Asymptotic Solutions of Fifth Order Critically Damped Nonlinear Systems with Pair Wise Equal Eigenvalues and another is Distinct

Md. Mahafujur Rahaman¹, M. Abul Kawser²

¹Department of Business Administration, Z.H. Sikder University of Science & Technology, Bangladesh
²Department of Mathematics, Islamic University, Bangladesh

Received 28 March, 2015; Accepted 10 April, 2015 © The author(s) 2014. Published with open access at www.questjournals.org

ABSTRACT: The Krylov-Bogoliubov-Mitropolskii (KBM) method is one of the most used techniques to investigate transient behavior of vibrating systems. Initially the method was developed for obtaining the periodic solutions of second order nonlinear differential systems with small nonlinearities. Afterward many researchers have studied and modified the method for achieving solutions of higher order nonlinear systems. In this article, we have modified the KBM method to examine the asymptotic solutions of fifth order critically damped nonlinear systems.

Keywords: -KBM, periodic solution, nonlinearity, asymptotic solution, critically damped system.

I. INTRODUCTION

In nonlinear differential equations, one of most used techniques to examine weakly nonlinear oscillatory and non-oscillatory differential systems is the Krylov-Bogoliubov-Mitropolskii (KBM) ([1], [2]) method, which was first developed by Krylov and Bogoliubov [3] to find the periodic solutions of second order nonlinear differential systems with small nonlinearities. Subsequently, Bogoliubov and Mitropolskii [4] improved and justified this method in mathematical terms. It was further extended by Popov [5] to damped oscillatory nonlinear systems. Later on over-damped nonlinear systems were examined by Murty and Deekshatulu [6] using Bogoliubov’s method. An asymptotic solution of a second order critically damped nonlinear system was pointed out by Sattar [7]. Moreover, a new technique was introduced by Shamsul [8] to obtain approximate solutions of second order both over-damped and critically damped nonlinear systems. Further, Osninskii [9] investigated the third order nonlinear systems using Bogoliubov’s method and imposed some restrictions upon the parameters, which made the solutions over-simplified and revealed incorrect results. However, Mulholland [10] removed these restrictions to obtain desired results. Consequently, the solutions of nonlinear systems were transformed by Bojadziv [11] to a three dimensional differential system. Sattar [12] also assessed the solutions of third order over-damped nonlinear systems. Shamsul [13] analyzed the solutions of third order over-damped systems whose eigenvalues were integral multiple. Shamsul and Sattar [14] introduced a unified KBM method to obtain approximate solutions of third order damped and over-damped nonlinear systems. Kawser and Akbar [15] suggested an asymptotic solution for the third order critically damped nonlinear system with pair wise equal eigenvalues. Kawser and Sattar [16] proposed an asymptotic solution of a fourth order critically damped nonlinear system with pair wise equal eigenvalues. The KBM method was further extended by Akber and Tanzer [17] to obtain solutions for the fifth order over-damped nonlinear systems with cubic nonlinearity. Rahaman and Rahman [18] expounded the analytical approximate solutions of fifth order more critically damped systems in the case of smaller triply repeated roots.

The aim of this article is to obtain the asymptotic solutions of fifth order critically damped non-linear systems by extending the KBM method. The results obtained by the perturbation method were compared with those obtained by the fourth order Runge-Kutta method, which demonstrated perfect coincident with the numerical solutions.

*Corresponding Author: Md. Mahafujur Rahaman

¹Department of Business Administration, Z.H. Sikder University of Science & Technology, Bangladesh
Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues

II. THE METHOD

We are going to propose a perturbation technique to solve fifth order non-linear differential systems of the form

\[x^5 + k_1 x^4 + k_2 x^3 + k_3 x^2 + k_4 x + k_5 x = -\varepsilon f(x, \dot{x}, \ddot{x}, \dddot{x}, \ddddot{x}) \] \((1) \)

where \(x' \) and \(x'' \) stand for the fifth and fourth derivatives respectively and over dots are used for the first, second and third derivatives of \(x \) with respect to \(t \). \(k_1, k_2, k_3, k_4, k_5 \) are constants, \(\varepsilon \) is a sufficiently small parameter and \(f \) is the given nonlinear function. As the unperturbed equation \((1) \) is of order five so it has five real negative eigenvalues, where four eigenvalues are pair wise equal and other one is distinct. Suppose the eigenvalues are \(-\lambda_1, -\lambda_2, -\mu, -\mu, -\nu \).

When \(\varepsilon = 0 \) following Shamsul [19] the equation \((1) \) becomes linear and the solution of the corresponding linear equation is

\[x(t,0) = (a_0 + b_0 t) e^{-\lambda_1 t} + (c_0 + d_0 t) e^{-\mu t} + h_0 e^{-\nu t} \]

where \(a_0, b_0, c_0, d_0, h_0 \) are constants of integration

When \(\varepsilon \neq 0 \) following Shamsul [19] an asymptotic solution of the equation \((1) \) is sought in the form

\[x(t,\varepsilon) = (a + b t)e^{-\lambda_1 t} + (c + d t)e^{-\mu t} + h e^{-\nu t} + \varepsilon u_1(a, b, c, d, h, t) + ... \] \((3) \)

where \(a, b, c, d, h \) are the functions of \(t \) and they satisfy the differential equations

\[\dot{a} = \varepsilon A_1(a, b, c, d, h, t) + ... \]
\[\dot{b} = \varepsilon B_1(a, b, c, d, h, t) + ... \]
\[\dot{c} = \varepsilon C_1(a, b, c, d, h, t) + ... \]
\[\dot{d} = \varepsilon D_1(a, b, c, d, h, t) + ... \]
\[\dot{h} = \varepsilon H_1(a, b, c, d, h, t) + ... \]

