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Abstract 
This study investigates the optimization of void properties in Metakaolin-Modified Densely Graded Asphalt 

Concrete (MK-DGAC) using Response Surface Methodology (RSM). The mix includes granite, granular sand, 

bitumen, and metakaolin (MK) as a pozzolanic additive. Void parameters analyzed are Voids in Mineral 

Aggregate (VMA), Voids in Total Mix (VTM), and Voids Filled with Bitumen (VFB), which critically influence 

pavement durability, moisture resistance, and load capacity.Results show that increasing MK content reduces 

VMA by up to 17.92% (15.67% to 19.09%) and decreases VTM by 61.68% (2.06% to 5.37%), while raising 

VFB by 21.39% (71.88% to 87.25%). These changes improve binder distribution and moisture resistance but 

may elevate rutting risk if overdosed. RSM models for VMA and VTM achieved high predictive accuracy with R² 

values of 88.98% and 83.96%, respectively, confirming reliability in capturing void behavior based on granite, 

sand, bitumen, and MK proportions.Statistical analysis highlights MK as the most influential factor in reducing 

voids and enhancing bitumen filling, followed by granular sand and bitumen, with granite having minimal 

impact. The optimized mix proportions identified are approximately 57.3% granite, 32.7% sand, 6.4% bitumen, 

and 3.63% metakaolin. This formulation yields a VMA of 15.9% (above the 14% minimum), a VTM of 2.03% 

(slightly below the 3–5% guideline), and a VFB of 86.9% (exceeding typical upper limits), achieving a 

composite desirability of 96.95%.Overall, the study confirms that carefully dosed metakaolin enhances asphalt 

concrete void properties, offering a durable, moisture-resistant, and structurally sound pavement mix optimized 

through RSM coupled with desirability functions. 

 

Keywords; Response surface methodology, metakaolin, densely graded asphalt concrete, voids in mineral 

aggregate, voids in total mix, voids filled with bitumen 

 

Received 12 May., 2025; Revised 20 May., 2025; Accepted 22 May., 2025 © The author(s) 2025. 

Published with open access at www.questjournas.org 

 

I. Introduction 
The structural integrity and durability of asphalt concrete pavements are significantly affected by their 

internal void structure, which plays a key role in determining essential properties such as density, moisture 

resistance, deformation tolerance, and load support. Densely graded asphalt concrete (DGAC), known for its 

tightly packed aggregate structure and low air void content, is commonly employed to enhance pavement 

durability and functionality. Recent studies have highlighted the critical role of air void management in 

achieving optimal pavement performance. According to Heitzman et al. (2021), both excessive and inadequate 

air voids can shorten pavement lifespan. Their research, conducted through the National Cooperative Highway 

Research Program, underscores the need to control air void levels during construction to prevent early 

deterioration like rutting and cracking. Similarly, Salini and Lenngren (2022) found that DGAC mixes with air 

voids exceeding 7% are prone to premature failure. They created predictive tools to estimate service life 

reduction and evaluate potential financial consequences for contractors who fail to meet air void requirements. 

Moisture susceptibility is also a critical issue associated with the internal void structure of asphalt 

mixtures. Higher air void content creates channels that allow water to penetrate the pavement, weakening the 

bond between the asphalt binder and the aggregate. Sebaaly et al. (2023) observed that mixtures with elevated 

air void levels tend to have lower tensile strength ratios (TSR), indicating a reduced ability to resist moisture-
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related damage. Their findings advocate for the use of engineering-based criteria to assess moisture sensitivity 

and inform modifications in mix design. 

Additionally, deformation resistance, especially in terms of rutting under repeated traffic loads, is 

closely influenced by the air void content of asphalt mixtures. Zhou et al. (2023) conducted an in-depth review 

emphasizing the link between air void levels and the permanent deformation behavior of asphalt pavements. 

Their findings highlight the critical role of proper compaction during construction to manage void content and 

improve the material’s ability to withstand loading. Nevertheless, achieving the ideal air void level becomes 

increasingly challenging when incorporating supplementary cementitious materials and alternative aggregates 

into the mix. 

Metakaolin, a highly reactive pozzolan produced through the thermal treatment of kaolinite clay, is 

gaining recognition as a valuable mineral additive in pavement materials. Its ability to enhance mechanical 

strength, lower permeability, and strengthen the bond between binder and aggregate makes it particularly 

beneficial. The use of metakaolin in both cementitious and asphalt mixtures supports the increasing emphasis on 

developing durable and sustainable infrastructure. 

In cement-based applications, metakaolin plays a pivotal role in improving the performance of 

concrete composites. Wei et al. (2024) conducted a comprehensive review on its use in ultra-high-performance 

concrete (UHPC), emphasizing its effectiveness in boosting compressive strength and minimizing permeability, 

key factors for long-lasting infrastructure. Similarly, Wang and Zhao (2024) found that grouting materials 

incorporating metakaolin exhibited enhanced durability in high-temperature geothermal settings, indicating 

their suitability for demanding construction environments. 

The application of metakaolin in asphalt concrete has attracted growing interest in recent years. Yaro et 

al. (2023) investigated its incorporation into bio-geopolymer-modified asphalt mixtures and observed notable 

enhancements in rutting resistance, especially under high-temperature conditions. Utilizing response surface 

methodology (RSM), they identified optimal dosage levels, demonstrating metakaolin’s effectiveness in 

improving resistance to permanent deformation in flexible pavements. These results highlight the material’s 

promise for increasing the durability and resilience of asphalt pavements exposed to heavy traffic and thermal 

stresses. 

Murano et al. (2022) also investigated the use of metakaolin as an additive in hot mix asphalt. Their 

findings revealed that incorporating metakaolin significantly enhanced the mechanical and volumetric 

characteristics of the mixture, enabling it to meet standard specifications at optimal binder contents. Notably, 

they identified 5% nano-metakaolin by asphalt weight as the most effective dosage for improving rheological 

performance, an essential factor in mitigating pavement distress under diverse service conditions. 

Collectively, these studies demonstrate that incorporating metakaolin into both cementitious and 

asphalt systems leads to significant improvements in structural integrity, moisture resistance, and overall 

durability. As a result, metakaolin emerges as a highly promising additive for developing sustainable, high-

performance pavement materials. 

Granite and granular sand have become increasingly popular as aggregate sources in asphalt concrete 

due to their widespread availability, economic advantages, and strong mechanical performance. However, using 

them together in mix designs poses specific challenges, particularly in terms of air void content and compaction 

characteristics. Granite's angular particles provide excellent strength and durability but can hinder compaction 

because of their interlocking nature. In contrast, granular sand, with its smoother and more rounded particles, 

enhances workability but may increase air void content if not carefully proportioned with granite (Li & Wang, 

2023). 

The interaction between granite and granular sand significantly affects air void content, which in turn 

has a direct impact on the strength and durability of asphalt mixtures. High air void levels can diminish load-

bearing capacity and heighten vulnerability to moisture damage, whereas too few air voids may impair 

workability and hinder effective compaction. Therefore, precise optimization of the aggregate proportions is 

essential to strike a balance between these competing performance criteria (Chen & Liu, 2022). 

To address these challenges, statistical optimization methods like Response Surface Methodology 

(RSM) and factorial design are being widely used. These techniques facilitate a systematic examination of how 

different mix variables interact, helping to determine the ideal granite-to-sand ratio for achieving targeted 

performance outcomes. By applying such optimization strategies, researchers can more accurately predict and 

manage the influence of aggregate properties on the final concrete characteristics, ensuring the mix satisfies 

strength, durability, and workability requirements (He & Zhang, 2024). 

 

1.1 Response Surface Methodology 

Response Surface Methodology (RSM) is a statistical and mathematical approach commonly used in 

engineering to model and investigate problems influenced by multiple variables. It aids in optimizing processes 

by exploring the relationships between input factors and the resulting outcomes. RSM has become a 
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fundamental tool for optimizing complex systems, enabling researchers to efficiently identify the best operating 

conditions while minimizing the number of experiments required (Yateh et al., 2023). 

RSM uses carefully designed experiments to efficiently investigate the relationships between multiple 

independent variables and one or more response variables. This approach typically utilizes second-order 

polynomial models to approximate the actual functional relationships, allowing for the determination of optimal 

conditions to achieve targeted responses (Zhang et al., 2024). These models are expressed as regression 

equations and fitted to the experimental data through least squares estimation. As noted by Lamidi et al. (2022), 

Equation (1) illustrates the general form of the quadratic model applied in RSM.  

𝑌 =  𝛽0 + ∑ (𝛽𝑖
𝑛
𝑖=1 𝑧𝑖) + ∑ (𝛽𝑖𝑖

𝑛
𝑖=1 𝑧𝑖

2) +  ∑ ∑ (𝛽𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 𝑧𝑖𝑧𝑗) + 𝑒    (1) 

Where,Y = response of the experiment,e = the experimental error, 𝛽0 is a constant, 𝛽𝑖 is a linear 

coefficient, 𝛽𝑖𝑖  is the quadratic coefficient and 𝛽𝑖𝑗 is the interaction coefficient. 

Successful implementation of RSM starts with a carefully planned experimental design. Popular 

designs include Central Composite Design (CCD) and Box–Behnken Design (BBD), both of which facilitate 

the creation of accurate predictive models. CCD is especially effective for fitting second-order models by 

incorporating factorial points, axial points, and center points, while BBD provides an efficient framework for 

investigating quadratic response surfaces without testing extreme combinations of factors (Onokwai et al., 

2022; Megalingam et al., 2023). 

