ON THE ZEROS OF POLAR DERIVATIVES OF POLYNOMIALS

G.L.Reddy1, P.Ramulu2 and C.Gangadhar

1School of Mathematics and Statistics, University of Hyderabad, Telangana, India-500046.
2School of Mathematics and Statistics, University of Hyderabad, Telangana, India-500046.

Received 09May, 2015; Accepted 20May, 2015 © The author(s) 2015. Published with open access at www.questjournals.org

ABSTRACT:-We extend some existing results on the zeros of polar derivatives of polynomials by considering more general coefficient conditions. As special cases the extended results yield much simpler expressions for the upper bounds of zeros of those existing results.

Mathematics Subject Classification: 30C10, 30C15.

Keywords:- Zeros of polynomial,Eneström-Kakeya theorem, Polar derivatives.

I. INTRODUCTION

Let $D_\alpha P(z) = nP(z) + (\alpha - z)P'(z)$ denote the polar derivative of a polynomial $P(z)$ of degree $n$ with respect to real number $\alpha$. The polynomial $D_\alpha P(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that $\lim_{\alpha \to \infty} \frac{D_\alpha P(z)}{n} = P'(z)$. Many results on the location of zeros of polynomials are available in the literature. In literature [3-5] attempts have been made to extend and generalize the Eneström-Kakeya theorem. Existing results in the literature also show that there is a need to find bounds for special polynomials, for example, for those having restrictions on the coefficient, there is always need for refinement of results in this subject to find location of zeros of polar derivatives of polynomials. Among them the Eneström-Kakeya theorem [1-2] given below is well known in the theory of zero distribution of polynomials.

Theorem A. (Eneström-Kakeya theorem): Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n$ such that $0 < a_0 \leq a_1 \leq a_2 \leq \cdots \leq a_n$ then all the zeros of $P(z)$ lie in $|z| \leq 1$.

The following theorems B and C due to P.Ramulu and G.L. Reddy [6]

Theorem B. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n$ and $D_\alpha P(z) = nP(z) + (\alpha - z)P'(z)$ be a polar derivative of $P(z)$ with respect to real number $\alpha$ such that $n\alpha_0 \leq (n-1)\alpha_1 \leq (n-2)\alpha_2 \leq \cdots \leq 3a_{n-3} \leq 2a_{n-2} \leq a_{n-1}$ if $\alpha = 0$ then all the zeros of polar derivative $D_\alpha P(z)$ lie in $|z| \leq \frac{1}{|a_{n-1}|} [a_{n-1} - n\alpha_0 + |n\alpha_0|]$. 

Theorem C. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n$ and $D_\alpha P(z) = nP(z) + (\alpha - z)P'(z)$ be a polar derivative of $P(z)$ with respect to real number $\alpha$ such that $n\alpha_0 \geq (n-1)\alpha_1 \geq (n-2)\alpha_2 \geq \cdots \geq 3a_{n-3} \geq 2a_{n-2} \geq a_{n-1}$ if $\alpha = 0$ then all the zeros of polar derivative $D_\alpha P(z)$ lie in $|z| \leq \frac{1}{|a_{n-1}|} [|n\alpha_0| + n\alpha_0 - a_{n-1}]$.

Here we establish the following results.

Theorem 1. Let $P(z) = \sum_{i=0}^{n} a_i z^i$ be a polynomial of degree $n$ and $D_\alpha P(z) = nP(z) + (\alpha - z)P'(z)$ be a polar derivative of $P(z)$ with respect to real number $\alpha$ such that

*Corresponding Author: G.L.Reddy

1School of Mathematics and Statistics, University of Hyderabad, India-500046.
ON THE ZEROS OF POLAR DERIVATIVES OF POLYNOMIALS

\[ [i + 2]a_i a_{i+1} + [n - (i + 1)] a_{i+1} \geq (i + 1)a a_{i+1} + (n - i)a_i \text{ for } i = 0, 1, \ldots, n - 2. \]

then all the zeros of polar derivative \( D_n P(z) \) lie in
\[ |z| \leq \frac{1}{\text{a}_{n-1}} [\text{a}_{n-1} + (n - i)a_i - (a a_i + n a_0)] \]

Corollary 1.

Let \( P(z) = \sum_{n=0}^{\infty} a_n z^n \) be a polynomial of degree \( n \) and \( D_n P(z) = \frac{n P(z)}{z} + ( \alpha - z) \) be a polar derivative of \( P(z) \) with respect to real number \( \alpha \) such that
\[ [i + 2]a_i a_{i+1} + [n - (i + 1)] a_{i+1} \geq (i + 1)a a_{i+1} + (n - i)a_i \text{ for } i = 0, 1, \ldots, n - 2. \]
then all the zeros of polar derivative \( D_n P(z) \) lie in \( |z| \leq 1 \).

Remark 1.

By taking \( a_i > 0 \) for \( i = 0, 1, 2, \ldots, n - 1 \), in theorem 1, then it reduces to Corollary 2.

Remark 2.

By taking \( \alpha = 0 \) in theorem 1, then it reduces to Theorem B.

Theorem 2.

Let \( P(z) = \sum_{n=0}^{\infty} a_n z^n \) be a polynomial of degree \( n \) and \( D_n P(z) = \frac{n P(z)}{z} + ( \alpha - z) \) be a polar derivative of \( P(z) \) with respect to real number \( \alpha \) such that
\[ [i + 2]a_i a_{i+1} + [n - (i + 1)] a_{i+1} \leq (i + 1)a a_{i+1} + (n - i)a_i \text{ for } i = 0, 1, \ldots, n - 2. \]
then all the zeros of polar derivative \( D_n P(z) \) lie in
\[ |z| \leq \frac{1}{\text{a}_{n-1}} [\text{a}_{n-1} + (n - i)a_i - (a a_i + n a_0)] \]

Corollary 2.

Let \( P(z) = \sum_{n=0}^{\infty} a_n z^n \) be a polynomial of degree \( n \) and \( D_n P(z) = \frac{n P(z)}{z} + ( \alpha - z) \) be a polar derivative of \( P(z) \) with respect to real number \( \alpha \) such that
\[ 0 < [i + 2]a_i a_{i+1} + [n - (i + 1)] a_{i+1} \leq (i + 1)a a_{i+1} + (n - i)a_i \text{ for } i = 0, 1, \ldots, n - 2. \]
then all the zeros of polar derivative \( D_n P(z) \) lie in
\[ |z| \leq \frac{1}{\text{a}_{n-1}} [2(a a_i + n a_0) - n a a_i - a_{n-1}] \]

Remark 3.

By taking \( a_i > 0 \) for \( i = 0, 1, 2, \ldots, n - 1 \), in theorem 2, then it reduces to Corollary 2.

Remark 4.

By taking \( \alpha = 0 \) in theorem 2, then it reduces to Theorem C.

II. PROOFS OF THE THEOREMS

Proof of the Theorem 1.

Let \( P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_2 z^2 + a_1 z + a_0 \) be a polynomial of degree \( n \).

Let \( D_n P(z) = \frac{n P(z)}{z} + ( \alpha - z) \) be polar derivative of \( P(z) \) with respect to real number \( \alpha \) of degree \( n-1 \).

\[ \Rightarrow D_n P(z) = [n a a_n + a_{n-1}] z^{n-1} + [(n - 1) a a_{n-1} + 2 a_{n-2}] z^{n-2} + [(n - 2) a a_{n-2} + 3 a_{n-3}] z^{n-3} + \cdots + [3 a a_3 + (n - 2) a_2] z^2 + [2 a a_2 + (n - 1) a_1] z + [a a_1 + n a_0] \]

Let us consider the polynomial \( Q(z) = (1 - z) D_n P(z) \) so that
\[ Q(z) = (1 - z) [n a a_n + a_{n-1}] z^{n-1} + [(n - 1) a a_{n-1} + 2 a_{n-2}] z^{n-2} + [(n - 2) a a_{n-2} + 3 a_{n-3}] z^{n-3} + \cdots + [3 a a_3 + (n - 2 - 2 a_2) a_2] z^{n-2} + [2 a a_2 + (n - 1) a_1] z + [a a_1 + n a_0] \]
\[ = [-n a a_n + a_{n-1}] z^n + [(n - 1) a a_{n-1} + 2 a_{n-2}] z^{n-1} + [3 a a_3 + (n - 2 - 2 a_2) a_2] z^{n-2} + \cdots + [3 a a_3 + (n - 2) a a_{n-2} + 3 a_{n-3}] z^{n-3} + \cdots + [n a a_n + a_{n-1}] z^{n-1} + [(n - 1) a a_{n-1} + 2 a_{n-2}] z^{n-2} + \cdots + [3 a a_3 + (n - 2 - 2 a_2) a_2] z^{n-3} + \cdots + [2 a a_2 + (n - 1) a_1] z + [a a_1 + n a_0] \]

Also if \( |z| > 1 \) then \( \frac{1}{|z|^{n+1}} < 1 \) for \( i = 0, 1, 2, \ldots, n - 2 \).

Now
\[ |Q(z)| \geq |n a a_n + a_{n-1}| z^{n-1} - |n a a_n + (n - 1) a a_{n-1} - 2 a_{n-2}| z^{n-1} + \cdots + |3 a a_3 + (n - 2 - 2 a_2) a a_{n-2} + (n - 1) a_2| z^{n-2} + \cdots + |2 a a_2 + (n - 1) a_1| z + |a a_2 + n a_0| \]

*Corresponding Author: G.L. Reddy*
ON THE ZEROS OF POLAR DERIVATIVES OF POLYNOMIALS

\[
\begin{align*}
&\geq |n a a_n + a_{n-1}| |z|^{n-1} \left[ |z| - \frac{1}{|n a a_n + a_{n-1}|} \left( |n a a_n + (1 + \alpha - n a) a_{n-1} - 2 a_{n-2}| + \frac{|(n-1) a a_{n-1} + (2+2\alpha - n a) a_{n-2} - 3 a_{n-3}|}{|z|} + \cdots + \frac{3 a a_3 + (n-2-2\alpha) a_2 - (n-1) a_1}{|z|} \right)^{n-3} + \frac{2 a a_2 + (n-1-\alpha) a_1 - n a_0}{|z|^{n-2}} + \left| a a_1 + n a_0 \right| \right] \right)
\end{align*}
\]

\[
\begin{align*}
&\geq |n a a_n + a_{n-1}| |z|^{n-1} \left[ |z| - \frac{1}{|n a a_n + a_{n-1}|} \left( |n a a_n + (1 + \alpha - n a) a_{n-1} - 2 a_{n-2}| + \frac{|(n-1) a a_{n-1} + (2+2\alpha - n a) a_{n-2} - 3 a_{n-3}|}{|z|} + \cdots + \frac{3 a a_3 + (n-2-2\alpha) a_2 - (n-1) a_1}{|z|} \right)^{n-3} + \frac{2 a a_2 + (n-1-\alpha) a_1 - n a_0}{|z|^{n-2}} + \left| a a_1 + n a_0 \right| \right] \right)
\end{align*}
\]

\[
\begin{align*}
&\geq |n a a_n + a_{n-1}| |z|^{n-1} \left[ |z| - \frac{1}{|n a a_n + a_{n-1}|} \left( |n a a_n + (1 + \alpha - n a) a_{n-1} - 2 a_{n-2}| + \frac{|(n-1) a a_{n-1} + (2+2\alpha - n a) a_{n-2} - 3 a_{n-3}|}{|z|} + \cdots + \frac{3 a a_3 + (n-2-2\alpha) a_2 - (n-1) a_1}{|z|} \right)^{n-3} + \frac{2 a a_2 + (n-1-\alpha) a_1 - n a_0}{|z|^{n-2}} + \left| a a_1 + n a_0 \right| \right] \right)
\end{align*}
\]

\[> 0 \text{ if } |z| > \frac{1}{|n a a_n + a_{n-1}|} [n a a_n + a_{n-1} - (a a_1 + n a_0) + |a a_1 + n a_0|].\]

This shows that if \(Q(z) > 0\) provided \(|z| > \frac{1}{|n a a_n + a_{n-1}|} [n a a_n + a_{n-1} - (a a_1 + n a_0) + |a a_1 + n a_0|].\)

Hence all the zeros of \(Q(z)\) with \(|z| > 1\) lie in \(|z| \leq \frac{1}{|n a a_n + a_{n-1}|} [n a a_n + a_{n-1} - (a a_1 + n a_0) + |a a_1 + n a_0|].\)

But those zeros of \(Q(z)\) whose modulus is less than or equal to 1 already satisfy the above inequality. Since all the zeros of polar derivative \(D_\alpha P(z)\) are also the zeros of \(Q(z)\) lie in the circle defined by the above inequality and this completes the proof of Theorem 1.

**Proof of the Theorem 2.**

Let \(P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_2 z^2 + a_1 z + a_0\) be a polynomial of degree \(n\).