Now differentiating \((3) \) five times with respect to \(t \), substituting the value of \(x \) and the derivatives \(x', x'', \dot{x}, \ddot{x}, \dddot{x} \) in the original equation \((1) \) utilizing the relations presented in \((4) \) and finally bringing out the coefficients of \(\varepsilon \) we obtain

\[e^{-\lambda_1 t} (D + \mu - \lambda_2)^2 (D + \nu - \lambda) \left(\frac{\partial A_1}{\partial t} + 2B_1 + t \frac{\partial B_1}{\partial t} \right) + e^{-\mu t} (D + \lambda - \mu)^2 (D + \nu - \lambda) = 0 \]

\[+ (D + \lambda)^2 (D + \mu)^2 (D + \nu) u_1 = -f^{(0)}(a, b, c, d, h, t) \]

where \(f^{(0)}(a, b, c, d, h, t) = f(x, \dot{x}, \ddot{x}, \dddot{x}, \ddddot{x}) \) and \(x(t,0) = (a_0 + b_0 t) e^{-\lambda_1 t} + (c_0 + d_0 t) e^{-\mu t} + h_0 e^{-\nu t} \)

We have extended the function \(f^{(0)} \) in the Taylor’s series (Sattar [20], Shamsul and Sattar [21]) about the origin of \(t \). Therefore, we obtain

\[f^{(0)} = \sum_{q=0}^{\infty} \sum_{i,j,k,l=0}^{q} F_{q,i}(a, b, c, d, h) e^{-(\dot{i}+j\mu+k\nu)t} \] \((6) \)

Thus, using \((6) \), the equation \((5) \) becomes

\[e^{-\lambda_1 t} (D + \mu - \lambda_2)^2 (D + \nu - \lambda) \left(\frac{\partial A_1}{\partial t} + 2B_1 + t \frac{\partial B_1}{\partial t} \right) + e^{-\mu t} (D + \lambda - \mu)^2 (D + \nu - \lambda) = 0 \]

\[+ (D + \lambda)^2 (D + \mu)^2 (D + \nu) u_1 = -\sum_{q=0}^{\infty} \sum_{i,j,k,l=0}^{q} F_{q,i}(a, b, c, d, h) e^{-(\dot{i}+j\mu+k\nu)t} \] \((7) \)

Corresponding Author: Md. Mahafujur Rahaman
Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues...

Following the KBM method, Murty and Deekshatulu [22], Sattar [23], Shamsul[24], Shamsul and Sattar ([25], [26]) imposed the condition that does not contain the fundamental terms of \(f^{(0)} \). Therefore, equation (7) can be separated for unknown functions \(A_1, B_1, C_1, D_1, H_1 \) and \(u_1 \) in the following way:

\[
e^{-\beta t} (D + \mu - \lambda)^2 (D + v - \lambda) \left(\frac{\partial A}{\partial t} + 2B_i + t \frac{\partial B_i}{\partial t} \right) + e^{-\mu t} (D + \lambda - \mu)^2 (D + v - \lambda) \left(\frac{\partial C_i}{\partial t} + 2D_i + t \frac{\partial D_i}{\partial t} \right) + e^{-\nu t} (D + \lambda - \nu)^2 (D + v - \mu)^2 H_i = 0
\]

As a result, we will separate the equation (7) for unknown functions \(A_1, B_1, C_1, D_1, H_1 \) and \(u_1 \) in the following way:

\[
e^{-\beta t} (D + \mu - \lambda)^2 (D + v - \lambda) \left(\frac{\partial A}{\partial t} + 2B_i + t \frac{\partial B_i}{\partial t} \right) + e^{-\mu t} (D + \lambda - \mu)^2 (D + v - \lambda) \left(\frac{\partial C_i}{\partial t} + 2D_i + t \frac{\partial D_i}{\partial t} \right) + e^{-\nu t} (D + \lambda - \nu)^2 (D + v - \mu)^2 H_i = 0
\]

and \((D + \lambda)^2 (D + \mu)^2 (D + v) u_i = -\sum_{q=2}^{\infty} \left\{ t^q \sum_{i,j,k,l=0}^\infty F_{q,i,j,k,l} (a,b,c,d,h) e^{-(i\lambda + j\mu + k\nu)t} \right\} \) (9)

Now equating the coefficients of \(t^q, i^j \) from equation (8), we obtain

\[
e^{-\beta t} (D + \lambda)^2 (D + \mu - \lambda)^2 (D + v - \lambda) \left(\frac{\partial A}{\partial t} + 2B_i \right) + e^{-\mu t} (D + \lambda - \mu)^2 (D + v - \lambda) \left(\frac{\partial C_i}{\partial t} + 2D_i \right) + e^{-\nu t} (D + \lambda - \nu)^2 (D + v - \mu)^2 H_i = 0
\]

\[
(D + \mu - \lambda)^2 (D + v - \lambda) \left(\frac{\partial A}{\partial t} + 2B_i \right) + e^{-\mu t} (D + \lambda - \mu)^2 (D + v - \lambda) \left(\frac{\partial C_i}{\partial t} + 2D_i \right) + e^{-\nu t} (D + \lambda - \nu)^2 (D + v - \mu)^2 H_i = 0
\]

\[
e^{-\beta t} (D + \mu - \lambda)^2 (D + v - \lambda) \left(\frac{\partial A}{\partial t} + 2B_i \right) + e^{-\mu t} (D + \lambda - \mu)^2 (D + v - \lambda) \left(\frac{\partial C_i}{\partial t} + 2D_i \right) + e^{-\nu t} (D + \lambda - \nu)^2 (D + v - \mu)^2 H_i = 0
\]

Here, from equations (10) and (11) determining the unknown functions \(A_1, B_1, C_1, D_1, H_1 \) and \(H_i \). Thus, to obtain the unknown functions \(A_1, B_1, C_1, D_1, H_1 \) and \(H_i \) we need to impose some conditions (Shamsul [27], [28], [29]) between the eigenvalues.