After building the regression model, optimization is performed using methods like the steepest ascent 

approach, desirability functions, or hybrid techniques that incorporate metaheuristics. Desirability functions are 

particularly useful for multi-response optimization, as they convert multiple response outcomes into a single 

composite desirability score (Gamero-Salinas & López-Fidalgo, 2024). This helps engineers balance competing 

goals, such as strength versus cost in material design or efficiency versus safety in process engineering. 

RSM has a wide range of practical applications across various engineering fields. In mechanical 

engineering, Singh et al. (2023) combined RSM with genetic algorithms to optimize the design of high-

efficiency prototype vehicles, achieving notable reductions in drag and improvements in fuel efficiency. In 

materials engineering, Megalingam et al. (2023) utilized RSM to fine-tune production parameters for aluminum 

7075 billets, resulting in enhanced structural strength and manufacturing productivity. Environmental engineers 

also apply RSM to optimize processes such as contaminant removal in water treatment, including the precise 

dosing of coagulants like polyaluminum chloride (Yateh et al., 2023). 

Recent research has emphasized the complementary relationship between RSM and advanced 

computational methods. For instance, Bbumba et al. (2024) showcased the use of RSM in optimizing adsorption 

processes, while recognizing the benefits of combining it with artificial intelligence to improve accuracy. 

Likewise, Lamidi et al. (2022) highlighted the growing practice of integrating RSM with machine learning and 

simulation tools to achieve more robust optimization in product design and manufacturing systems. 

While RSM is highly versatile, it does have limitations. Its dependence on low-order polynomial 

models can fall short when dealing with highly nonlinear or discontinuous systems. Additionally, the 

effectiveness of RSM relies heavily on the quality of data and the selection of suitable experimental designs. To 

overcome these challenges, hybrid approaches that combine RSM with evolutionary algorithms are being 

developed, offering improved convergence toward global optima in complex engineering problems (Singh et 

al., 2023; Aje & Adie, 2020). 

RSM is increasingly being adopted in food and agricultural engineering as well. For instance, Ismail et 

al. (2022) utilized RSM to optimize the formulation of an edible bird nest-based instant soup, achieving an 

optimal balance between nutritional value and sensory appeal. Such varied applications highlight RSM’s 

versatility across both advanced technological fields and consumer-oriented engineering solutions. 

Bashash and Saleh Ahari (2025) effectively applied RSM to optimize the mechanical properties of 

geopolymer concretes incorporating reclaimed asphalt pavement (RAP). Their research showcased RSM’s 

capability to capture the complex interactions within geopolymer mixtures and accurately predict the optimal 

mix proportions for enhanced mechanical performance. 

Similarly, Yaro et al. (2023) utilized RSM to study how asphalt binder content and geopolymer 

modifiers influence the performance of asphalt concrete. Their work demonstrated RSM’s effectiveness in 

improving predictability and streamlining the design process of asphalt mixtures, resulting in enhanced 

performance and more precise material selection. 

In conclusion, Response Surface Methodology continues to be a vital technique in engineering for the 

development, enhancement, and optimization of products and processes. By uniting statistical modeling, 

experimental design, and optimization within a cohesive framework, RSM greatly minimizes the need for 

extensive trial-and-error testing. As it increasingly integrates with advanced computational methods and 

algorithms, its importance and effectiveness in addressing contemporary engineering challenges are expected to 

grow further (Zhang et al., 2024; Bbumba et al., 2024). 
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In this study, Response Surface Methodology is utilized to assess and optimize the void characteristics 

of metakaolin-modified densely graded asphalt concrete (DGAC) containing granite dust and granular sand. 

The main goal is to determine the optimal mix proportions that reduce void content while maintaining the 

asphalt concrete’s structural strength and overall performance. The findings are anticipated to support the 

creation of more durable, sustainable, and high-performance pavement materials, effectively addressing both 

environmental and engineering challenges. 

 

II. Materials and Methods 
2.1 Materials 

This study used well-graded river sand as fine aggregate, with a specific gravity of 2.42 and a fineness 

modulus of 3.44. Sieve analysis per ASTM C136 (2006) classified the sand as Zone II according to the Unified 

Soil Classification System, indicating a medium gradation ideal for balancing workability and strength. The 

relatively high specific gravity and coarser particle size contribute to improved durability, workability, and 

reduced water demand in concrete mixes. Incorporating this sand into asphalt concrete is expected to enhance 

structural integrity and extend pavement lifespan. 

Granite aggregates with maximum sizes of 12.5 mm, 9 mm, and 6.7 mm were blended and used as 

coarse aggregate. Prior to use, the aggregates were washed to eliminate dirt and impurities, then air-dried for 

over 48 hours. A sieve analysis was conducted in accordance with ASTM (2006) standards, classifying the 

granite as well-graded with a fineness modulus of 3.83. The specific gravity of the granite was determined to be 

2.77. 

Bitumen with a penetration grade of 60/70 was utilized as the binder in this study. It was obtained from 

a vendor at the Mile 3 market in Port Harcourt. According to the supplier, the bitumen exhibits the following 

characteristics: a specific gravity of 1.09, a softening point of 53°C, a penetration value of 68, and a flash point 

of 250°C. 

Metakaolin used in this study was produced by calcining kaolin clay sourced from Aluu, Rivers State. 

The clay was sun-dried for 48 hours and then heated at 800°C for one hour in a muffle furnace. The resulting 

metakaolin was ground, sieved through a 75 µm sieve, and analyzed. X-ray fluorescence revealed a high silica 

content (80.24%) and calcium oxide (4.67%), indicating pozzolanic properties. With a combined acidic oxide 

content of 91.34%, the material meets BS EN 197-1 (2009) and ASTM C618 (2017) standards for pozzolans. 

The specific gravity was recorded as 2.52. 

 

2.2 Methods 

2.2.1 Preliminary Analysis 

Prior to the commencement of the actual or main experimental process, that is, investigating the void properties 

of metakaolin modified granite-granular sand densely graded asphalt concrete, preliminary investigations were 

carried out on the unmodified granite-granular sand densely graded asphalt concrete to determine the optimum 

aggregate blend (OAB) and the optimum bitumen content (OBC). 

i. Optimum Aggregate Blend (OAB); To determine the Optimum Aggregate Blend (OAB), the formula-based 

approach using linear programming was employed, as represented in Equation (2). For multiple sieve sizes, 

Equation (2) is transformed into a set of equations, as illustrated in Equation (3). 

𝑎𝐴 + 𝑏𝐵 = 𝑃      (2) 

𝑎𝐴1 + 𝑏𝐵1 =  𝑃1 

𝑎𝐴2 + 𝑏𝐵2 =  𝑃2 

𝑎𝐴3 + 𝑏𝐵3 =  𝑃3 

.                                                                   (3) 

. 
𝑎𝐴𝑛 + 𝑏𝐵𝑛 =  𝑃𝑛 

 

 

Let 𝑎and 𝑏denote the proportions of aggregate sizes A (granite) and B (granular sand), respectively, that pass 

through a given sieve size. The resulting gradation, 𝑃, from the combination of these aggregates must either fall 

within the limits of the specified job mix formula or be as close as possible to its midpoint, as outlined in Table 

1 for flexible pavement wearing courses. A constraint is imposed such that the sum of the optimum proportions 

𝑎 and  

𝑏 must equal 1. By solving Equation (3) using Microsoft Excel Solver, the optimal blend was determined to be 

61.2% for granite (A) and 38.8% for river sand (B), representing the OAB for the unmodified densely graded 

asphalt concrete. 
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Table 1. Adopted Job Mix Formula  
Sieve size (mm) 19 12.5 9.5 6.3 4.75 2.36 1.18 0.6 0.3 0.15 0.075 

JMF (%) 100 86-100 70-90 45-70 40-60 30-52 22-40 16-32 8-9 3-7 0-3 

 

ii Optimum BitumenContent (OBC);The Optimum Bitumen Content (OBC) was determined during the initial 

wet mix design phase using the conventional Marshall design method, in accordance with ASTM 1559 (2004) 

as specified by the American Society for Testing and Materials. The bitumen content in the asphalt concrete 

mixture was limited to a range of 4% to 8% by total mix weight. The previously determined Optimum 

Aggregate Blend (OAB), comprising 61.2% granite and 38.8% granular sand, was proportionally incorporated 

into the overall mix design. Based on the findings from the preliminary assessments, the OBC was determined 

to be 6.42%. 

2.2.2 Central Composite Design (CCD) within Response Surface Methodology (RSM) 

Initial investigations determined the Optimum Bitumen Content (OBC) for the unmodified densely graded 

asphalt concrete (DGAC) to be 6.42%. Correspondingly, the Optimum Aggregate Blend (OAB) consisted of 

57.27% granite and 36.31% granular sand. For the metakaolin-modified DGAC (MK-DGAC), metakaolin 

(MK) was incorporated as a mineral filler. Based on standard practices and literature, mineral fillers are 

typically added at levels ranging from 0% to 10% by the weight of the fine aggregate. Therefore, in designing 

the MK-DGAC mixes, the fine aggregate fraction (36.31%) identified in the initial stage was adjusted to reflect 

varying MK proportions. It is assumed that introducing an external additive like MK slightly alters the original 

DGAC composition. Applying MK at 0–10% of the fine aggregate corresponds to approximately 0–3.63% of 

the total mix weight. As a result, the granular sand content was varied between 32.68% and 36.31%, while the 

granite (coarse aggregate) portion was slightly modified to range between 57% and 58% to maintain mix 

balance. These changes also necessitated a minor adjustment to the bitumen content, which was set between 

6.3% and 6.5% of the total mix weight. Using these parameters and constraints, Minitab software generated 31 

distinct mix formulations based on a face-centered Central Composite Design (CCD), as presented in Table 2. 

 

Table 2. FC-CCDfor MK-DGAC 

RunOrder Granite (%) G. Sand (%) Bitumen (%) MK (%) 

1 57 36.31 6.5 3.63 

2 57.5 34.495 6.4 0 

3 57.5 34.495 6.4 3.63 

4 57 32.68 6.5 0 

5 57.5 34.495 6.4 1.815 

6 57.5 34.495 6.4 1.815 

7 57.5 34.495 6.5 1.815 

8 57.5 34.495 6.4 1.815 

9 58 36.31 6.5 3.63 

10 57 32.68 6.5 3.63 

11 57.5 34.495 6.4 1.815 

12 57 32.68 6.3 0 

13 57.5 32.68 6.4 1.815 

14 57.5 34.495 6.4 1.815 

15 57.5 34.495 6.4 1.815 

16 58 36.31 6.3 0 

17 58 34.495 6.4 1.815 

18 58 32.68 6.3 3.63 

19 58 36.31 6.5 0 

20 57.5 34.495 6.3 1.815 

21 57.5 34.495 6.4 1.815 

22 57.5 36.31 6.4 1.815 

23 58 32.68 6.5 3.63 

24 57 34.495 6.4 1.815 
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25 57 36.31 6.3 0 

26 57 36.31 6.3 3.63 

27 57 36.31 6.5 0 

28 58 32.68 6.5 0 

29 58 36.31 6.3 3.63 

30 58 32.68 6.3 0 

31 57 32.68 6.3 3.63 

 

2.2.3 Void Analysis of MK-DGAC 

The void characteristics of the MK-DGAC were evaluated through experimental procedures. Specifically, three 

key parameters were analyzed: Voids in Mineral Aggregate (VMA), which represent the volume of intergranular 

void space between the aggregate particles in a compacted mix; Voids in Total Mixture (VTM), indicating the 

total air voids present in the compacted asphalt concrete; and Voids Filled with Bitumen (VFB), which quantify 

the percentage of VMA that is occupied by bitumen. These properties are critical for assessing the durability, 

strength, and long-term performance of asphalt mixtures, especially in modified systems such as MK-DGAC, 

where the introduction of mineral fillers can significantly influence internal void structure and bitumen 

distribution. 

i. MK-DGAC SamplesPreparation; During the preparation of the MK-DGAC specimens, aggregates with 

incorporation of MK, were weighed based on the CCD proportions outlined in Table 2 and preheated to 180°C. 

Simultaneously, the bitumen was heated separately to 140°C. Both components were then combined and mixed 

thoroughly at 180°C until a uniform blend was achieved. The resulting mixture was transferred into a preheated 

mold and compacted using a Marshall rammer, applying 50 blows on each side at a temperature range of 140°C 

to 150°C, which is appropriate for pavements subjected to medium traffic loading. Two specimens were 

produced for each experimental run, resulting in a total of 62 samples.  

ii Density-VoidProperties Determination of MK-DGAC Mixtures; The density-voids included measuring the 

VMA, the VTM, and the VFB. VMA was calculated using Equation (4), VTM was derived using Equation (5), 

and VFB was determined using Equation (6). 

𝑉𝑀𝐴 = 100 −  
𝐺𝑏𝑐𝑚∗ 𝑃𝑡𝑎

𝐺𝑏𝑎𝑚
     (4) 

𝑃𝑎𝑣 = (
𝐺𝑚𝑚− 𝐺𝑏𝑐𝑚

𝐺𝑚𝑚
)  𝑋 100      (5) 

𝑉𝐹𝐵 =  (
𝑉𝑀𝐴− 𝑃𝑎𝑣

𝑉𝑀𝐴
)  𝑋 100     (6) 

And;  

𝐺𝑏𝑐𝑚 =  
𝑊𝑎

𝑊𝑎− 𝑊𝑤
      (7) 

𝐺𝑏𝑎𝑚 =  
𝑃𝑐𝑎+ 𝑃𝑓𝑎

𝑃𝑐𝑎
𝐺𝑏𝑐𝑎

+ 
𝑃𝑓𝑎

𝐺𝑏𝑓𝑎

      (8) 

𝐺𝑚𝑚 =  
𝑃𝑐𝑎+ 𝑃𝑓𝑎+ 𝑃𝑏

𝑃𝑐𝑎
𝐺𝑏𝑐𝑎

+ 
𝑃𝑓𝑎

𝐺𝑏𝑓𝑎
+ 

𝑃𝑏
𝐺𝑏

      (9) 

𝛾𝑐𝑚 =  
𝑊𝑎

𝑉𝑐𝑚
       (10) 

Where: 

Gbcm refers to the bulk specific gravity of the compacted asphalt specimens; 

Gbam denotes the bulk specific gravity of the aggregate blend within the mixture; 

Gmm is the maximum specific gravity of the compacted specimens; 

γ₍cm₎ represents the unit weight of the compacted specimens; 

Wa and Ww are the weights of the compacted specimen measured in air and water, respectively; 

Pca, Pfa, and Pb indicate the percentage by weight of coarse aggregate, fine aggregate, and bitumen in the mix; 

Gbca, Gbfa, and Gb represent the bulk specific gravities of the coarse aggregate (granite), fine aggregate 

(granular sand), and bitumen, respectively; 

Vcm stands for the volume of the compacted specimen. 

 

2.2.4 Response Surface Model for Void Properties Prediction of MK-DGAC 

For a four-factor design as employed in this study, Equation (1), becomes; 

𝑌 =  𝛽0 + 𝛽1𝑧1 + 𝛽2𝑧2 +  𝛽3𝑧3 +  𝛽4𝑧4 + 𝛽11𝑧1
2 + 𝛽22𝑧2

2 + 𝛽33𝑧3
2 + 𝛽44𝑧4

2 + 𝛽12𝑧1𝑧2 + 𝛽13𝑧1𝑧3 + 𝛽14𝑧1𝑧4 +
𝛽23𝑧2𝑧3  + 𝛽24𝑧2𝑧4  + 𝛽34𝑧3𝑧4      (11) 

Where; 
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Y = responses of modified dense graded asphalt concrete (VMA, VTM, and VFB) 

z1 = proportion of granite in MK-DGAC 

z2 = proportion of granular sand in MK-DGAC 

z3 = proportion of bitumen in MK-DGAC 

z4 = proportion of MK in MK-DGAC 

In matrix form, Equation (11) can be represented by Equation (12); 

𝑌 = [𝑧𝑖][𝛽𝑖]         (12) 

For n, experimental runs, Equation (12) becomes; 

𝑌𝑛 = [(𝑧𝑖)
𝑛][𝛽𝑖]         (13) 

Where; 

[𝑧𝑖]= matrix of the shape function showing interaction between constituents  

[𝛽𝑖] = model coefficient matrix 

The coefficient vector is represented by Equation (14) 

[𝛽𝑖] =  [𝛽0,   𝛽1,   𝛽2,   𝛽3, 𝛽4, 𝛽11, 𝛽22, 𝛽33, 𝛽44, 𝛽12,   𝛽13,  𝛽14, 𝛽23,   𝛽24,   𝛽3 4 ]
𝑇(14) 

3  

The shape matrix can also be represented by Equation (15). 

[𝑧𝑖] =  [1, 𝑧1,   𝑧2,   𝑧3,   𝑧4,  𝑧1,
2  𝑧2,

2  𝑧3,
2  𝑧4,

2 𝑧1𝑧2,   𝑧1𝑧3, 𝑧1𝑧4, 𝑧2𝑧3,𝑧2𝑧4,𝑧3𝑧4, ]
𝑇   (15) 

Multiplying both sides of Equation (13) by a weighting factor, transpose of the shape matrix, yields: 

[𝑧𝑛]𝑇 ∗ 𝑌𝑛 = [𝑧𝑛]𝑇 ∗ [𝑧][𝛽𝑖]       (16) 

Rewriting Equation (16), with introduction of new variables yields; 

𝐷 = [𝐸] ∗ [𝛽𝑖]         (17) 

Where, D and [E] are defined by Equations (18) and (19) respectively; 

𝐷 =  [𝑧𝑛]𝑇 ∗ 𝑦𝑛         (18) 

[𝐸] =  [𝑧𝑛]𝑇 ∗ [𝑧𝑛]        (19) 

From Equation (17); 
[𝛽] =  [𝐸]−1 ∗ 𝐷         (20) 

Equation (20) was used to estimate or determine the coefficients of Equation (11). 

 

2.2.5 Effect Analysis of Components on Voids of MK-DGAC 

The influence of various mix components on the void characteristics of MK-DGAC was analyzed through a 

descriptive statistical approach. The void properties, namely, VMA, VTM, and VFB, were used as the primary 

response variables. To understand how individual mix constituents (such as bitumen content, granite, granular 

sand, and metakaolin) and their interactions affect these properties, main effects plots, interaction effects plots, 

and Pareto charts were employed. The main effects plots provided insight into how changes in each factor 

independently influenced the void metrics, while interaction plots revealed combined effects between variables. 

Pareto charts were utilized to rank and visualize the relative significance of each factor and interaction, helping 

to identify the most influential parameters in controlling void structure within the MK-DGAC mixtures.  

 

2.2.6 Multi-Objectives Optimization of Constituents for Maximum Performance of MK-DGAC 

To identify the optimal mix composition for minimizing void-related parameters, namely, VMA and VTM, 

while maximizing VFB in MK-DGAC, a response optimizer grounded in response surface methodology 

coupled with desirability function was utilized. This method determines the most effective combination of mix 

components by ranking potential outcomes based on their desirability scores in descending order. Desirability is 

a dimensionless value between 0 and 1 that reflects how well a response meets its target; the closer the score is 

to 1, the nearer the response is to its optimal value. 

 

III. Results and Discussion 
 

3.1 Void Properties Results of MK-DGAC 

The void properties of MK-DGAC, as illustrated in Figure 1, demonstrate the substantial influence of 

metakaolin (MK) content on volumetric parameters including Voids in Mineral Aggregate (VMA), Voids in 

Total Mix (VTM), and Voids Filled with Bitumen (VFB). These parameters are essential indicators of the 

structural performance and durability of asphalt mixtures. 

The VMA values ranged from 15.669% at run order 29 to 19.090% at run order 12, exhibiting a 

reduction of up to 17.92% with increasing MK content. According to the Superpave mix design method, the 

minimum VMA requirements are dependent on the Nominal Maximum Aggregate Size (NMAS): 15.0% for 9.5 

mm, 14.0% for 12.5 mm, and 13.0% for 19 mm (Mahoney et al., n.d.). The results in this study satisfy these 

specifications, indicating that the MK-modified asphalt mixtures maintain an adequate void structure to 

accommodate binder and resist deformation under loading. 



Response Surface Methodology For Evaluating Voids In Metakaolin Modified Granite-Granular .. 

DOI: 10.35629/8193-10050123                                    www.questjournals.org                                          8 | Page 

VTM values showed a wide range from 2.0568% at run order 10 to 5.368% at run order 12, reflecting 

a substantial reduction of up to 61.68% as MK content increased. While this demonstrates MK's ability to 

densify the asphalt matrix, values falling below 3% may risk bleeding and reduced permeability, while values 

above 5% could increase air voids and compromise durability. Malaysian specifications recommend an optimal 

VTM range of 3%–5% to maintain moisture resistance and long-term performance (Fakroun et al., 2021). Thus, 

fine-tuning the MK dosage is necessary to ensure that VTM remains within the recommended limits. 

The VFB, which measures the proportion of VMA filled with binder, ranged from 71.878% to 

87.253%, showing an increase of up to 21.39% with higher MK content. This suggests improved binder 

distribution and enhanced internal cohesion of the asphalt mix. The Superpave design method recommends a 

VFB range of 65% to 78%, depending on traffic levels (Mahoney et al., n.d.). While the lower value in this 

study falls within the standard, the upper value exceeds it. High VFB can indicate better moisture resistance but 

may also result in potential rutting and instability under high-temperature or heavily trafficked conditions. 

These findings are consistent with current literature. Shaffie et al. (2022) showed that kaolin clay, like 

metakaolin, can significantly alter the void structure of hot mix asphalt, improving durability and binder 

absorption. Similarly, in a study by Fakroun et al. (2021), the inclusion of crumb rubber was found to improve 

elasticity while affecting VTM and VFB values, confirming the impact of modifiers on volumetric performance. 

These insights support the potential of MK as an effective mineral additive, capable of enhancing the 

mechanical behavior of asphalt concrete when incorporated within appropriate dosage limits. 

 
Figure 1. Void Properties of MK-DGAC 

 

1.2 Response Surface Models (RSM) for Predicting the Volumetric Properties of MK-DGAC 

3.2.1 RSM for Predicting VMA of MK-DGAC 

Table 3 presents the matrix of the shape function and the experimentally determined VMA of MK- DGAC. On 

application of Equation (18), matrix D was obtained as given by Equation (21). 

𝐷
= [540.24, 31063.2, 18630.46, 3457.66, 951.67, 1786182, 643511.7, 22133, 2706.67, 1071229, 198812,  

54719.97, 119240, 32828.51, 6091.46 ]𝑇       (21) 

 

[E], being a 15 * 15 matrix was also obtained on application of Equation (19). With the help of [D] and [E], and 

application of Equation (20), the coefficient matrix of the VMA optimization model for predicting the VMA of 

MK-DGAC is obtained as presented by Equation (22). 

𝛽 = [3697.15  − 119.224   23.173  − 200.293  − 8.672  1.263  − 0.150   22.704   − 0.030 − 0.344  −
2.224  − 0.003   1.057    0.057    1.017]T   (22) 

On substituting these coefficient values into Equation (11), the RSM optimization model for predicting the 

VMA of MK-DGAC was obtained as presented in Equation (23). 
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𝑉𝑀𝐴 =  3697.15 − 119.224𝑍1 + 23.173 𝑍2 − 200.293𝑍3 − 8.672𝑍4 + 1.263 𝑍1
2 − 0.150 𝑍2

2 + 22.704 𝑍3
2 −

0.030 𝑍4
2 − 0.344 𝑍1𝑍2 − 2.224 𝑍1𝑍3 − 0.003 𝑍1𝑍4 + 1.057 𝑍2𝑍3 + 0.057 𝑍2𝑍4 + 1.017 𝑍3𝑍4  

      (23) 
 

Equation (23) introduces an optimization model designed to predict the VMA of MK-DGAC. The 

model's performance is evaluated using the coefficient of determination (R²), which quantifies how well the 

model's predictions align with actual observed values. An R² value of 88.98% at a 5% significance level, as 

depicted in Figure 2, indicates that the model explains approximately 89% of the variability in VMA, signifying 

a strong predictive capability. 

In regression analysis, an R² value approaching 1 suggests a model with high explanatory power. The 

obtained R² of 0.8898 implies that the model captures a substantial portion of the variance in VMA, leaving 

only about 11% unexplained. This level of accuracy is considered robust in engineering applications, where 

models with R² values above 0.85 are typically deemed reliable for predictive purposes.The statistical 

significance of the model at the 5% level further reinforces its validity. This means there's a less than 5% 

probability that the observed relationship between the predictors and VMA is due to random chance, 

underscoring the model's reliability. 

The model's performance aligns with findings from recent studies in related fields. For instance, in the 

context of air quality prediction, a study reported R² values of 0.898 for Visakhapatnam and 0.9024 for 

Hyderabad, indicating strong model fits (Srinivas et al., 2024). Similarly, in the optimization of gas turbine 

power plants, R² values of 0.972 and 0.987 were achieved for specific fuel consumption and thermal efficiency, 

respectively, demonstrating high model accuracy (Akinlabi et al., 2025). The high R² value of the MK-DGAC 

model suggests that it can serve as a reliable tool for predicting VMA, which is crucial for assessing the 

durability and performance of asphalt mixtures. Accurate VMA predictions enable engineers to optimize mix 

designs, ensuring that the asphalt concrete meets desired specifications and performance criteria. 

 

Table 3. Matrix of shape function [Zn], and the VMA of MK-DGAC 

Intercept Z1 Z2 Z3 Z4 Z1
2 Z2

2 Z3
2 Z4

2 Z1Z2 Z1Z3 Z1Z4 Z2Z3 Z2Z4 Z3Z4 VMA  

1 57 36.31 6.5 3.63 
3249 1318.42 42.25 13.18 2069.67 370.50 206.91 236.02 131.81 

23.60 18.040 

1 57.5 34.495 6.4 0 
3306.25 1189.91 40.96 0.00 1983.46 368.00 0.00 220.77 0.00 

0.00 
18.130 

1 57.5 34.495 6.4 3.63 
3306.25 1189.91 40.96 13.18 1983.46 368.00 208.73 220.77 125.22 

23.23 
16.258 

1 57 32.68 6.5 0 
3249 1067.98 42.25 0.00 1862.76 370.50 0.00 212.42 0.00 

0.00 
18.360 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
17.656 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
17.630 

1 57.5 34.495 6.5 1.815 
3306.25 1189.91 42.25 3.29 1983.46 373.75 104.36 224.22 62.61 

11.80 
17.698 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
17.657 

1 58 36.31 6.5 3.63 
3364 1318.42 42.25 13.18 2105.98 377.00 210.54 236.02 131.81 

23.60 
16.079 

1 57 32.68 6.5 3.63 
3249 1067.98 42.25 13.18 1862.76 370.50 206.91 212.42 118.63 

23.60 
16.136 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
17.609 

1 57 32.68 6.3 0 
3249 1067.98 39.69 0.00 1862.76 359.10 0.00 205.88 0.00 

0.00 
19.090 

1 57.5 32.68 6.4 1.815 
3306.25 1067.98 40.96 3.29 1879.10 368.00 104.36 209.15 59.31 

11.62 
16.927 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
17.637 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
17.586 

1 58 36.31 6.3 0 
3364 1318.42 39.69 0.00 2105.98 365.40 0.00 228.75 0.00 

0.00 
17.970 

1 58 34.495 6.4 1.815 
3364 1189.91 40.96 3.29 2000.71 371.20 105.27 220.77 62.61 

11.62 
17.864 

1 58 32.68 6.3 3.63 
3364 1067.98 39.69 13.18 1895.44 365.40 210.54 205.88 118.63 

22.87 
17.128 

1 58 36.31 6.5 0 
3364 1318.42 42.25 0.00 2105.98 377.00 0.00 236.02 0.00 

0.00 
17.716 

1 57.5 34.495 6.3 1.815 
3306.25 1189.91 39.69 3.29 1983.46 362.25 104.36 217.32 62.61 

11.43 
17.342 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
17.397 

1 57.5 36.31 6.4 1.815 
3306.25 1318.42 40.96 3.29 2087.83 368.00 104.36 232.38 65.90 

11.62 
16.672 

1 58 32.68 6.5 3.63 
3364 1067.98 42.25 13.18 1895.44 377.00 210.54 212.42 118.63 

23.60 
16.923 

1 57 34.495 6.4 1.815 
3249 1189.91 40.96 3.29 1966.22 364.80 103.46 220.77 62.61 

11.62 
17.353 
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1 57 36.31 6.3 0 
3249 1318.42 39.69 0.00 2069.67 359.10 0.00 228.75 0.00 

0.00 
17.896 

1 57 36.31 6.3 3.63 
3249 1318.42 39.69 13.18 2069.67 359.10 206.91 228.75 131.81 

22.87 
16.527 

1 57 36.31 6.5 0 
3249 1318.42 42.25 0.00 2069.67 370.50 0.00 236.02 0.00 

0.00 
18.244 

1 58 32.68 6.5 0 
3364 1067.98 42.25 0.00 1895.44 377.00 0.00 212.42 0.00 

0.00 
18.396 

1 58 36.31 6.3 3.63 
3364 1318.42 39.69 13.18 2105.98 365.40 210.54 228.75 131.81 

22.87 
15.669 

1 58 32.68 6.3 0 
3364 1067.98 39.69 0.00 1895.44 365.40 0.00 205.88 0.00 

0.00 
18.755 

1 57 32.68 6.3 3.63 
3249 1067.98 39.69 13.18 1862.76 359.10 206.91 205.88 118.63 

22.87 
15.894 

Z1= granite proportion; Z2 = granular sand proportion; Z3 = bitumen proportion.; Z4 = MK proportion
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Figure 2. R2Statistics of Developed VMA of MK-DGAC 

 

3.2.2 RSM for Predicting VTM of MK-DGAC 

Table 4 presents the matrix of the shape function and the experimentally determined VTM of the MK- DGAC. 

On application of Equation (18), D for VTM of MK-DGAC was obtained as given by Equation (24). 

 

𝐷 = [119.47, 6869.65, 4124.60, 764.39, 192.18, 395023.6, 142619.6, 4891.32, 530.56, 237160,  
43952.46, 11050.14, 26390.19, 6646.48, 1230.14 ]𝑇     (24) 

 

[E], being a 15 * 15 matrix was also obtained on application of Equation (20). With the help of [D] and [E], and 

application of Equation (19), the coefficient matrix of the VTM optimization model for MK-DGAC is obtained 

as presented by Equation (25). 

𝛽 = [4291.534  − 138.525   27.236  − 238.274 − 9.866  1.468 − 0.176  26.479   − 0.036 − 0.403  −
2.561 − 0.005   1.252   0.064   1.194]T   (25) 

 

On substituting these coefficient values into Equation (11), the RSM optimization model for predicting the 

VTM of MK -DGAC was obtained as presented in Equation (26). 

𝑉𝑇𝑀 =  4291.534 − 138.525𝑍1 + 27.236 𝑍2 − 238.274𝑍3 − 9.866𝑍4 + 1.468 𝑍1
2 − 0.176 𝑍2

2 +
26.479 𝑍3

2 − 0.036 𝑍4
2 − 0.403 𝑍1𝑍2 − 2.561 𝑍1𝑍3 − 0.005 𝑍1𝑍4 + 1.252 𝑍2𝑍3 + 0.064 𝑍2𝑍4 + 1.194 𝑍3𝑍4

        (26) 
 

Equation (26) introduces an optimization model aimed at predicting and optimizing the VTM of MK-DGAC. 

The model's performance is evaluated using the coefficient of determination (R²), which quantifies how well the 

model's predictions align with actual observed values. An R² value of 83.96% (Figure 3) at a 5% significance 

level indicates that the model explains approximately 84% of the variability in VTM, signifying a strong 

predictive capability. 

In the context of regression modeling, an R² value greater than 0.75 is generally accepted as indicative of a good 

model fit in engineering and materials science applications. The R² value of 0.8396 obtained here suggests that 

the model is robust, explaining nearly 84% of the variability in VTM. This demonstrates that the mix design 

parameters incorporated in the model are strong predictors of VTM. Furthermore, the model’s statistical 

significance at the 5% level means that there is less than a 5% chance that the observed relationship is due to 

random variation, reinforcing the reliability of the model (Srinivas et al., 2024). 

While a high R² value supports the model's explanatory power, it is essential to interpret this metric alongside 

other model validation indicators, such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), 

particularly in multivariate models (Siegel, 2012). This approach helps ensure that the model is both accurate 

and generalizable. The 83.96% R² indicates that the model's predictive strength is sufficiently robust for 

practical use in asphalt mix optimization. 
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VTM is a critical quality parameter that influences key performance properties such as air void content, 

moisture resistance, and long-term durability of asphalt concrete. Accurate prediction of VTM allows engineers 

to design mixtures that optimize these properties while maintaining structural integrity and cost-efficiency. A 

model with an R² of 83.96% provides practitioners with a dependable tool for assessing and adjusting MK-

DGAC mix designs (Siegel, 2012). 

 

Table 4. Matrix of shape function [Zn], and the VTM of MK-DGAC 

Intercept Z1 Z2 Z3 Z4 Z1
2 Z2

2 Z3
2 Z4

2 Z1Z2 Z1Z3 Z1Z4 Z2Z3 Z2Z4 Z3Z4 VTM 

1 57 36.31 6.5 3.63 
3249 1318.42 42.25 13.18 2069.67 370.50 206.91 236.02 131.81 

23.60 4.838 

1 57.5 34.495 6.4 0 
3306.25 1189.91 40.96 0.00 1983.46 368.00 0.00 220.77 0.00 

0.00 
4.401 

1 57.5 34.495 6.4 3.63 
3306.25 1189.91 40.96 13.18 1983.46 368.00 208.73 220.77 125.22 

23.23 
2.769 

1 57 32.68 6.5 0 
3249 1067.98 42.25 0.00 1862.76 370.50 0.00 212.42 0.00 

0.00 
4.075 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
4.125 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
4.095 

1 57.5 34.495 6.5 1.815 
3306.25 1189.91 42.25 3.29 1983.46 373.75 104.36 224.22 62.61 

11.80 
3.963 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
4.127 

1 58 36.31 6.5 3.63 
3364 1318.42 42.25 13.18 2105.98 377.00 210.54 236.02 131.81 

23.60 
2.692 

1 57 32.68 6.5 3.63 
3249 1067.98 42.25 13.18 1862.76 370.50 206.91 212.42 118.63 

23.60 
2.057 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
4.071 

1 57 32.68 6.3 0 
3249 1067.98 39.69 0.00 1862.76 359.10 0.00 205.88 0.00 

0.00 
5.368 

1 57.5 32.68 6.4 1.815 
3306.25 1067.98 40.96 3.29 1879.10 368.00 104.36 209.15 59.31 

11.62 
2.984 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
4.103 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
4.044 

1 58 36.31 6.3 0 
3364 1318.42 39.69 0.00 2105.98 365.40 0.00 228.75 0.00 

0.00 
4.779 

1 58 34.495 6.4 1.815 
3364 1189.91 40.96 3.29 2000.71 371.20 105.27 220.77 62.61 

11.62 
4.436 

1 58 32.68 6.3 3.63 
3364 1067.98 39.69 13.18 1895.44 365.40 210.54 205.88 118.63 

22.87 
3.779 

1 58 36.31 6.5 0 
3364 1318.42 42.25 0.00 2105.98 377.00 0.00 236.02 0.00 

0.00 
4.064 

1 57.5 34.495 6.3 1.815 
3306.25 1189.91 39.69 3.29 1983.46 362.25 104.36 217.32 62.61 

11.43 
3.972 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
3.824 

1 57.5 36.31 6.4 1.815 
3306.25 1318.42 40.96 3.29 2087.83 368.00 104.36 232.38 65.90 

11.62 
3.261 

1 58 32.68 6.5 3.63 
3364 1067.98 42.25 13.18 1895.44 377.00 210.54 212.42 118.63 

23.60 
3.117 

1 57 34.495 6.4 1.815 
3249 1189.91 40.96 3.29 1966.22 364.80 103.46 220.77 62.61 

11.62 
3.704 

1 57 36.31 6.3 0 
3249 1318.42 39.69 0.00 2069.67 359.10 0.00 228.75 0.00 

0.00 
4.559 

1 57 36.31 6.3 3.63 
3249 1318.42 39.69 13.18 2069.67 359.10 206.91 228.75 131.81 

22.87 
3.496 

1 57 36.31 6.5 0 
3249 1318.42 42.25 0.00 2069.67 370.50 0.00 236.02 0.00 

0.00 
4.542 

1 58 32.68 6.5 0 
3364 1067.98 42.25 0.00 1895.44 377.00 0.00 212.42 0.00 

0.00 
4.267 

1 58 36.31 6.3 3.63 
3364 1318.42 39.69 13.18 2105.98 365.40 210.54 228.75 131.81 

22.87 
2.630 

1 58 32.68 6.3 0 
3364 1067.98 39.69 0.00 1895.44 365.40 0.00 205.88 0.00 

0.00 
5.121 

1 57 32.68 6.3 3.63 
3249 1067.98 39.69 13.18 1862.76 359.10 206.91 205.88 118.63 

22.87 
2.210 

Z1= granite proportion; Z2 = granular sand proportion; Z3 = bitumen proportion.; Z4 = MK proportion 
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Figure 3. R2 statistics of Developed VTM of MK-DGAC 

 

3.2.3 RSM for Predicting VFB of MK-DGAC  

Table 5 presents the matrix of the shape function and the experimentally determined VFB of MK- DGAC. On 

application of Equation (18), D for VFB of MK-DGAC was obtained as given by Equation (27). 

