

Artificial Intelligence and Educational Ethics: Exploring Algorithmic Bias and Privacy Protection

Jundan Wang¹, Chuanli Wang², Cong Chen*

Zhaoqing University, Zhaoqing City, Guangdong Province, China

Abstract

In the field of education, the use of artificial intelligence (AI) is rapidly evolving, providing unprecedented opportunities for personalizing education, while also posing ethical challenges such as algorithmic bias and data privacy protection. This study aims to provide insights into the use of AI in education and the ethical issues it raises, and proposes comprehensive strategies to address them. The study focuses on how to identify and reduce algorithmic bias in AI applications in education and how to ensure data privacy for students and educators. By constructing a multidimensional analytical framework encompassing technology, policy, education, and awareness-raising, this paper provides a comprehensive analysis of these issues. The findings reveal that the ethical challenges raised by AI in education can be effectively addressed by adopting comprehensive measures such as algorithm optimization, data management, ethical design, policy formulation, and educational awareness-raising. The comprehensive analytical framework proposed in this paper provides a new perspective for understanding and solving the ethical issues of AI in education, which can help promote the healthy development of AI technology in education, ensure the fairness and safety of the technology, and at the same time adequately protect the privacy rights of students.

Keywords: Artificial intelligence, Educational ethics, Algorithmic bias, Data privacy, Solution strategy

Received 05 Dec., 2025; Revised 10 Dec., 2025; Accepted 13 Dec., 2025 © The author(s) 2025.

Published with open access at www.questjournals.org

I. Introduction

In the vast field of artificial intelligence and education research, with the rapid development of technology, artificial intelligence (AI) has become an indispensable part of the education field, bringing revolutionary changes to personalized learning, intelligent tutoring, and teaching management[1]. However, with the widespread application of AI technology, a series of ethical issues have gradually surfaced, among which algorithmic bias and data privacy issues are particularly prominent, which have attracted extensive attention from both academia and the public.

Although existing researches have extensively explored the application of AI in education and its potential advantages[2-3], in-depth analyses of algorithmic bias and privacy protection are still insufficient. Most of the existing literature focuses on the optimization of the technical level and the description of application cases, while there is a relative lack of systematic research on the ethical issues and their resolution strategies in educational practices. In addition, existing researches have not yet provided a clear answer on how to reduce algorithmic bias while safeguarding data privacy and achieve a balance between fairness and efficiency in education.

In view of this, this study aims to explore the following research questions: first, what are the specific manifestations of algorithmic bias and data privacy issues triggered by AI in education? Second, how are these issues handled in existing educational practices, and what are the challenges and shortcomings? Furthermore, how to construct an effective ethical framework to minimize algorithmic bias and protect data privacy?

The value of this study is to reveal the theoretical roots and practical dilemmas of ethical issues in AI educational applications, and to provide a theoretical basis for the development of corresponding ethical guidelines and policy recommendations. Meanwhile, the research results will also provide practical guidance for educational policy makers, technology developers and practitioners to promote the healthy development and application of AI technology.

II. Artificial Intelligence In Education

In the field of education in the 21st century, artificial intelligence is gradually becoming a key force in promoting educational innovation. With the development of technologies such as big data, machine learning,

and natural language processing, AI not only changes the way of delivering educational content, but also provides new tools and methods for educational management and assessment. This chapter will delve into the application of AI in education and analyze how it affects the teaching, learning and assessment process.

2.1 Intelligent Teaching Tools and Platforms

Personalized learning systems use artificial intelligence technology to customize learning plans for each student based on factors such as the student's learning style, ability level, and interests. For example, by analyzing students' learning data, the system can recommend learning resources and activities that are suitable for students and improve learning efficiency[4]. The personalized learning system can also monitor students' learning progress in real time and adjust the learning plan in time to meet students' individual needs.

Smart tutoring software is another important artificial intelligence teaching tool. It can provide one-on-one tutoring services to students, answer their questions, and provide feedback and suggestions. Intelligent tutoring software usually uses natural language processing technology to understand students' questions and give accurate answers[5]. In addition, intelligent tutoring software can help students improve their academic performance by providing personalized learning suggestions and exercises based on their learning situation.

Online education platforms are an important vehicle for the application of artificial intelligence in education. Online education platforms utilize artificial intelligence technology to provide students with rich learning resources and interactive learning experiences. For example, some online education platforms use intelligent recommendation systems to recommend suitable courses and learning resources for students based on their learning history and interests. Online education platforms can also utilize AI technology to realize automatic correction of assignments, online exams and other functions to improve teaching efficiency and quality[6].

2.2 Educational Data Analysis and Evaluation

In the field of education, the use of AI is not limited to instructional tools and platforms, but extends to the in-depth analysis and evaluation of educational data. These applications provide unprecedented opportunities to gain a deeper understanding of the learning process and improve the efficiency of teaching practices.

Artificial intelligence technologies allow for in-depth analysis of student learning behaviors. For example, learning management systems and smart devices are utilized to collect student learning data, including study time, participation, and question answering. Through the analysis of these data, students' learning habits, preferences and difficulties can be understood, providing teachers with personalized teaching suggestions. At the same time, it can also help students better understand their learning situation and adjust their learning strategies. In addition, AI can identify learning problems that students may face in advance through predictive analytics and intervene in a timely manner.

Artificial intelligence also plays an important role in teaching effectiveness assessment. Traditional teaching effectiveness assessment mainly relies on test scores and teacher evaluation, which has certain limitations. In contrast, artificial intelligence can provide a more comprehensive and objective assessment of teaching effectiveness by analyzing a large amount of teaching data, including students' learning behavior, homework completion, and test scores[7]. For example, using machine learning algorithms, teaching effect assessment models can be established to predict students' learning outcomes and provide a basis for teaching improvement. At the same time, AI can also automatically generate assessment reports to improve assessment efficiency.

2.3 Virtual Reality and Augmented Reality in Education

VR and AR are able to create immersive learning environments that make students feel like they are there. For example, in history teaching, students can travel through time and space through VR technology to experience the scenes of historical events. In geography teaching, AR can present geographic landscapes in front of students, enhancing their understanding and memorization of geographic knowledge. This kind of immersive learning experience can stimulate students' interest in learning and improve their participation and initiative in learning. At the same time, immersive learning also helps to cultivate students' creativity and imagination, allowing them to explore and practice in a virtual environment.

VR and AR also have great potential for hands-on skills training. For some disciplines that require practical operations, such as medicine and engineering, VR and AR can simulate real operating scenarios and allow students to practice repeatedly in a safe environment. For example, medical students can improve their surgical skills by simulating surgical procedures through VR; engineering students can use AR to assist in operations such as mechanical assembly. In addition, VR and AR can provide students with real-time feedback and guidance to help them correct mistakes in time and improve their practical skills.

III. Performance And Influence Of Algorithm Bias

After exploring the wide range of applications of artificial intelligence in education, we inevitably encounter some ethical issues that accompany the development of the technology. Among them, algorithmic bias is one of the particularly prominent issues in the field of AI, which is related to educational fairness, equalization of opportunities and protection of students' rights and interests.

3.1 Concepts and Manifestations of Algorithmic Bias

Algorithmic bias usually refers to unfair or discriminatory results produced by algorithms during the training and decision-making process of machine learning models due to factors such as imbalanced datasets, poor algorithmic design, or encoding of social biases[8].

Algorithmic bias manifests itself in a variety of forms, of which those of particular concern in education include the echo chamber effect of information that may be exacerbated by personalized recommender systems, whereby the system tends to recommend content that aligns with students' existing perspectives, thereby limiting their exposure to multiple viewpoints[9]. In addition, biases in assessment tools may lead to unfair evaluations of certain groups or individuals, for example, language processing algorithms may recognize certain dialects or accents less accurately[10].

In educational settings, algorithmic bias may manifest itself in inaccurate assessments of students' abilities, inappropriate guidance of students' learning paths, or adverse effects on certain groups in resource allocation. For example, if an intelligent tutoring system is trained based on a biased dataset, it may underestimate or overestimate the actual abilities of certain groups of students, thereby affecting their learning opportunities and access to resources[11].

The presence of algorithmic bias not only affects the learning experiences and outcomes of individual students, but more broadly, it may also exacerbate educational inequalities and diminish the overall equity and effectiveness of the education system. Therefore, identifying and understanding the concepts and manifestations of algorithmic bias is crucial for developing fair and transparent educational algorithms.

3.2 Reasons for Algorithmic Bias

The generation of algorithmic bias is a complex problem that involves several aspects, including data bias, model design flaws, and human factors.

Data bias is an important cause of algorithmic bias. The performance and accuracy of an algorithm depends heavily on the datasets used. If these datasets are inherently biased, then the learning results of the algorithm will also reflect these biases. For example, if the datasets used to train the algorithms are underrepresented or oversampled for certain groups, this will cause the algorithms to perform poorly when processing data from these groups[12-13]. In addition, biases in data collection and processing can lead to algorithmic bias. For example, bias may be introduced during the construction of intelligent communication databases due to differences in history, culture, and values[14]. In this case, even if the data is neutral or the algorithm is open, it is difficult to completely circumvent bias.

Model design flaws may also lead to algorithmic bias. Even if the dataset itself is fair, inappropriate algorithmic choices or parameter settings may lead to unfair results. For example, some algorithms may overemphasize certain features while ignoring others that are equally important, thus creating bias in the decision-making process. In addition, the opacity and lack of explanatory power of algorithms make it difficult for users to understand their decision-making process, which in an educational setting may affect teachers' and students' trust in the system.

Human factors play a key role in the creation of algorithmic bias. Human decisions and biases involved in the design, development, and deployment of algorithms may be encoded into the algorithms. Developers' values, preconceptions, and interpretations of data may influence the behavior of algorithms. In addition, socio-cultural contexts and stereotypes may be unknowingly embedded in the design and implementation of algorithms.

3.3 The Impact of Algorithmic Bias on Educational Equity

The impact of algorithmic bias on educational equity is profound and complex. It is not only related to the learning opportunities and development prospects of individual students, but also to the fairness of the distribution of educational resources.

First, algorithmic bias may affect students' learning opportunities and development prospects in ways that are not readily apparent. For example, if an intelligent admissions system is biased in evaluating applicants, it may inadvertently overlook the strengths of students from certain backgrounds or overemphasize the traits of certain groups, leading to unfair admissions decisions. In addition, a personalized learning recommendation system that is biased may recommend courses and resources to students that do not match their interests or abilities, thereby limiting their learning horizons and development potential.

Second, algorithmic bias may also lead to uneven allocation of educational resources. With limited school resources, a resource allocation system that relies on algorithmic decision-making may, based on biased data, focus more resources on students from certain specific groups or districts while neglecting other students in need. This unbalanced distribution of resources not only exacerbates educational inequality, but may also further solidify social stratification, affecting the long-term development and stability of society.

Educational equity is the cornerstone of achieving social justice. The existence of algorithmic bias not only jeopardizes the individual's right to education, but may also weaken the overall effectiveness and fairness of the education system. Therefore, identifying and solving the problem of algorithmic bias is of great significance in guaranteeing educational opportunities for every student and promoting educational equity.

IV. Challenges Of Privacy Protection In Ai Educational Applications

With the widespread use of AI technologies, especially in data-driven educational environments, students' and teachers' personal data are being collected and analyzed in large quantities, which undoubtedly increases the risk of privacy leakage. Data privacy is not only a matter of individual rights and interests, but also an important part of educational ethics, which affects the trust and acceptance of educational technology.