In this article, we have examined solutions for the cases \(\lambda >> \mu >> \nu \). As a result, we will be able to separate the equation (11) for unknown functions \(B_1 \) and \(D_1 \); and solving them for \(B_1 \) and \(D_1 \) substituting the values of \(B_1 \) and \(D_1 \) into the equation (11) and applying the conditions \(\lambda >> \mu >> \nu \), we can separate the equation (10) for three unknown functions \(B_1, D_1 \) and \(H_1 \); and solving them for \(H_1 \). As \(a, b, c, d, h \) are proportional to small parameter, they are slowly varying functions of time \(t \) and for first approximate solutions; we may consider them as constants in the right side. Murty and Deekshatulu [30] first made this assumption. Therefore, the solutions of the equation (4) become

\[
a = a_0 + \int_0^t A_1 (a,b,c,d,h,t) dt
\]

\[
b = b_0 + \int_0^t B_1 (a,b,c,d,h,t) dt
\]

\[
c = c_0 + \int_0^t C_1 (a,b,c,d,h,t) dt
\]

\[
d = d_0 + \int_0^t D_1 (a,b,c,d,h,t) dt
\]

\[
h = h_0 + \int_0^t H_1 (a,b,c,d,h,t) dt
\]

Corresponding Author: Md. MahafujurRahaman
Equation (9) is a non-homogeneous linear ordinary differential equation; therefore, it can be solved by the well-known operator method. Substituting the values of \(a, b, c, d, h \) and \(u_i \) in the equations (3), we shall get the comprehensive solution of (1). Thus, the determination of the first estimated solution is far-reaching.

III. Example

In this article, we have taken into account the Duffing type equation of fifth order nonlinear differential system as an example of the above method:

\[
x'' + k_1x'' + k_2x'' + k_3x + k_4x + k_5x = -\epsilon x^3
\]

(13)

Comparing (13) and (1), we obtain

\[
f(x, \dot{x}, \ddot{x}, \dddot{x}, \ddddot{x}) = x^3
\]

Therefore,

\[
f(0) = a^3 e^{-3\lambda t} + 3a^2 ce^{-(\lambda + 2\mu)t} + 3a^2 he^{-(\lambda + 2\mu)t} + 3ac^2 e^{-(\lambda + 2\mu)t} + 6ache^{-(\lambda + 2\mu + \nu)t} + 3ah^2 e^{-(\lambda + 2\mu)t}
\]

\[
+ c^3 e^{-3\mu t} + 3c^2 he^{-(\lambda + 2\mu + \nu)t} + 3ch^2 e^{-(\lambda + 2\mu + \nu)t} + h^3 e^{-3\nu t} + 3\{a^3 be^{-(\lambda + 2\mu)t} + a^2 de^{-(\lambda + 2\mu)t}
\]

\[
+ 2abhe^{-(\lambda + 2\mu + \nu)t} + 2acde^{-(\lambda + 2\mu + \nu)t} + bc^2 e^{-(\lambda + 2\mu + \nu)t} + 2adhe^{-(\lambda + 2\mu + \nu)t} + 2bche^{-(\lambda + 2\mu + \nu)t}
\]

\[
+ bh^2 e^{-(\lambda + 2\mu + \nu)t} + c^2 d e^{-3\mu t} + 2cdhe^{-(\lambda + 2\mu + \nu)t} + dh^2 e^{-(\lambda + 2\mu + \nu)t} + h^3 e^{-3\nu t}
\]

Now comparing equations (14) and (2), we obtain

\[
\sum_{i,j,k,l} F_{0,i,j}(a, b, c, d, h) e^{-(\lambda + j\mu + k\nu)t} = a^3 e^{-3\lambda t} + 3a^2 ce^{-(\lambda + 2\mu)t} + 3a^2 he^{-(\lambda + 2\mu + \nu)t} + 3ac^2 e^{-(\lambda + 2\mu + \nu)t} + 6ache^{-(\lambda + 2\mu + \nu + \omega)t} + 3ah^2 e^{-(\lambda + 2\mu)t}
\]

\[
+ c^3 e^{-3\mu t} + 3c^2 he^{-(\lambda + 2\mu + \nu + \omega)t} + 3ch^2 e^{-(\lambda + 2\mu + \nu + \omega)t} + h^3 e^{-3\nu t} + 3\{a^3 be^{-(\lambda + 2\mu)t} + a^2 de^{-(\lambda + 2\mu)t}
\]

\[
+ 2abhe^{-(\lambda + 2\mu + \nu)t} + 2acde^{-(\lambda + 2\mu + \nu)t} + bc^2 e^{-(\lambda + 2\mu + \nu)t} + 2adhe^{-(\lambda + 2\mu + \nu)t} + 2bche^{-(\lambda + 2\mu + \nu)t}
\]

\[
+ bh^2 e^{-(\lambda + 2\mu + \nu)t} + c^2 d e^{-3\mu t} + 2cdhe^{-(\lambda + 2\mu + \nu)t} + dh^2 e^{-(\lambda + 2\mu + \nu)t} + h^3 e^{-3\nu t}
\]

For equation (13), the equations (9) to (11) respectively become

Corresponding Author: Md. Mahafujur Rahaman
Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues...

\[
(D + \lambda^2)(D + \mu^2)(D + \nu)u_t = -3t^2 \left\{ ab^2 e^{-3\lambda t} + b^2 ce^{-(2\lambda + \mu)t} + 2abde^{-(2\lambda + \mu)t} \right. \\
+ b^2 he^{-(2\lambda + \nu)t} + ad^2 e^{-(\lambda + 2\mu)t} + 2bcde^{-(\lambda + 2\mu)t} + 2bdhe^{-(\lambda + \mu\nu)t} + cd^2 e^{-3\mu t} \\
+ d^2 he^{-(2\mu\nu)t} \right\} - t^3 \left\{ b^3 e^{-3\lambda t} + b^2 de^{-(2\lambda + \mu)t} + bd^2 e^{-3\mu t} + d^3 e^{-3\mu t} \right\}
\]

\[e^{-\lambda t}(D + \mu - \lambda)^2(D + \nu - \lambda) \left(\frac{\partial A}{\partial t} + 2B_t \right) + e^{-\mu t}(D + \lambda - \mu)^2
\]

\[
(D + \nu - \mu) \left(\frac{\partial C}{\partial t} + 2D_t \right) + e^{-\nu t}(D + \lambda - \nu)^2(D + \mu - \nu)^2 H_t =
\]

\[- \left\{ a^3 e^{-3\lambda t} + 3a^2 ce^{-(2\lambda + \mu)t} + 3a^2 he^{-(2\lambda + \nu)t} + 6ace^{-(\lambda + 2\mu)t}
\right. \\
+ 3ah^2 e^{-(\lambda + 2\nu)t} + c^3 e^{-3\mu t} + 3c^2 he^{-(2\mu\nu)t} + 3ch^2 e^{-(\mu + 2\nu)t} + h^3 e^{-3\nu t} \right\}
\]

\[
e^{-2\lambda t}(D + \mu - \lambda)^2(D + \nu - \lambda) \frac{\partial B_t}{\partial t} + e^{-\mu t}(D + \lambda - \mu)^2(D + \nu - \mu) \frac{\partial D_t}{\partial t} =
\]

\[- 3 \left\{ a^2 e^{-3\lambda t} + 2abce^{-(2\lambda + \mu)t} + a^2 de^{-(2\lambda + \nu)t} + 2abhe^{-(2\lambda + \nu)t} + 2acde^{-(\lambda + 2\mu)t}
\right. \\
+ bc^2 e^{-(\lambda + 2\mu)t} + 2adhe^{-(\lambda + \mu\nu)t} + 2bcde^{-(\lambda + \mu\nu)t} + b^2 e^{-(\lambda + 2\mu)t} + c^2 de^{-3\mu t}
\right. \\
+ 2cdhe^{-(2\mu\nu)t} + dh^2 e^{-(\mu + 2\nu)t} \right\}
\]

Since the relations \(\lambda >> \mu >> \nu \) among the eigenvalues, then the equation (18) can be separated for the unknown functions \(B_t \) and \(D_t \) in the following way:

\[
e^{-\lambda t}(D + \mu - \lambda)^2(D + \nu - \lambda) \frac{\partial B_t}{\partial t} = -3 \left\{ a^2 e^{-3\lambda t} + 2abce^{-(2\lambda + \mu)t}
\right. \\
+ a^2 de^{-(\lambda + 2\mu)t} + 2abhe^{-(\lambda + 2\nu)t} + 2acde^{-(\lambda + 2\mu)t} + bc^2 e^{-(\lambda + 2\mu)t}
\right. \\
+ 2adhe^{-(\lambda + \mu\nu)t} + 2bcde^{-(\lambda + \mu\nu)t} + b^2 e^{-(\lambda + 2\mu)t} + c^2 de^{-3\mu t}
\right. \\
+ 2cdhe^{-(2\mu\nu)t} + dh^2 e^{-(\mu + 2\nu)t} \right\}
\]

\[
e^{-\mu t}(D + \lambda - \mu)^2(D + \nu - \mu) \frac{\partial D_t}{\partial t} = -3c^2 de^{-3\mu t} - 6cdhe^{-(2\mu\nu)t} - 3dh^2 e^{-(\mu + 2\nu)t}
\]

Solving equations (19) and (20), we get

\[
B_t = l_1 a^2 be^{-2\lambda t} + l_2 (abc + a^2 d)e^{-(\lambda + \mu)t} + l_3 (2acd + bc^2)e^{-2\mu t}
\]

\[
+ l_4 abhe^{-(\lambda + \nu)t} + l_5 (adh + bch)e^{-(\mu + \nu)t} + l_6 bh^2 e^{-2\nu t}
\]

\[
D_t = p_1 c^2 de^{-2\mu t} + p_2 cdhe^{-(\mu + \nu)t} + p_3 dh^2 e^{-2\nu t}
\]

where

\[
l_1 = \frac{3}{2\lambda(3\lambda - \mu)^2(\nu - 3\lambda)}, \quad l_2 = \frac{3}{2\lambda^2(\lambda + \mu)(\nu - \mu - 2\lambda)},
\]

\[
l_3 = \frac{3}{2\mu(\lambda + \mu)^2(\nu - \mu - 2\lambda)}, \quad l_4 = \frac{-3}{\lambda(\lambda + \nu)(2\lambda + \nu - \lambda)^2},
\]

\[
l_5 = \frac{-6}{(\lambda + \mu)(\lambda + \nu)^2(\nu + \mu)}, \quad l_6 = \frac{-3}{2\lambda + \nu)(\mu - \lambda + \nu)^2},
\]

\[
p_1 = \frac{3}{2\mu(\lambda - 3\mu)^2(\nu - 3\mu)}, \quad p_2 = \frac{3}{\mu(\lambda - \nu - 2\mu)^2(\nu + \mu)},
\]

\[
p_3 = \frac{-3}{2\nu(\lambda - \mu - 2\nu)^2(\nu + \mu)}
\]

Using the values of \(B_t \) and \(D_t \), in equation (17), we obtain
\[e^{-\beta t} (D + \mu - \lambda)^2 (D + \nu - \lambda) \frac{\partial A}{\partial t} + e^{-\mu t} (D + \lambda - \mu)^2 (D + \nu - \mu) \frac{\partial C_1}{\partial t} \]
\[+ e^{-\nu t} (D + \lambda - \nu)^2 (D + \mu - \nu)^2 H_1 = -a_3 e^{-3\beta t} - 3a_2^2 ce^{-2(\lambda + \mu)t} - 3a_2^2 he^{-2(\lambda + \mu)t} - 6a_2 c e^{-2(\lambda + \mu)t} - 3a_2^2 he^{-2(\lambda + \mu)t} - 2(3\lambda - \mu)^2 (v - 3\lambda) l_2 a_2^2 be^{-3\lambda t} \]
\[- 3a_2^2 he^{-2(\lambda + \mu)t} - 3a_2^2 he^{-2(\lambda + \mu)t} - 2(3\lambda - \mu)^2 (v - 3\lambda) l_2 a_2^2 be^{-3\lambda t} \]
(23)
\[\]
\[- 8(\lambda + \mu)^2 (v - \mu - 2\lambda) l_3 abc + b^2 c e^{-2(\lambda + \mu)t} \]
\[+ 4(\mu + \nu - 2\lambda) l_4 abhe^{-2(\lambda + \mu)t} + 2(\mu + \nu) (\lambda + \nu) l_5 bh^2 e^{-2(\lambda + \mu)t} (v + \mu) \]
\[l_5 (adh + bch) e^{-2(\lambda + \mu)t} + 2(\lambda + \nu) (\lambda + \nu - 2\nu)^2 l_5 bh^2 e^{-2(\lambda + \mu)t} \]
\[e^{-\beta t} (D + \lambda - \mu)^2 (D + \nu - \mu) \frac{\partial C_1}{\partial t} = -c_3 e^{-3\mu t} - 2(\lambda - 3\mu)^2 (v - 3\mu) \]
\[p_2 c d e^{-3\beta t} - 3c_2^2 he^{-2(\lambda + \mu)t} - 3c_2^2 he^{-2(\lambda + \mu)t} + 4(\mu + \nu - 2\mu)^2 \]
\[p_2 c d e^{-3\beta t} - 3c_2^2 he^{-2(\lambda + \mu)t} - 3c_2^2 he^{-2(\lambda + \mu)t} + 4(\mu + \nu - 2\mu)^2 \]
(25)
\[p_2 c d e^{-3\beta t} - 3c_2^2 he^{-2(\lambda + \mu)t} - 3c_2^2 he^{-2(\lambda + \mu)t} + 4(\mu + \nu - 2\mu)^2 \]
\[e^{-\gamma t} (D + \lambda - \nu)^2 (D + \mu - \nu)^2 H_1 = -h^3 e^{-3\nu t} \]
(26)
\[\]
Solving equations (24), (25), and (26), we obtain:
\[A_1 = (n_1 a^3 + n_1 a^2 b) e^{-2\beta t} + (n_2 a c^2 + n_2 a c d) e^{-2\mu t} + (n_2 a c^2 + n_2 a c d) e^{-2\nu t} + (n_2 a c^2 + n_2 a c d) e^{-2\nu t} + (n_2 a c^2 + n_2 a c d) e^{-2\nu t} \]
\[n_6 a c^2 + n_6 a c d) e^{-2\nu t} + (n_6 a c^2 + n_6 a c d) e^{-2\nu t} + (n_6 a c^2 + n_6 a c d) e^{-2\nu t} \]
\[n_1 (adh + bch) e^{-2(\lambda + \mu)t} + (n_1 a c^2 + n_1 a c d) e^{-2(\lambda + \mu)t} + (n_1 a c^2 + n_1 a c d) e^{-2(\lambda + \mu)t} \]
\[C_1 = (r_1 c^2 + r_2 c d) e^{-2\beta t} + (r_2 c d + r_2 c d) e^{-2\mu t} + (r_2 c d + r_2 c d) e^{-2\nu t} \]
(27)
\[H_1 = mh^3 e^{-2\nu t} \]
(28)
\[\]
where
\[n_1 = \frac{1}{2(\mu - 3\lambda)^2 (v - 3\lambda)} \]
\[n_2 = \frac{3}{4(\lambda + \mu)(\mu + \nu)(v - \mu - 2\lambda)} \]
\[n_3 = \frac{3}{2(\mu + \lambda)^2 (v - 2\mu - \lambda)} \]
\[n_4 = \frac{3}{(\mu + \nu)(\mu + \nu)(v + \lambda)^2} \]
\[n_5 = \frac{3}{2(\lambda + \mu)(\lambda + \nu)(v + \lambda)^2} \]
\[n_6 = \frac{3}{4(\lambda + \mu)(\lambda + \nu)(v + \lambda)^2} \]

Corresponding Author: Md. Mahafujur Rahman
Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues

\[n_7 = \frac{3}{2\lambda^2(v-3\lambda)(\mu-3\lambda)^3}, \quad n_8 = \frac{3}{2\lambda^2(\mu+\lambda)^2(v-\mu-2\lambda)}, \]

\[n_9 = \frac{3}{2\mu(\mu+\lambda)^2(v-2\mu-\lambda)}, \quad n_{10} = \frac{-6}{\lambda(v+\lambda)^2(\mu-\nu-2\lambda)^3}, \]

\[n_{11} = \frac{12}{(\lambda+\mu)(\mu+\nu)(v+\lambda)^3}, \quad n_{12} = \frac{-3}{2\nu^2(\lambda+\nu)(v-\lambda-2\nu)^2}, \]

\[r_1 = \frac{2\mu(\lambda-3\mu)^2(v-3\mu)}{2\mu(\lambda-3\mu)^2(v-3\mu)}, \quad r_2 = \frac{-3}{2\mu^2(\lambda-3\mu)^2(v-3\mu)}, \]

\[r_3 = \frac{-3}{2\mu(\lambda+\nu)(v-\lambda-2\mu)^2}, \quad r_4 = \frac{-3}{2\nu(\mu+\nu)(\lambda-\mu-2\nu)^2}, \quad r_5 = \frac{6}{\mu(\lambda+\nu)(\lambda-\nu-2\mu)^2}, \]

\[r_6 = \frac{-3}{2\nu^2(\lambda-\mu-2\nu)^2(\mu+\nu)}, \quad m = \frac{1}{(\lambda-3\nu)^2(\mu-3\nu)^2} \]

Thus the solution of the equation (16) for \(u_1 \) is

\[u_1 = ab^2e^{3\mu}(q_1t^2 + q_2t + q_3) + (b^2c + 2abd)e^{(2\lambda+\mu)t}(q_4t^2 + q_5t + q_6) \]

\[+ b^2he^{-2\lambda(\mu+\nu)}(q_7t^2 + q_8t + q_9) + (ad^2 + 2bcd)e^{-(\lambda+2\mu)t}(q_{10}t^2 + q_{11}t + q_{12}) \]

\[+ bdhe^{(\lambda+\mu+\nu)t}(q_{13}t^2 + q_{14}t + q_{15}) + cd^2e^{-3\mu}(q_{16}t^2 + q_{17}t + q_{18}) \]

\[+ d^2he^{-2\lambda(\mu+\nu)}(q_{19}t^2 + q_{20}t + q_{21}) + b^3e^{-3\lambda}(q_{22}t^3 + q_{23}t^2 + q_{24}t + q_{25}) \]

\[+ b^2de^{-2\lambda(\mu+\nu)}(q_{26}t^3 + q_{27}t^2 + q_{28}t + q_{29}) + bd^2e^{-\lambda(2\mu+\nu)}(q_{30}t^3 + q_{31}t^2 \]

\[+ q_{32}t + q_{33}) + d^3e^{-3\lambda}(q_{34}t^3 + q_{35}t^2 + q_{36}t + q_{37}) \]

where \(q_1 = \frac{1}{4\lambda^2(3\lambda - 2\mu)^2(3\lambda - v)}, \]

\[q_2 = \frac{2}{4\lambda^2(3\lambda - 2\mu)^2(3\lambda - v)} \left(\frac{1}{\lambda} + \frac{2}{3\lambda - \mu} + \frac{1}{3\lambda - v} \right), \]

\[q_3 = \frac{2}{4\lambda^2(3\lambda - 2\mu)^2(3\lambda - v)} \left\{ \frac{3}{4\lambda^2} + \frac{2}{\lambda(3\lambda - 2\mu)} + \frac{3}{(3\lambda - 2\mu)^2} \right\} \]

\[+ \frac{1}{\lambda(3\lambda - v)} + \frac{1}{(3\lambda - v)^2} + \frac{3}{(3\lambda - 2\mu)(3\lambda - v)}, \]

\[q_4 = \frac{3}{4\lambda^2(\lambda + \mu)^2(2\lambda + \mu - v)}, \]

\[q_5 = \frac{6}{4\lambda^2(\lambda + \mu)^2(2\lambda + \mu - v)} \left(\frac{2}{\lambda + \mu} + \frac{1}{\lambda} + \frac{1}{2\lambda + \mu - v} \right), \]

\[q_6 = \frac{3}{2\lambda^2(\lambda + \mu)^2(2\lambda + \mu - v)} \left\{ -\frac{3}{(\lambda + \mu)^2} + \frac{3}{4\lambda^2} + \frac{2}{\lambda(\lambda + \mu)} \right\} \]

\[+ \frac{1}{(2\lambda + \mu - v)^2} \left(1 + \frac{1}{(\lambda + \mu)(2\lambda + \mu - v) + \mu}(\frac{\lambda + \mu)(2\lambda + \mu - v)}{2} \right), \]

Corresponding Author: Md. MahafujurRahaman
Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues...

\[q_7 = \frac{3}{2\lambda(2\lambda + \nu - \mu)^2}(\lambda + \nu)^2, \]
\[q_8 = \frac{3}{\lambda(2\lambda + \nu - \mu)^2}(\lambda + \nu)^3 \left\{ \frac{2}{\lambda + \nu} + \frac{2}{2\lambda + \nu - \mu} + \frac{1}{2\lambda} \right\}, \]
\[q_9 = \frac{3}{\lambda(2\lambda + \nu - \mu)^2}(\lambda + \nu)^2 \left\{ \frac{3}{(\lambda + \nu)^2} + \frac{3}{(2\lambda + \nu - \mu)^2} \right. \]
\[+ \left. \frac{4}{(\lambda + \nu)(2\lambda + \nu - \mu)} + \frac{1}{4\lambda^2} + \frac{1}{\lambda(\lambda + \nu)} + \frac{1}{\lambda(2\lambda + \nu - \mu)} \right\}, \]
\[q_{10} = \frac{3}{4\mu^2(\lambda + \mu)^3(\lambda + 2\mu - \nu)}, \]
\[q_{11} = \frac{3}{2\mu^2(\lambda + \mu)^3(\lambda + 2\mu - \nu)} \left\{ \frac{2}{\lambda + \mu} + \frac{1}{\mu} + \frac{1}{\lambda + 2\mu - \nu} \right\}, \]
\[q_{12} = \frac{3}{2\mu^2(\lambda + \mu)^3(\lambda + 2\mu - \nu)} \left\{ \frac{3}{(\lambda + \mu)^2} + \frac{3}{4\mu^2} + \frac{2}{\mu(\lambda + \mu)} \right. \]
\[+ \left. \frac{1}{(\lambda + 2\mu - \nu)^2} + \frac{1}{\mu(\lambda + 2\mu - \nu)} + \frac{2}{(\lambda + \mu)(\lambda + 2\mu - \nu)} \right\}, \]
\[q_{13} = \frac{6}{(\lambda + \mu)(\mu + \nu)^2(\lambda + \nu)^2}, \]
\[q_{14} = \frac{12}{(\lambda + \mu)(\mu + \nu)^2(\lambda + \nu)^2} \left\{ \frac{1}{\lambda + \mu} + \frac{2}{\mu + \nu} + \frac{2}{\lambda + \nu} \right\}, \]
\[q_{15} = \frac{12}{(\lambda + \mu)(\mu + \nu)^2(\lambda + \nu)^2} \left\{ \frac{3}{(\lambda + \nu)^2} + \frac{3}{(\mu + \nu)^2} + \frac{4}{(\mu + \nu)(\lambda + \nu)} \right. \]
\[+ \left. \frac{1}{(\lambda + \mu)^2} + \frac{2}{(\lambda + \mu)(\mu + \nu)} + \frac{2}{(\lambda + \mu)(\lambda + \nu)} \right\}, \]
\[q_{16} = \frac{3}{4\mu^2(\lambda - 3\mu)^2(3\mu - \nu)}, \quad q_{17} = \frac{3}{2\mu^2(\lambda - 3\mu)^2(3\mu - \nu)} \left\{ \frac{1}{\mu} + \frac{2}{3\mu - \lambda} + \frac{1}{3\mu - \nu} \right\}, \]
\[q_{18} = \frac{3}{2\mu^2(\lambda - 3\mu)^2(3\mu - \nu)} \left\{ \frac{3}{4\mu^2} + \frac{2}{\mu(3\mu - \lambda)} + \frac{3}{(3\mu - \lambda)^2} \right. \]
\[+ \left. \frac{1}{\mu(3\mu - \nu)} + \frac{1}{(3\mu - \nu)^2} + \frac{2}{(3\mu - \lambda)(3\mu - \nu)} \right\}, \]
\[q_{19} = \frac{3}{2\mu(2\mu + \nu - \lambda)^2(\mu + \nu)^2}, \]
\[q_{20} = \frac{3}{\mu(2\mu + \nu - \lambda)^2(\mu + \nu)^2} \left\{ \frac{2}{\mu + \nu} + \frac{2}{2\mu + \nu - \lambda} + \frac{1}{2\mu} \right\}, \]
\[q_{21} = \frac{3}{\mu(2\mu + \nu - \lambda)^2(\mu + \nu)^2} \left\{ \frac{3}{(\mu + \nu)^2} + \frac{3}{(2\mu + \nu - \lambda)^2} \right. \]
\[+ \left. \frac{4}{(\mu + \nu)(2\mu + \nu - \lambda)} + \frac{1}{4\mu^2} + \frac{1}{\mu(\mu + \nu)} + \frac{1}{\mu(2\mu + \nu - \lambda)} \right\}, \]
Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues...

\[q_{22} = \frac{1}{4\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} , \]

\[q_{23} = \frac{3}{4\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} \left(\frac{1}{\lambda} + \frac{2}{3\lambda - \mu} + \frac{1}{3\lambda - \nu} \right) , \]

\[q_{24} = \frac{3}{2\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} \left[\frac{1}{2\lambda^2} + \frac{2}{\lambda(3\lambda - \mu)} + \frac{3}{(3\lambda - \mu)^2} \right. \]
\[+ \frac{1}{\lambda(3\lambda - \nu)} + \frac{1}{(3\lambda - \nu)^2} + \frac{2}{(3\lambda - \mu)(3\lambda - \nu)} \left] , \right. \]

\[q_{25} = \frac{3}{2\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} \left[\frac{1}{2\lambda^2} + \frac{3}{2\lambda^2(3\lambda - \mu)} + \frac{3}{\lambda(3\lambda - \mu)^2} \right. \]
\[+ \frac{4}{(3\lambda - \mu)} + \frac{1}{\lambda(3\lambda - \nu)} + \frac{2}{(3\lambda - \mu)(3\lambda - \nu)} + \frac{1}{(3\lambda - \nu)^3} \left] \right. \]
\[+ \frac{3}{4\lambda^2(3\lambda - \nu)} + \frac{2}{\lambda(3\lambda - \mu)(3\lambda - \nu)} + \frac{3}{(3\lambda - \mu)^2(3\lambda - \nu)} \right. , \]

\[q_{26} = \frac{3}{4\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} , \]

\[q_{27} = \frac{9}{4\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} \left(\frac{2}{\lambda + \mu} + \frac{1}{\lambda} + \frac{2}{2\lambda + \mu - \nu} \right) , \]

\[q_{28} = \frac{9}{2\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} \left[\frac{3}{(\lambda + \mu)^2} + \frac{2}{4\lambda^2} + \frac{2}{\lambda(\lambda + \mu)} \right. \]
\[+ \frac{1}{(2\lambda + \mu - \nu)^2} + \frac{1}{\lambda(2\lambda + \mu - \nu)} + \frac{2}{(\lambda + \mu)(2\lambda + \mu - \nu)} \left] , \right. \]

\[q_{29} = \frac{9}{2\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} \left[\frac{4}{(\lambda + \mu)^3} + \frac{3}{2\lambda^2} + \frac{3}{\lambda(\lambda + \mu)^2} + \frac{3}{2\lambda^2(\lambda + \mu)} \right. \]
\[+ \frac{2}{(2\lambda + \mu - \nu)^3} + \frac{1}{(\lambda + \mu)(2\lambda + \mu - \nu)^2} + \frac{2}{\lambda(2\lambda + \mu - \nu)^2} \left] \right. \]
\[+ \frac{3}{2\lambda^2(3\lambda - \nu)} + \frac{4\lambda^2(2\lambda + \mu - \nu)} + \frac{3}{\lambda(\lambda + \mu)(2\lambda + \mu - \nu)} \right. , \]

\[q_{30} = \frac{3}{4\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} , \]

\[q_{31} = \frac{9}{4\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} \left(\frac{2}{\lambda + \mu} + \frac{1}{\lambda} + \frac{1}{\lambda + 2\mu - \nu} \right) , \]

\[q_{32} = \frac{9}{2\lambda^2(3\lambda - \mu)^2(3\lambda - \nu)} \left[\frac{3}{(\lambda + \mu)^2} + \frac{3}{4\mu^2} + \frac{2}{\mu(\lambda + \mu)} \right. \]
\[+ \frac{1}{(\lambda + \mu)^2} + \frac{1}{\mu(\lambda + 2\mu - \nu)} + \frac{2}{(\lambda + \mu)(\lambda + 2\mu - \nu)} \left] , \right. \]
Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues...