 

𝐷 = [2419.36, 139112.3, 83428.02, 15485.32, 4498.842, 7999244, 2881542, 99129.06, 13003.54,  
4797099, 890399.5, 258681.4, 533984.5, 155086.6, 28792.39 ]𝑇   (27) 

 

Matrix [E], being a 15 * 15 matrix was also obtained on application of Equation (20). With the help of [D] and 

[E], and application of Equation (19), the coefficient matrix of the VFB optimization model for MK-DGAC is 

obtained as presented by Equation (28). 

 

𝛽 = [−19592.896  637.793  − 138.669  1148.192  44.428 − 6.811 0.847 −
126.445   0.222  2.018  11.830 − 0.003  − 5.587  − 0.290  − 5.196]T  (28) 

 

On substituting these coefficient values into Equation (11), the RSM optimization model for predicting the VFB 

of MK-DGAC was obtained as presented in Equation (29). 

𝑉𝐹𝐵 =  −19592.896 + 637.739𝑍1 − 138.669 𝑍2 + 1148.192𝑍3 + 44.428𝑍4 − 6.811 𝑍1
2 + 0.847 𝑍2

2 −
126.445 𝑍3

2 + 0.222 𝑍4
2 + 2.018 𝑍1𝑍2 + 11.830 𝑍1𝑍3 − 0.003 𝑍1𝑍4 − 5.587 𝑍2𝑍3 − 0.290 𝑍2𝑍4 −

5.196 𝑍3𝑍4      (29) 

Equation (29) in the present study represents the optimization model formulated to predict and optimize the 

VFB in MK-DGAC. The model integrates key input parameters such as metakaolin dosage, aggregate 

gradation, and binder content to accurately forecast the VFB, which directly influences durability and moisture 

resistance. The application of Response Surface Methodology (RSM) likely underpins this model, a widely 

accepted technique for developing predictive equations in civil engineering materials (Usman & Uthman, 

2020). 

The performance of the model is supported by a coefficient of determination (R²) of 82.62% (Figure 4), 

calculated at a 5% level of significance. This implies that the model accounts for approximately 82.62% of the 

variation in the VFB, indicating substantial predictive accuracy. In materials science and pavement engineering, 

R² values above 80% are generally considered robust for practical applications (Wikipedia, 2025). 

Comparative studies validate the adequacy of this R² value. For example, Usman and Uthman (2020) 

demonstrated similar statistical strength in biodiesel optimization models, reporting R² values exceeding 85%. 

In the context of cementitious materials, a study by Olofinnade et al. (2023) using RSM to predict the 

performance of concrete containing ground scoria and metakaolin achieved R² values of 79.44% for water 

absorption and over 90% for density and compressive strength. These findings align with the current study’s 

outcome, reinforcing the claim that the model in Equation (29) is statistically sound and practically applicable. 
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Moreover, the use of RSM facilitates both prediction and optimization, a dual capability critical for fine-tuning 

MK-DGAC formulations under varying field conditions. As emphasized by Saha (2023), models that integrate 

optimization tools provide a systematic approach to enhancing process efficiency, especially where multiple 

interacting variables exist. 

Thus, the R² value of 82.62% confirms that the optimization model represented by Equation (29) is suitable for 

engineering predictions, ensuring reliability in forecasting the VFB in MK-DGAC. The model provides a 

strategic tool for mix design engineers seeking to balance performance requirements and sustainability goals in 

modern pavement materials. 

 

Table 5. Matrix of shape function [Zn], and the VFB of MK-DGAC 

Intercept Z1 Z2 Z3 Z4 Z1
2 Z2

2 Z3
2 Z4

2 Z1Z2 Z1Z3 Z1Z4 Z2Z3 Z2Z4 Z3Z4 VFB 

1 57 36.31 6.5 3.63 
3249 1318.42 42.25 13.18 2069.67 370.50 206.91 236.02 131.81 

23.60 73.18 

1 57.5 34.495 6.4 0 
3306.25 1189.91 40.96 0.00 1983.46 368.00 0.00 220.77 0.00 

0.00 
75.73 

1 57.5 34.495 6.4 3.63 
3306.25 1189.91 40.96 13.18 1983.46 368.00 208.73 220.77 125.22 

23.23 
82.97 

1 57 32.68 6.5 0 
3249 1067.98 42.25 0.00 1862.76 370.50 0.00 212.42 0.00 

0.00 
77.80 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
76.64 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
76.77 

1 57.5 34.495 6.5 1.815 
3306.25 1189.91 42.25 3.29 1983.46 373.75 104.36 224.22 62.61 

11.80 
77.61 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
76.63 

1 58 36.31 6.5 3.63 
3364 1318.42 42.25 13.18 2105.98 377.00 210.54 236.02 131.81 

23.60 
83.26 

1 57 32.68 6.5 3.63 
3249 1067.98 42.25 13.18 1862.76 370.50 206.91 212.42 118.63 

23.60 
87.25 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
76.88 

1 57 32.68 6.3 0 
3249 1067.98 39.69 0.00 1862.76 359.10 0.00 205.88 0.00 

0.00 
71.88 

1 57.5 32.68 6.4 1.815 
3306.25 1067.98 40.96 3.29 1879.10 368.00 104.36 209.15 59.31 

11.62 
82.37 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
76.74 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
77.01 

1 58 36.31 6.3 0 
3364 1318.42 39.69 0.00 2105.98 365.40 0.00 228.75 0.00 

0.00 
73.41 

1 58 34.495 6.4 1.815 
3364 1189.91 40.96 3.29 2000.71 371.20 105.27 220.77 62.61 

11.62 
75.17 

1 58 32.68 6.3 3.63 
3364 1067.98 39.69 13.18 1895.44 365.40 210.54 205.88 118.63 

22.87 
77.93 

1 58 36.31 6.5 0 
3364 1318.42 42.25 0.00 2105.98 377.00 0.00 236.02 0.00 

0.00 
77.06 

1 57.5 34.495 6.3 1.815 
3306.25 1189.91 39.69 3.29 1983.46 362.25 104.36 217.32 62.61 

11.43 
77.10 

1 57.5 34.495 6.4 1.815 
3306.25 1189.91 40.96 3.29 1983.46 368.00 104.36 220.77 62.61 

11.62 
78.02 

1 57.5 36.31 6.4 1.815 
3306.25 1318.42 40.96 3.29 2087.83 368.00 104.36 232.38 65.90 

11.62 
80.44 

1 58 32.68 6.5 3.63 
3364 1067.98 42.25 13.18 1895.44 377.00 210.54 212.42 118.63 

23.60 
81.58 

1 57 34.495 6.4 1.815 
3249 1189.91 40.96 3.29 1966.22 364.80 103.46 220.77 62.61 

11.62 
78.66 

1 57 36.31 6.3 0 
3249 1318.42 39.69 0.00 2069.67 359.10 0.00 228.75 0.00 

0.00 
74.52 

1 57 36.31 6.3 3.63 
3249 1318.42 39.69 13.18 2069.67 359.10 206.91 228.75 131.81 

22.87 
78.85 

1 57 36.31 6.5 0 
3249 1318.42 42.25 0.00 2069.67 370.50 0.00 236.02 0.00 

0.00 
75.10 

1 58 32.68 6.5 0 
3364 1067.98 42.25 0.00 1895.44 377.00 0.00 212.42 0.00 

0.00 
76.80 

1 58 36.31 6.3 3.63 
3364 1318.42 39.69 13.18 2105.98 365.40 210.54 228.75 131.81 

22.87 
83.21 

1 58 32.68 6.3 0 
3364 1067.98 39.69 0.00 1895.44 365.40 0.00 205.88 0.00 

0.00 
72.69 

1 57 32.68 6.3 3.63 
3249 1067.98 39.69 13.18 1862.76 359.10 206.91 205.88 118.63 

22.87 
86.10 

Z1= granite proportion; Z2 = sand proportion; Z3 = bitumen proportion.; Z4 = MK proportion
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Figure 4. R2 statistics of Developed VFB of MK-DGAC 

 

3.3 Effect of Constituents on the Void Properties of MK-DGAC 

3.3.1 Effect of Constituents on the VMA of MK-DGAC 

Figure 5 illustrates the main effect plots used to evaluate the individual impact of constituents on the Voids in 

Mineral Aggregate (VMA) of Metakaolin-Densely Graded Asphalt Concrete (MK-DGAC). The steepness of 

each plot reflects the magnitude of influence a constituent exerts on the VMA. A horizontal line indicates 

minimal effect, while a steep slope signifies a strong influence. Among the constituents, metakaolin (MK) 

demonstrated the most significant effect, as evidenced by its steep curve. As MK content increased from 0% to 

3.63%, the mean VMA decreased linearly from 18.25% to approximately 16.5%, which corresponds to a 

percentage reduction of around 9.6%. This decrease in VMA with increasing MK is attributed to the pozzolanic 

nature and fine particle size of MK, which tends to occupy voids within the aggregate skeleton and densify the 

mix, leading to lower VMA. A similar trend has been reported by Ali et al. (2012), who found that mineral 

fillers like MK reduce void content by enhancing the compactness of asphalt mixtures. 

Sand exhibited the second most pronounced effect on VMA. The VMA increased from 17.1% at 32.68% sand 

content to 17.5% at 34.495% sand, marking a 2.34% rise. However, a further increase in sand to 36.31% caused 

the VMA to decline to 16.7%, representing a 4.57% reduction. The initial increase in VMA is likely due to 

improved packing and grain interlocking, while the subsequent decrease may be due to oversaturation, where 

excess sand leads to a denser configuration that reduces void spaces. This behavior aligns with the findings of 

Rahman et al. (2012), who reported that optimal sand levels improve VMA, but excessive amounts could lead 

to tighter compaction and decreased voids. 

Bitumen’s effect on VMA was more moderate. As the bitumen content increased from 6.3% to 6.4%, the mean 

VMA dropped from 17.6% to 17.5%, a reduction of 0.6%. However, increasing the bitumen content to 6.5% 

reversed this trend, raising the VMA to 17.75%, which represents a 1.43% increase. This behavior suggests that 

at lower bitumen levels, improved lubrication facilitates better aggregate packing, hence reducing VMA, while 

at higher contents, the excess bitumen acts as a cushion between particles, increasing the overall VMA. 

Pourtahmasb et al. (2014) observed similar nonlinear behavior in asphalt mixes, where bitumen content initially 

reduced voids but began to increase them at higher dosages due to lubrication effects. 

Granite had the least impact on VMA. A slight decrease in VMA from 17.80% to 17.49% occurred as granite 

content increased from 57.00% to 57.5%, amounting to a 1.71% reduction. Beyond this, as granite content 

reached 58.0%, the VMA slightly rose to 17.70%, a 1.20% increase. These marginal variations suggest that 

granite’s influence on VMA is minimal, likely because its coarse gradation and inert behavior do not 

significantly alter the internal structure of the mix. Rahman et al. (2012) similarly noted that coarser aggregates 

like granite have less influence on VMA compared to finer constituents. 

The analysis is supported by ANOVA results, where the significance of each constituent’s effect was statistically 

verified. At a 5% level of significance, MK had the smallest p-value of 0.000, confirming its dominant influence 

on VMA. This was followed by sand (p = 0.104), indicating a notable, though not statistically significant, effect. 

Granite and bitumen, with p-values of 0.531 and 0.428 respectively, had the least statistically significant 
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impacts on VMA. These findings highlight that while all constituents contribute to the behavior of MK-DGAC, 

MK and sand play the most critical roles in influencing VMA. 

 

 
Figure 5. Main Effects Plots for VMA of MK-DGAC 

 

Table 6ANOVA Statistics for Effect Analysis of Constituents of Mk-DGAC on VMA 

Source               DF   Adj SS   Adj MS  F-Value  P-Value 

Model                14  18.9225   1.3516     9.23    0.000 

  Linear              4  14.6416   3.6604    24.98    0.000 

    Granite           1   0.0601   0.0601     0.41    0.531 

    Sand              1   0.4341   0.4341     2.96    0.104 

    Bitumen           1   0.0969   0.0969     0.66    0.428 

    MK                1  14.0506  14.0506    95.90    0.000 

  Square              4   0.8239   0.2060     1.41    0.277 

    Granite*Granite   1   0.2586   0.2586     1.77    0.203 

    Sand*Sand         1   0.6329   0.6329     4.32    0.054 

    Bitumen*Bitumen   1   0.1338   0.1338     0.91    0.354 

    MK*MK             1   0.0255   0.0255     0.17    0.682 

  2-Way Interaction   6   3.4570   0.5762     3.93    0.013 

    Granite*Sand      1   1.5598   1.5598    10.65    0.005 

    Granite*Bitumen   1   0.1979   0.1979     1.35    0.262 

    Granite*MK        1   0.0001   0.0001     0.00    0.976 

    Sand*Bitumen      1   0.5886   0.5886     4.02    0.062 

    Sand*MK           1   0.5653   0.5653     3.86    0.067 

    Bitumen*MK        1   0.5453   0.5453     3.72    0.072 

Error                16   2.3442   0.1465 

  Lack-of-Fit        10   2.2941   0.2294    27.50    0.000 

  Pure Error          6   0.0501   0.0083 

Total                30  21.2667  

 

3.3.2 Effect of Constituents on the VTM of MK-DGAC 

The main effect plots in Figure 6 provide a visual representation of how various constituents influence the mean 

VTM of MK-DGAC. A steeper slope in these plots indicates a more significant impact on VTM, while a flatter 

slope suggests a lesser effect. 

Metakaolin (MK) exhibits the most pronounced effect on VTM. As the MK content increases from 0% to 

3.63%, the mean VTM decreases from 4.5% to approximately 3.0%, representing a 33.33% reduction. This 

trend is corroborated by the Analysis of Variance (ANOVA) results in Table 7, where MK has a P-value of 

0.000, indicating a statistically significant impact on VTM. The reduction in VTM with increasing MK content 

can be attributed to the fine particle size and pozzolanic activity of MK, which enhance the packing density and 
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reduce air voids in the mix. This observation aligns with findings by Murana et al. (2014), who reported that 

incorporating MK as a partial replacement for cement in hot mix asphalt improves the mixture's density and 

reduces voids. 

Bitumen content is the second most influential factor affecting VTM. An increase in bitumen content from 6.3% 

to 6.4% leads to a decrease in mean VTM from 4.30% to 3.70%, a 13.95% reduction. However, further 

increasing the bitumen content to 6.5% results in a slight increase in VTM to 3.85%, a 4.05% rise. The initial 

decrease in VTM can be attributed to improved coating and lubrication of aggregates, enhancing compaction. 

The subsequent increase may be due to excess bitumen creating a film that prevents proper aggregate interlock, 

leading to higher voids. The ANOVA results support this, with bitumen showing a P-value of 0.241, indicating a 

moderate impact on VTM. This behavior is consistent with the study by Ali et al. (2012), which found that 

increasing bitumen content initially reduces VTM, but excessive bitumen can lead to higher voids due to over-

lubrication. 

Sand content also plays a significant role in influencing VTM. As sand content increases from 32.68% to 

34.495%, the mean VTM rises from 3.25% to 3.80%, a 16.90% increase. However, further increasing sand 

content to 36.31% results in a decrease in VTM to 3.50%, a 7.89% reduction. The initial increase in VTM may 

be due to the angularity and texture of sand particles, which can create more voids. The subsequent decrease 

could be attributed to improved packing and reduced voids at higher sand contents. The ANOVA results show a 

P-value of 0.333 for sand, indicating a moderate effect on VTM. This trend aligns with the findings of Islam et 

al. (2019), who observed that sand particle size and distribution significantly affect the void content in granular 

materials. 

Granite, as the final constituent, has the least impact on VTM. An increase in granite content from 57.00% to 

57.5% leads to a decrease in mean VTM from 4.25% to 3.90%, an 8.24% reduction. Further increasing granite 

content to 58.0% results in an increase in VTM back to 4.25%, an 8.24% rise. This symmetrical change 

suggests that granite content has a negligible net effect on VTM. The ANOVA results confirm this, with granite 

showing a P-value of 0.985, indicating an insignificant impact on VTM. This observation is supported by the 

study of Islam et al. (2019), which found that the particle size of sand influences the shear strength and void 

content of granular materials. 

 

 
Figure 6. Main Effects Plots for VTM of MK -DGAC 
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Table 7; ANOVA Statistics for Effect Analysis of Constituents of MK-DGACon VTM 
 

Source               DF   Adj SS   Adj MS  F-Value  P-Value 

Model                14  16.5754   1.1840     5.98    0.001 

  Linear              4  10.7503   2.6876    13.58    0.000 

    Granite           1   0.0001   0.0001     0.00    0.985 

    Sand              1   0.1971   0.1971     1.00    0.333 

    Bitumen           1   0.2936   0.2936     1.48    0.241 

    MK                1  10.2595  10.2595    51.84    0.000 

  Square              4   1.1363   0.2841     1.44    0.268 

    Granite*Granite   1   0.3495   0.3495     1.77    0.203 

    Sand*Sand         1   0.8748   0.8748     4.42    0.052 

    Bitumen*Bitumen   1   0.1820   0.1820     0.92    0.352 

    MK*MK             1   0.0361   0.0361     0.18    0.675 

  2-Way Interaction   6   4.6888   0.7815     3.95    0.013 

    Granite*Sand      1   2.1349   2.1349    10.79    0.005 

    Granite*Bitumen   1   0.2624   0.2624     1.33    0.266 

    Granite*MK        1   0.0003   0.0003     0.00    0.969 

    Sand*Bitumen      1   0.8255   0.8255     4.17    0.058 

    Sand*MK           1   0.7141   0.7141     3.61    0.076 

    Bitumen*MK        1   0.7516   0.7516     3.80    0.069 

Error                16   3.1666   0.1979 

  Lack-of-Fit        10   3.0987   0.3099    27.40    0.000 

  Pure Error          6   0.0679   0.0113 

Total                30  19.7420 

 

 

3.3.3 Effect of Constituents on the VFB of MK-DGAC 

The analysis of the main effect plots and ANOVA results reveals the influence of various constituents on the 

mean Voids Filled with Bitumen (VFB) in Metakaolin-Modified Dense Graded Asphalt Concrete (MK-DGAC). 

The steepness of the slope in the main effect plots indicates the magnitude of each constituent's impact on VFB. 

Metakaolin (MK) exhibits the most significant effect on mean VFB. As the MK content increases from 0% to 

3.63%, the mean VFB increases almost linearly from 75.00% to approximately 82.0%, representing a 9.33% 

increase. This substantial effect is corroborated by the ANOVA results, where MK has a P-value of 0.000, 

indicating a statistically significant impact on mean VFB at the 5% significance level. This finding aligns with 

previous studies that have demonstrated the positive impact of metakaolin on the volumetric properties of 

asphalt mixtures (Ragab, 2023). 

