Research Paper

Comparative Study of Estimation of Fexofenadine Hydrochloride By Uv-Visible Spectrophotometry and Hplc Method

G.R.Barabde¹, S.R.Ambadekar, Anil Nishad¹
Department of Chemistry, Institute Of Science, Fort, Mumbai-32, India

Received 05 February, 2016; Accepted 24 February, 2016 © The author(s) 2015. Published with open access at www.questjournals.org

ABSTRACT:- Simple and accurate spectrophotometric and HPLC method was developed for determination of Fexofenadine in tablets dosage form. The spectrophotometric method was developed by dissolving tablets in 1:1 Methanol to make solution of 10ppm giving absorbance at 220nm. The experimental conditions were optimized and Beers law was obeyed over the applicable concentration range. The application of HPLC procedure depends on using a conventional reverse phase C18 column along with mobile phase consisting of 1:1 Methanol. Both techniques were applied successfully for analysis of Fexofenadine in three different commercially available tablets. From the results obtained for both procedures percentage purity was found out.

Key words:- Fexofenadine, Spectrophotometric, HPLC, Methanol.

I. INTRODUCTION

Fexofinadine Hydrochloride, The Active Ingredient of telfast And Allegra, Is a Second –Generation Histamine H₁ Receptor Antagonist With The Chemical Name α,α-Dimethyl-4-[1-Hydroxy-4-[4-(Hydroxydiphenyl-Methyl)-1-piperidiny] butyl]-Benzen acetic acid. It is NonSedating Antihistamine. Fexofinadine Hydrochloride is used as The Hydrochloride Salt in the Symptomatic relief of allergic Conditions including Seasonal allergic rhinitis and urticaria. (1,2) Fexofenadine (tradenames Allegra, Fexidine, Telfast, Fastofen, Tilfur, Vifas, Telfexo, Allerfexo) is an antihistamine pharmaceutical drug used in the treatment of allergy symptoms, such as hay fever, nasal congestion, and urticaria. (3) Fexofenadine is sometimes called a third-generation antihistamine because it is less able to pass the blood-brain barrier and cause sedation, compared to first-generation antihistamines. (4) Fexofenadine has been demonstrated to be safe and effective for children ages 2–5 years old and 6–11 years old in treatment of seasonal allergic rhinitis. (5,6)

There are various reports based on the evaluation of Fexofenadine by HPLC method in different dosage forms (Karakus et al., 2008) (7). Fexofenadine was detected in biological fluids using HPLC method (Hofmann et al., 2002) (8) some spectrophotometric and capillary electrophores is methods were also developed (Mahgoub et al., 2003) (9).: Mikus et al., 2005 (10)). Electro spray ionization tandem mass spectrometry methods

"Corresponding Author: G.R.Barabde¹
II. MATERIAL AND METHODS

1) UV-Visible Spectrophotometer: Shimadzu UV-1800PC spectrophotometer using 1cm quartz cells.
2) HPLC: An Agilent 1200 series rapid resolution LC consisting of; G1312B Binary pump SL, G1315C UV/VIS diode array detector SL, flow cell as indicated in individual chromatograms, Column: Agilent ZORBAX SB-C18, 4.6mm, 150mm,5µm.
3) Diluent: 1:1 Methanol

2.1 Mobile phase: 60:40 (water: Methanol)

2.2 Preparation of standard solutions:

For Spectrophotometric determination: Standard solution of fexofenadine hydrochloride was prepared of 100 ppm concentration. Using that standard solution a series of dilutions ranging from 2 ppm to 10 ppm was prepared.

For HPLC determination: Standard solution of fexofenadine hydrochloride was prepared of 1000 ppm concentration. Using that standard solution a series of dilutions ranging from 20 ppm to 100 ppm was prepared.

2.3 Sample taken for analysis

<table>
<thead>
<tr>
<th>Name of Sample</th>
<th>Name of Manufacturer</th>
<th>Batch number</th>
<th>Content per sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinofex</td>
<td>Astra Zeneca</td>
<td>DPLI002P</td>
<td>Fexofenadine-120mg</td>
</tr>
<tr>
<td>Allegra</td>
<td>Aventis</td>
<td>0212024</td>
<td>Fexofenadine-120mg</td>
</tr>
<tr>
<td>Allerfex</td>
<td>Kirkland Signature</td>
<td>006081</td>
<td>Fexofenadine-180mg</td>
</tr>
</tbody>
</table>

2.4 Preparation of Sample Solution for analysis by UV-Visible Spectrophotometer

For spectrophotometric determination, exact 100 mg of sample was taken in 25 ml volumetric flask and diluted with diluent. The solution was left in ultrasonic bath for 5 min and then filtered through membrane filter. As per table no. 2 according to Fexofenadine Hydrochloride present in the given sample, the corresponding volume was taken and volume made up to 25 ml by diluent to get solution of 6 ppm of each sample.