4.1 Collection and storage of educational data

In AI education applications, the collection and storage of educational data is the basis for personalized learning and teaching effectiveness assessment. The types of data include students' personal information, learning behaviors, performance records, and interactive feedback, which are usually collected through online learning platforms, intelligent teaching systems, and mobile devices. With the development of technology, the collection methods have become more diverse and automated, ranging from simple tracking of clicking and browsing behaviors to complex analysis of learning behaviors.

However, the issue of security of data storage has also come to the fore. The sensitive nature of educational data requires that its storage meets strict security standards to prevent unauthorized access and data breaches. Unfortunately, educational data breaches are commonplace, and these breaches not only violate students' privacy rights, but may also pose a threat to their personal safety. Data may be exposed to a variety of security risks during storage, including hacking, internal leaks, and technical failures.

In order to ensure the security of data storage, a series of measures are needed, such as data encryption, access control, anonymization, and regular security audits[15]. In addition, lifecycle management of educational data is also an important aspect, including all aspects of data collection, processing, storage, transmission, and destruction.

4.2 Risk of data privacy breach

The risk of data privacy leakage in AI educational applications is multifaceted and involves issues such as hacking, insider leakage, and data sharing and third-party use.

Hacking is one of the main risks of data privacy leakage. As education systems become increasingly dependent on online platforms and digital tools, they become targets for cyberattacks. Attackers may utilize a variety of tactics, such as phishing attacks, malware, or zero-day exploits, to illegally access sensitive educational data. These data not only include students' personal information, but may also involve academic results and other research materials.

Insider leakage is another concern. Employees or contractors of an educational institution may negligently, intentionally, or accidentally leak data, leading to privacy violations. Insider breaches may stem from a lack of awareness of data protection, inadequate security measures, or improper pursuit of profit.

Data sharing and third-party use also pose privacy risks. Educational institutions need to share large amounts of data when working with other organizations or using third-party services. These third parties may include educational technology vendors, data analysts, or advertisers. If data sharing agreements are not sufficiently clear or the third party's data handling is not sufficiently secure, this could lead to data leakage or misuse.

To address these risks, educational institutions need to take a series of measures, including strengthening cybersecurity, raising employees' awareness of data protection, scrutinizing data-sharing agreements with third parties, and establishing effective data privacy protection mechanisms. Through these measures, the privacy rights of students can be protected while enjoying the educational advantages brought by AI.

4.3 Challenges of data privacy protection

The challenges to data privacy protection in AI educational applications are multidimensional, including technical difficulties and imperfections in laws and policies.

Technical difficulties are a central issue in data privacy protection. As AI technology continues to advance, the methods of data collection and analysis are becoming more sophisticated, but this also means that the difficulty of protecting data privacy is increasing. For example, while data encryption techniques are increasing, developments in quantum computing may pose a threat to existing encryption methods. In addition, while anonymization protects individual identities, the risk of re-identifying personal data increases as data analysis techniques improve[16].

Inadequate laws and policies are another important challenge to data privacy protection. Although many countries and regions have enacted data protection regulations, such as the EU's General Data Protection Regulation (GDPR), these regulations still face many difficulties in implementation. The unique complexity of the education sector requires more detailed and specific guidelines and operational norms, and existing laws and policies often fail to cover all situations. In addition, legal differences in transnational data flows pose challenges to privacy protection for educational institutions in international collaborations.

In order to address these challenges, a concerted effort is needed at multiple levels: technological, legal, and policy. Technologically, there is a need to continuously develop and update data protection technologies to improve system security and resistance to attacks. Legally and policy-wise, there is a need to develop clearer and more adaptable privacy protection regulations, as well as to strengthen regulation and enforcement to ensure that educational institutions and related businesses are able to comply with data privacy protection requirements.

V. Strategies To Solve Algorithm Bias And Privacy Protection Problems

After recognizing the importance and urgency of algorithmic bias and privacy protection issues, this chapter will explore strategies to address these issues. As AI continues to advance in education, ensuring the fairness and security of the technology is critical, which requires not only the joint efforts of technologists, educators, policymakers, and all sectors of society, but also a range of practical solutions to guide practice (Figure 1).