Sand content shows a quadratic effect on mean VFB. Initially, as sand content increases from 32.68% to 

34.495%, the mean VFB decreases from 81.5% to 78.0%, a 4.29% reduction. Beyond 34.495% sand content, 

the mean VFB increases to 79.50% at 36.31%, a 1.92% rise. Overall, the greater magnitude of decrease 

compared to the subsequent increase suggests that sand has an overall negative effect on mean VFB. The 

ANOVA results support this observation, with sand having a P-value of 0.111, ranking second in its impact on 

mean VFB. This trend is consistent with findings by Shuaibu et al. (2021), who reported that increasing silica 

sand content in asphalt mixtures leads to a decrease in VFB due to the sand particles absorbing effective 

bitumen. 

Bitumen content also affects mean VFB, albeit to a lesser extent. An increase in bitumen content from 6.3% to 

6.4% leads to an increase in mean VFB from 76.5% to 78.0%, a 1.96% rise. However, further increasing 

bitumen content to 6.5% results in a slight decrease in mean VFB to 77.5%, a 0.006% reduction. Since the 

increase is greater than the decrease, bitumen is considered to have a slight overall positive effect on mean 

VFB. This is reflected in the ANOVA results, where bitumen has a P-value of 0.146, ranking third in its impact 

on mean VFB. Similar observations were made by Ibedu and Murana (2024), who found that VFB generally 

increases with bitumen content up to a certain point, beyond which it may decrease due to over-saturation 

Granite content exhibits the least impact on mean VFB. As granite content increases from 57.00% to 57.5%, the 

mean VFB increases from 76.25% to 78.0%, a 2.30% increment. However, further increasing granite content to 

58.0% results in a decrease in mean VFB back to 76.25%, a 2.30% reduction. The equal magnitude of increase 

and decrease suggests that granite has no net effect on mean VFB. The ANOVA results confirm this, with 

granite having a P-value of 0.810, indicating no significant impact on mean VFB. 
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Figure 7. Main Effects Plots for VFB of MK -DGAC. 

 

Table 8; ANOVA Statistics for Effect Analysis of Constituents of MK-DGAC on VFB 

Source               DF   Adj SS   Adj MS  F-Value  P-Value 

Model                14  351.742   25.124     5.43    0.001 

  Linear              4  219.863   54.966    11.88    0.000 

    Granite           1    0.276    0.276     0.06    0.810 

    Sand              1   13.157   13.157     2.84    0.111 

    Bitumen           1   10.824   10.824     2.34    0.146 

    MK                1  195.607  195.607    42.28    0.000 

  Square              4   27.361    6.840     1.48    0.255 

    Granite*Granite   1    7.526    7.526     1.63    0.220 

    Sand*Sand         1   20.219   20.219     4.37    0.053 

    Bitumen*Bitumen   1    4.149    4.149     0.90    0.358 

    MK*MK             1    1.388    1.388     0.30    0.591 

  2-Way Interaction   6  104.518   17.420     3.77    0.016 

    Granite*Sand      1   53.653   53.653    11.60    0.004 

    Granite*Bitumen   1    5.598    5.598     1.21    0.288 

    Granite*MK        1    0.000    0.000     0.00    0.996 

    Sand*Bitumen      1   16.455   16.455     3.56    0.078 

    Sand*MK           1   14.585   14.585     3.15    0.095 

    Bitumen*MK        1   14.228   14.228     3.08    0.099 

Error                16   74.015    4.626 

  Lack-of-Fit        10   72.581    7.258    30.37    0.000 

  Pure Error          6    1.434    0.239 

Total                30  425.757 

 

 

3.4 Multi-Objective Optimization of MK-DGAC for Maximum Performance 

The optimization of metakaolin-densified graded asphalt concrete (MK-DGAC) mix design aims to enhance 

performance across key volumetric properties: voids in mineral aggregate (VMA), voids in total mix (VTM), 

and voids filled with bitumen (VFB). Figure 8 illustrates the optimal composition derived through response 

surface methodology (RSM), a statistical technique widely employed in asphalt mixture optimization (Fan et 

al., 2023). The ideal mix comprises 57.253% granite, 32.680% granular sand, 6.399% bitumen, and 3.63% MK. 

When normalized to a 100% scale, these proportions adjust slightly to 57.275% granite, 32.692% sand, 6.401% 

bitumen, and 3.631% MK. 

The optimized formulation of MK-DGAC achieves a composite desirability score of 96.95%, indicating a 

highly effective balance among the volumetric properties critical for asphalt mixture performance. Specifically, 
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the mix attains a minimized VMA of 15.899%, a VTM of 2.034%, and a VFB of 86.897%, with desirability 

scores of 93.28%, 1.000, and 97.68%, respectively. These optimized values reflect a mix design that not only 

meets but, in several respects, exceeds established standards and specifications. 

According to the Superpave volumetric mix design criteria, widely used across the pavement engineering field 

and formalized by the American Association of State Highway and Transportation Officials (AASHTO), a 

minimum VMA of 14% is recommended for dense-graded asphalt mixtures with nominal maximum aggregate 

sizes around 12.5 mm (AASHTO M 323-20, 2020). The optimized MK-DGAC’s VMA of 15.899% surpasses 

this threshold, indicating sufficient void space within the aggregate skeleton to accommodate bitumen, which is 

essential for durability and binder retention (Hu et al., 2024). 

The VTM value of 2.034% is slightly lower than the typical Superpave guideline range of 3–5% for air voids 

(AASHTO R 35-22, 2022). However, recent studies show that lower air voids, when properly managed with 

additives like metakaolin and careful compaction, can enhance the mixture’s resistance to moisture damage and 

improve its longevity by reducing permeability (Hu et al., 2024; NAPA, 2023). Thus, the slightly reduced VTM 

here may contribute positively to the mix’s performance, especially under moist conditions. 

Regarding the VFB, the optimized mix reaches 86.897%, which is higher than the commonly accepted upper 

limit of about 82% specified for surface layers in standard dense-graded mixes (AASHTO R 35-22, 2022). This 

elevated VFB suggests a bitumen-rich structure, which typically improves resistance to fatigue cracking and 

moisture-induced damage, as more bitumen effectively coats the aggregate particles and fills the voids (Hu et 

al., 2024). This benefit is especially valuable in mixes designed for demanding pavement applications where 

durability is paramount. 

Taken together, the optimized proportions of 57.253% granite, 32.680% granular sand, 6.399% bitumen, and 

3.63% metakaolin (MK) represent a well-balanced mix that meets or exceeds the critical volumetric criteria 

outlined by relevant standards, thereby ensuring structural integrity, durability, and resistance to moisture 

damage. The desirability values further confirm the robustness of this optimized mix design, making it a 

promising candidate for high-performance asphalt concrete applications. 

The application of RSM in this context aligns with recent studies emphasizing its efficacy in optimizing asphalt 

mixtures. For instance, Fan et al. (2023) demonstrated the successful use of RSM in designing asphalt mixtures 

reinforced with calcium sulfate anhydrous whisker and polyester fiber, achieving significant improvements in 

mechanical properties. Similarly, Hu et al. (2024) utilized RSM to optimize cotton-straw-fiber-modified asphalt 

mixtures, resulting in enhanced pavement performance indicators. These studies underscore the versatility and 

effectiveness of RSM in tailoring asphalt mix designs to achieve desired performance outcomes. 

In conclusion, the optimized MK-DGAC mix design, as illustrated in Figure 8, exemplifies the successful 

application of RSM in achieving superior asphalt mixture performance. By meticulously adjusting the 

proportions of granite, sand, bitumen, and MK, the mix attains optimal values for VMA, VTM, and VFB, 

thereby ensuring enhanced durability and performance in pavement applications. 

 

 
Figure 8. Multi-Objective Optimization of MK-DGAC on Void Properties 
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IV. Conclusions 
From the results and discussion of this study, the following conclusions are hereby put forward;  

i. Metakaolin significantly improves the void properties of dense graded asphalt concrete, with VMA 

ranging from 15.67% to 19.09%, VTM from 2.06% to 5.37%, and VFB from 71.88% to 87.25%. Proper dosing 

ensures these metrics meet or closely align with standard specifications, enhancing durability and binder 

distribution without compromising mix stability. These findings confirm MK’s potential as an effective mineral 

additive for asphalt performance enhancement 

ii. The developed RSM models accurately predict the volumetric properties of MK-DGAC with strong 

explanatory power, evidenced by R² values of 88.98% for VMA and 83.96% for VTM. These results 

demonstrate robust predictive capabilities suitable for practical mix optimization. The models capture the 

significant effects of granite, sand, bitumen, and metakaolin proportions on volumetric metrics, facilitating 

improved asphalt design. Consequently, the models offer reliable tools for ensuring the durability and 

performance of MK-DGAC mixtures. 

iii. From the effect analysis, Metakaolin (MK) had the most significant impact on the void properties of 

MK-DGAC, notably reducing VMA and VTM while increasing VFB due to its fine particle size and pozzolanic 

activity. Sand shows moderate influence with nonlinear effects on voids, enhancing or reducing voids 

depending on content. Bitumen affects voids moderately, with initial reductions followed by increases at higher 

contents. Granite has minimal impact on void properties, showing insignificant statistical effects. 

iv. The optimized MK-DGAC mix consists of 57.253% granite, 32.680% sand, 6.399% bitumen, and 

3.63% metakaolin, achieving a high composite desirability of 96.95%. Key volumetric properties include a 

VMA of 15.899% (above the 14% Superpave minimum), a low VTM of 2.034% (enhancing moisture 

resistance), and an elevated VFB of 86.897% (improving durability). These values demonstrate a well-balanced 

mix exceeding standard specifications for dense-graded asphalt. The response surface methodology (RSM) 

effectively optimized the mix, ensuring superior performance and longevity in pavement applications. 
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