Let \(D_\alpha P(z) = n P(z) + (\alpha - z) P'(z)\) be polar derivative of \(P(z)\) with respect to real number of degree \(n-1\).

\[
\Rightarrow D_\alpha P(z) = [n a a_n + a_{n-1}] z^{n-1} + [(n-1) a a_n + 2 a_{n-1}] z^{n-2} + [(n-2) a a_{n-2} + 3 a_{n-3}] z^{n-3} + \cdots + [3 a a_3 + (n-2) a_2] z^2 + [2 a a_2 + (n-1) a_1] z + [a a_1 + n a_0]
\]

Let us consider the polynomial \(Q(z) = (1-z) [n a a_n + a_{n-1}] z^{n-1} + [(n-1) a a_{n-1} + 2 a_{n-2}] z^{n-2} + [(n-2) a a_{n-2} + 3 a_{n-3}] z^{n-3} + \cdots + [3 a a_3 + (n-2) a_2] z^2 + [2 a a_2 + (n-1) a_1] z + [a a_1 + n a_0]] \)

\[
= -[n a a_n + a_{n-1}] z^n + [(n-1) a a_{n-1} + 2 a_{n-2}] z^{n-1} + [(n-2) a a_{n-2} + 3 a_{n-3}] z^{n-2} + \cdots + [3 a a_3 + (n-2) a_2] z^2 + [2 a a_2 + (n-1) a_1] z + [a a_1 + n a_0]]
\]

Also if \(|z| > 1\) then \(\frac{1}{|z|^n} < 1\) for \(i = 0, 1, 2, \ldots, n-2\).

Now \(|Q(z)| \geq |n a a_n + a_{n-1}| |z|^{n-1} - |n a a_n + (1 + \alpha - n a) a_{n-1} - 2 a_{n-2}| |z|^{n-1}\)

*Corresponding Author: G.L. Reddy*
ON THE ZEROS OF POLAR DERIVATIVES OF POLYNOMIALS

\[+(n-1)\alpha a_{n-1} + (2+2\alpha - n\alpha)a_{n-2} - 3a_{n-3} - n\alpha a_n + (n+1)\alpha |z|^n - 2z + |z|^n + 3|a_{n+1} + (n-2-2\alpha)a_2 - (n-1)a_1| |z|^2\]

\[+2|\alpha a_2 + (n-1-\alpha)a_1 - na_0| |z| + |\alpha a_1 + na_0|\]

\[\geq |n\alpha a_n + a_{n-1}| |z|^{n-1} [|z| - \frac{1}{|n\alpha a_n + a_{n-1}|} \{|n\alpha a_n + (1 + \alpha - n\alpha)a_{n-1} - 2a_{n-2}| + \frac{|(n-1)\alpha a_{n-1} + (2+2\alpha - n\alpha)a_{n-2} - 3a_{n-3}|}{|z|^{n-1}} \{|z|^n + 3|a_{n+1} + (n-2-2\alpha)a_2 - (n-1)a_1| + 2|\alpha a_2 + (n-1-\alpha)a_1 - na_0| + |\alpha a_1 + na_0|\} \}

\[\geq |n\alpha a_n + a_{n-1}| |z|^{n-1} [|z| - \frac{1}{|n\alpha a_n + a_{n-1}|} \{|2a_{n-2} - (1 + \alpha - n\alpha)a_{n-1} - na_a| + 3|\alpha a_3 + (n-2-2\alpha)a_2 - (n-1)a_1| + 2|\alpha a_2 + (n-1-\alpha)a_1 - na_0| + |\alpha a_1 + na_0|\} \]

\[\geq |n\alpha a_n + a_{n-1}| |z|^{n-1} [|z| - \frac{1}{|n\alpha a_n + a_{n-1}|} \{|a_{a_1} + na_0| + (a a_1 + na_0) - na a_n - a_{n-1}\} |z| \geq 0 \text{ if } |z| > \frac{1}{|n\alpha a_n + a_{n-1}|} \{|a_{a_1} + na_0| + (a a_1 + na_0) - na a_n - a_{n-1}\}.

This shows that if \(Q(z) > 0\) provided \(|z| > \frac{1}{|n\alpha a_n + a_{n-1}|} \{|a_{a_1} + na_0| + (a a_1 + na_0) - na a_n - a_{n-1}\} .

Hence all the zeros of \(Q(z)\) with \(|z| > 1\) lie in

\[|z| \leq \frac{1}{|n\alpha a_n + a_{n-1}|} \{|a_{a_1} + na_0| + (a a_1 + na_0) - na a_n - a_{n-1}\}.

But those zeros of \(Q(z)\) whose modulus is less than or equal to 1 already satisfy the above inequality. Since all the zeros of polar derivative \(D_\rho P(z)\) are also the zeros of \(Q(z)\) lie in the circle defined by the above inequality and this completes the proof of the Theorem 2.

REFERENCES

[1]. G. Eneström, Remarquesur un théorème relatif aux racines de l’équation \(a_1 + \ldots + a_0 = 0\) où tous les coefficients sont positifs, Tôhoku Math. J 18 (1920), 34-36.


*Corresponding Author: G.L.Reddy