<table>
<thead>
<tr>
<th>Sample (Wt. of sample tablet)</th>
<th>Wt. of sample tablet (mg)</th>
<th>Fexofenadine present in tablet (mg)</th>
<th>First dilution (ml)</th>
<th>Conc. of solution (ppm)</th>
<th>Volume required for final dilution (ml)</th>
<th>Final dilution (ml)</th>
<th>Final conc. (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinofex (390mg)</td>
<td>100</td>
<td>30.77</td>
<td>25</td>
<td>1230</td>
<td>0.12</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Allegra (430mg)</td>
<td>100</td>
<td>27.90</td>
<td>25</td>
<td>1116</td>
<td>0.13</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Allerfex (670mg)</td>
<td>100</td>
<td>26.89</td>
<td>25</td>
<td>1074</td>
<td>0.14</td>
<td>25</td>
<td>6</td>
</tr>
</tbody>
</table>

2.5 Preparation of Sample solution for analysis by HPLC

For HPLC determination, exact 100 mg of sample was taken in 25 ml volumetric flask and diluted with diluent. The solution was left in ultrasonic bath for 5 min and then filtered through membrane filter. As per table no. 3 according to Fexofenadine Hydrochloride present in the given sample, the corresponding volume was taken and volume made up to 25 ml by diluent to get solution of 100 ppm of each sample.

<table>
<thead>
<tr>
<th>Sample (Wt. of sample tablet)</th>
<th>Wt. of sample tablet (mg)</th>
<th>Fexofenadine present in tablet (mg)</th>
<th>First dilution (ml)</th>
<th>Conc. of solution (ppm)</th>
<th>Volume required for final dilution (ml)</th>
<th>Final dilution (ml)</th>
<th>Final conc. (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinofex (390mg)</td>
<td>100</td>
<td>30.77</td>
<td>25</td>
<td>1230</td>
<td>2.2</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Allegra (430mg)</td>
<td>100</td>
<td>27.90</td>
<td>25</td>
<td>1116</td>
<td>3.2</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Allerfex (670mg)</td>
<td>100</td>
<td>26.89</td>
<td>25</td>
<td>1074</td>
<td>2.2</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

*Corresponding Author:
III. RESULT AND DISCUSSION

3.1 Analysis by UV-Visible Spectrophotometer

For UV-Visible Spectrophotometer the λ_{max} value for standard solution of Fexofenadine Hydrochloride was found to be 220nm. Fig 1 shows the comparison of different sample solutions with standard sample. The calibration graph when plotted using different concentration of Fexofenadine Hydrochloride sample was found to be straight line passing through origin obeying Beer’s law. Using this calibration graph values for samples were found out which are depicted in table no. 4. They were all found in range using their values percentage recovery was calculated which was found to be in range as shown in table no. 4.

![Fig No. 1](image1.png)

Comparison with sample with standard

3.2 Analysis by HPLC method:

For HPLC measurements, the standard sample solutions of Fexofenadine Hydrochloride were prepared. Ranging from 40ppm to 200ppm. The standards were run and their percentage area was calculated. Using those values a standard linearity curve was plotted. It was observed that it follows Lambert beers law.

![Fig No. 2](image2.png)

Standard linearity curve

$$y = 0.058x + 0.001$$

$R^2 = 0.999$

*Corresponding Author:
After the system was set using standard sample the commercial samples were run and following results were obtained.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc. In PPM</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allegra</td>
<td>100</td>
<td>7656151</td>
</tr>
<tr>
<td>Allerfex</td>
<td>100</td>
<td>5079636</td>
</tr>
<tr>
<td>Rhinofex</td>
<td>100</td>
<td>5607170</td>
</tr>
</tbody>
</table>

The following formula was used to calculate the percentage recovery of the sample by using both UV-Visible and HPLC method

\[
\% \text{Recovery} = \frac{\% \text{Assay} \times 100}{\text{Label claim on sample}}
\]

IV. CONCLUSION

Despite the number of methods described by the other researchers for analysis of Fexofenadine Hydrochloride the proposed UV-Visible Spectrophotometric method and HPLC method for determination of Fexofenadine Hydrochloride in pharmaceutical samples is simple and rapid than other sophisticated instruments. All the samples were analyzed within the range as prescribed on tablet. These methods are very appropriate for routine analysis of active drugs in the laboratories. The procedures are easy to execute and require less sample handling than methods described in the literature. The following table gives the summary of result.

TABLE NO. 5

<table>
<thead>
<tr>
<th>Sample</th>
<th>% Recovery of Fexofenadine Hydrochloride by UV-Visible Spectrophotometry method</th>
<th>% Recovery of Fexofenadine Hydrochloride by HPLC method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allegra</td>
<td>96.49</td>
<td>97.20</td>
</tr>
<tr>
<td>Allerfex</td>
<td>99.43</td>
<td>99.97</td>
</tr>
<tr>
<td>Rhinofex</td>
<td>86.62</td>
<td>94.04</td>
</tr>
</tbody>
</table>

REFERENCES

*Corresponding Author: