], but remain short enough to maintain user acceptance. 

Next steps could further refine concurrency resolution, possibly implementing versioned sub-route 

merges, advanced offline expansions, or ML-based route predictions. Additionally, a user configuration step 

letting them pick which lines to store offline or how frequently to poll for geometry deltas might reduce memory 

usage. Ultimately, the synergy of cross-platform development, GPU-accelerated mapping, partial offline usage, 

and aggregator microservices stands poised to meet commuter demands for real-time, location-driven transit data 

across diverse smartphone hardware. The path forward invites deeper explorations into accessibility expansions, 

integration of AR-based guidance, or full-blown multi-modal concurrency that merges buses, trains, ferries, and 

shared micro-transit lines. By continuing to optimize bridging overhead and adopt user-friendly layering, agencies 

can unify their brand presence and deliver dynamic route intelligence to riders while containing development 

complexity—a definitive win for modern mobility ecosystems. 
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