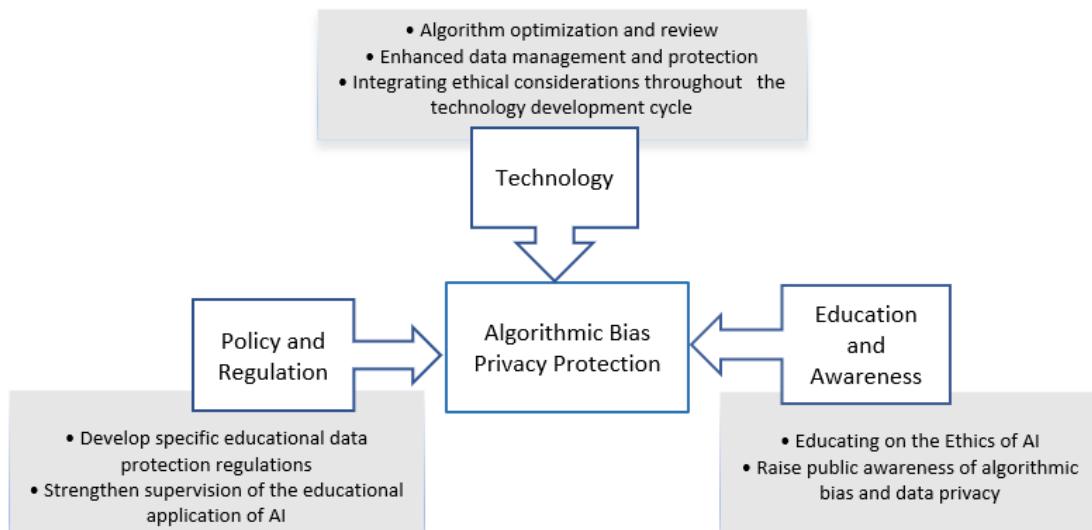


Figure 1. Multidimensional Strategy Analysis Framework

5.1 Technical level

When exploring strategies to solve the problem of algorithmic bias and privacy protection, measures at the technical level are fundamental and critical. These measures include algorithm optimization and review, data management and protection, and ethical design of AI educational tools.

Algorithm optimization and review is the first step in reducing algorithmic bias. By continuously improving algorithms, it ensures that they are able to process data in a fair and unbiased manner[17]. This involves increased transparency of algorithms, as well as regular review of the algorithmic decision-making process to ensure that they are not amplified or perpetuated by bias in the dataset. In addition, the fairness of algorithms needs to be ensured through various tests and validations[18].

Data management and protection is another key point at the technical level. Ensuring the security of data during collection, storage, processing and analysis is fundamental to preventing privacy breaches. This includes the use of encryption to protect data, the implementation of strict access control, and ensuring data

integrity and availability. At the same time, de-identification and anonymization of data are also important means of protecting individual privacy.

The ethical design of AI educational tools requires developers to incorporate ethical considerations at the design stage. This means that possible ethical issues such as privacy protection, data security, and algorithmic fairness need to be taken into account at every point in the tool's development. Ethical design also involves transparency in the user interface, ensuring that users can understand how AI tools work and what they do with data.

With these technical level measures, an effective protection mechanism can be established in AI educational applications to minimize algorithmic bias and protect data privacy. This requires not only the efforts of technologists, but also the joint participation and support of educational institutions, policymakers and the community.

5.2 Policy and regulatory level

At the policy and regulatory level, solving the problems of algorithmic bias and privacy protection needs to be achieved by formulating specialized educational data protection regulations and strengthening the regulation of AI educational applications.

First, enacting specialized educational data protection regulations is key to ensuring student data security. These regulations should clearly define the legal framework for the collection, storage, processing, and sharing of educational data, as well as the data protection standards to be followed in these processes. For example, the European Union's General Data Protection Regulation (GDPR) provides a comprehensive legal basis for personal data protection, and similar regulations should be developed and implemented within the education sector. These regulations should include strict notification requirements for data breaches, legal liability for data processors, and clear protections for student privacy.

Second, stronger supervision of AI educational applications is necessary to ensure that regulations are effectively enforced. Regulators need to ensure that educational institutions and AI service providers comply with data protection regulations and take appropriate measures to prevent algorithmic bias and privacy violations from occurring. This may include regular compliance checks, sanctions for non-compliance, and ongoing monitoring of data processing practices. Regulators should also promote transparency and accountability by requiring educational institutions and corporations to be open about their data processing policies and accountable for their algorithmic decision-making processes.

These efforts at the policy and regulatory level can provide a solid legal foundation for data privacy protection and algorithmic fairness in AI educational applications. This requires not only the active participation of government departments, but also the cooperation and support of educational institutions, technology developers and the community.

5.3 Education and awareness raising

At the level of education and awareness-raising, solving the problem of algorithmic bias and privacy protection needs to start from three aspects: educator training, reform of the student curriculum system, and raising public awareness.

First, it is crucial to train educators in conducting AI ethics education. Educators are key players in disseminating knowledge and shaping values, so they need to have a deep understanding of the ethical issues of AI. Through professional development seminars, online courses, and workshops, educators can learn how to recognize and respond to algorithmic bias and how to integrate the concept of privacy protection in their teaching. Additionally, educators should be trained on how to use and evaluate AI educational tools to ensure that they are ethical and effective.

Second, incorporating AI ethics education into student curricula is key to fostering responsible and critical thinking in future citizens. Students should learn the importance of data privacy and algorithmic fairness from an early age, and understand how these concepts affect their daily lives and society. Courses can include case studies, debates, and projects that allow students to explore the potential risks and benefits of AI technology and how to find a balance between innovation and ethics.

Finally, raising public awareness of algorithmic bias and data privacy is crucial to building a more just and safe society. Through public lectures, media campaigns, and community events, the public can be made more aware of these issues and encouraged to participate in the discussion and development of solutions. Public education should also include examples of how to protect their data privacy and how to recognize and report algorithmic bias.

VI. Conclusion And Prospects

In this study, a wide range of applications of AI in education are clarified, including personalized learning systems, intelligent tutoring software, online education platforms, educational data analysis and

evaluation, and the application of virtual reality and augmented reality in education. These applications bring many advantages to education, such as improving learning efficiency, promoting personalized learning, and enhancing the learning experience. However, we have also identified algorithmic bias and privacy protection issues in them. Algorithmic bias may lead to problems such as unfair distribution of educational resources and inaccurate student evaluations, while the privacy protection issue involves the security and legitimate use of students' personal data.

By studying these issues, we have gained a deeper understanding of the relationship between AI and educational ethics. The application of AI in education must follow ethical principles to ensure fairness, justice, transparency, and safety. The existence of algorithmic bias reminds us to pay attention to the quality and diversity of data, as well as the design and review of algorithms. Privacy protection, on the other hand, requires us to establish sound data management and protection mechanisms, strengthen the formulation and enforcement of laws and regulations, and raise awareness of the responsibility of educational institutions and enterprises.

In the future, we believe that there are several research directions that are worth exploring in depth. One is to further study the detection and correction methods of algorithmic bias and develop a fairer and more accurate AI education system. The second is to strengthen the research and application of privacy protection technologies, such as encryption and anonymization technologies, to ensure the security of students' personal data. Third, interdisciplinary research should be carried out to integrate knowledge in the fields of ethics, education, and computer science to provide more comprehensive theoretical support for the application of AI in education. Fourth, to strengthen international cooperation, share experiences and best practices, and jointly address the challenges facing AI and education ethics.

In conclusion, this study provides a certain theoretical and practical foundation for the research on AI and educational ethics, but there are still many issues that need to be further explored and solved. We expect that future research will provide stronger support for the rational application of AI in education and promote the fair, efficient and sustainable development of education.

VII. Funding

This research was supported by the following projects:

1. 2024 Guangdong Provincial Education Science Planning Project (Higher Education Special Program), "Research on the Localized Cultivation of Pre-service Teachers' TPACK in Local Undergraduate Institutions under the Perspective of Artificial Intelligence: A Case Study of Mathematics Teacher Education Students at Zhaoqing University" (Project No. 2024GXJK252);
2. Guangdong Provincial Department of Education Research and Practice Project on Promoting High-Quality Development of Basic Education through Guangdong's New Teacher Education Initiative, "Research on the Collaborative Promotion of Primary and Secondary Mathematics Teachers' Professional Development in Zhaoqing City through the 'One Core, Four Wings' Model" (Project No.: 2024GXJK252).

CORRESPONDING AUTHOR

Correspondence should be addressed to Cong Chen ; 453437684@qq.com.

Reference

- [1]. An Xin,Shen Xi,Zhou Ying. The integration development of artificial intelligence and teaching from the perspective of English teachers: opportunities, challenges and enhancement paths[J]. Modern Educational Technology.2023,33(02):71-79.
- [2]. Xu ZG,Liu Z,Dang Tongtong et al. Development history, application status and future prospect of educational intelligences[J]. Research on Electrochemical Education.2021,42(11):20-26+33.
- [3]. He Xiangchun,Guo Shaoqing. Research on the path of artificial intelligence-assisted teaching innovation[J]. Journal of National Institute of Educational Administration.2021(09):31-38.
- [4]. Xie Haoran,Chen Xieling,Zheng Guocheng et al. Artificial Intelligence Enabled Personalized Learning: Hot Spots and Prospects of E-Learning Recommender System Research[J]. Modern Distance Education Research.2022 ,34(03):15-23+57.
- [5]. Xu Sheng,Tong Jiarui, Hu Xiang'en. Next-generation personalized learning: generative artificial intelligence augmented intelligent tutoring system[J].Open Education Research.2024 ,30(02):13-22.
- [6]. Zhou Zibo,Zhang Xinhua. Artificial intelligence empowered network education: logic, mechanism and path[J]. Adult Education.2023,43 (07): 52-58.
- [7]. Luo Haifeng,Luo Yang. Educational Evaluation Reform in the Age of Artificial Intelligence[J]. China Exam .2024 (03): 8-17+97.
- [8]. Barocas, S., & Selbst, S. D. (2016). Big data's disparate impact. California Law Review,104,671-732.
- [9]. Pariser, E.(2011). The filter bubble: What the Internet is hiding from you. Penguin Press.
- [10]. O'Neil, C.(2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown.
- [11]. Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In Proceedings of the 30th Conference on Neural Information Processing Systems(pp. 4356-4364).
- [12]. Solon Barocas, Andrew D. Selbst. "Big Data's Disparate Impact." California Law Review(2016).
- [13]. Mélanie Bernhardt, Charles Jones et al. "Investigating underdiagnosis of AI algorithms in the presence of multiple sources of dataset bias." arXiv.org (2022).

- [14]. Li Zhaoyi. Causes and regulation of bias in intelligent communication databases[J]. *Contemporary Communication*,2020, No.210(01):93-97.
- [15]. Tian Haibo,Liang Xiuqi. An overview: A computational model for privacy protection of artificial intelligence based on cryptography[J]. *Electronics Letters*.2023,51(08):2260-2276.
- [16]. Narayanan, A., & Shmatikov, V. (2008). Robust de-anonymization of large sparse datasets. In *Proceedings of the 2008 IEEE Symposium on Security and Privacy* (pp. 111-125).
- [17]. Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. *Big Data*, 5(2), 153-163.
- [18]. Wang Youmei, Wang Dan, Wang Haijie et al. Algorithmic fairness: the logic and governance of algorithmic bias in educational artificial intelligence[J]. *Open Education Research*.2023 ,29 (05):37-46.