\[q_{33} = \frac{9}{2\mu^2(\lambda + \mu)^2(\lambda + 2\mu - \nu)} \left\{ \frac{4}{(\lambda + \mu)^2} + \frac{3}{2\mu(\lambda + \mu)} + \frac{1}{(\lambda + 2\mu - \nu)^3} + \frac{3}{2\mu^3} \right\} \]
\[+ \frac{3}{\mu(\lambda + \mu)^2} + \frac{2}{(\lambda + \mu)(\lambda + 2\mu - \nu)^2} + \frac{1}{\mu(\lambda + 2\mu - \nu)^2} + \frac{3}{(\lambda + \mu)^2(\lambda + 2\mu - \nu)} \]
\[+ \frac{3}{4\mu^2(\lambda + 2\mu - \nu)} + \frac{2}{\mu(\lambda + \mu)(\lambda + 2\mu - \nu)} \}, \]
\[q_{34} = \frac{1}{4\mu^2(\lambda - 3\mu)^2(3\mu - \nu)}, \]
\[q_{35} = \frac{3}{4\mu^2(\lambda - 3\mu)^2(3\mu - \nu)} \left\{ \frac{1}{\mu} + \frac{2}{3\mu - \lambda} + \frac{1}{3\mu - \nu} \right\}, \]
\[q_{36} = \frac{3}{2\mu^2(\lambda - 3\mu)^2(3\mu - \nu)} \left\{ \frac{3}{4\mu^2} + \frac{2}{\mu(3\mu - \lambda)} + \frac{1}{(3\mu - \lambda)^2} \right\} \]
\[+ \frac{1}{\mu(3\mu - \nu)} + \frac{1}{(3\mu - \lambda)(3\mu - \nu)} + \frac{2}{(3\mu - \lambda)(3\mu - \nu)} \}, \]
\[q_{37} = \frac{3}{2\mu^2(\lambda - 3\mu)^2(3\mu - \nu)} \left\{ \frac{1}{2\mu^3} + \frac{3}{2\mu^2(3\mu - \lambda)} + \frac{3}{\mu(3\mu - \lambda)^2} \right\} \]
\[+ \frac{4}{(3\mu - \lambda)^3} + \frac{1}{\mu(3\mu - \nu)^2} + \frac{2}{(3\mu - \lambda)(3\mu - \nu)^2} + \frac{1}{(3\mu - \nu)^3} \]
\[+ \frac{3}{4\mu^2(3\mu - \nu)} + \frac{2}{\mu(3\mu - \lambda)(3\mu - \nu)} + \frac{3}{(3\mu - \lambda)^2(3\mu - \nu)} \} \]

Substituting the values of \(A_i, B_i, C_i, D_i\) and \(H_i\) from equations (27), (21), (28), (22) and (29) into equation (4), we obtain

\[\dot{a} = e^{(n_1a^2 + n_2a^2b)e^{-2\lambda t} + (n_3ac^2 + n_4acd)e^{-2\mu t} + n_5(a^2 + b^2)c}e^{-2\lambda t} \]
\[+ n_6a^2he^{(\lambda + \mu)t} + n_8(2acd + a^2d)e^{(\lambda + \mu)t} + n_4ache^{(\lambda + \mu)t} \]
\[+ n_{11}(ad + bh)e^{-\mu t} + n_{12}ah^2 + n_{12}bh^2 \} e^{-2\lambda t} + n_{10}abhe^{(\lambda + \mu)t} \}

\[\dot{b} = e^{l_1a^2be^{-2\lambda t} + l_2(2abc + a^2d)e^{(\lambda + \mu)t} + l_1(2acd + bc^2)e^{-2\mu t} \]
\[+ l_4(ad + bh)e^{(\mu + \nu)t} + l_5abhe^{(\nu + \lambda)t} + l_6bh^2 \} e^{-2\lambda t} \}

\[\dot{c} = e^{r_c^3 - 2\mu t + r_c^2de^{-2\mu t} + (r_3c^2h + r_3cdh) \]
\[e^{-(\mu + \nu)t} + (r_cch^2 + r_6dh^2) \} e^{-2\lambda t} \}

\[\dot{d} = e^{p_c^2de^{-2\mu t} + p_c^2cdhe^{(\mu + \nu)t} + p_3dh^2 \} e^{-2\lambda t} \}

\[\dot{h} = mh^3 \} e^{-2\lambda t} \]

Corresponding Author: Md. Mahafujur Rahaman
Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues

Here all of the equations (31) have no accurate solutions, but as \(a, b, c, d, h \) are proportional to the small parameter \(\varepsilon \), they are slowly varying functions of time \(t \). Accordingly, it is possible to replace \(a, b, c, d, h \) by their respective values obtained in linear case (i.e., the values of \(a, b, c, d, h \) obtained when \(\varepsilon = 0.1 \)) in the right hand side of equations (31). Murty and Deekshatulu ([31], [32]) first introduced this sort of replacement to resolve similar sort of nonlinear equations. Thus, the solutions of equations (31) are

\[
\begin{align*}
a &= a_0 + \varepsilon \left(n_0 a_0^2 + n_1 a_0 b_0 \right) \frac{1 - e^{-2\lambda t}}{2\lambda} + \left(n_2 a_0^2 c_0 + b_0^2 c_0 \right) + n_3 a_0^2 h_0 + \\
n_0 (2a_0 b_0 c_0 + a_0^2 d_0) \frac{1 - e^{-(\lambda + \mu)t}}{\lambda + \mu} + \left(n_3 a_0 h_0^2 + n_3 b_0 h_0^2 \right) \frac{1 - e^{-2\mu t}}{2\mu} \\
+ \left(n_3 a_0 c_0 h_0 + n_1 (a_0 d_0 h_0 + b_0 c_0 h_0) \right) \frac{1 - e^{-(\mu + \nu)t}}{\mu + \nu} + n_0 a_0 h_0 h_0^2 \frac{1 - e^{-(\lambda + \nu)t}}{\lambda + \nu}
\end{align*}
\]

\[
\begin{align*}
b &= b_0 + \varepsilon \left(n_0 a_0^2 b_0 \right) \frac{1 - e^{-2\lambda t}}{2\lambda} + \left(n_3 a_0 b_0 d_0 + a_0^2 d_0 \right) \frac{1 - e^{-(\lambda + \mu)t}}{\lambda + \mu} + r_4 a_0 b_0 h_0 \frac{1 - e^{-(\lambda + \nu)t}}{\lambda + \nu} + \\
r_5 (2a_0 c_0 d_0 + b_0 c_0^2) \frac{1 - e^{-2\mu t}}{2\mu} + r_5 (a_0 d_0 h_0 + b_0 c_0 h_0) \frac{1 - e^{-(\mu + \nu)t}}{\mu + \nu} + r_6 b_0 h_0^2 \frac{1 - e^{-2\nu t}}{2\nu}
\end{align*}
\]

\[
\begin{align*}
c &= c_0 + \varepsilon \left(n_0 c_0^2 + r_4 c_0^2 d_0 \right) \frac{1 - e^{-2\mu t}}{2\mu} + \left(r_5 c_0^2 h_0 + r_5 c_0 d_0 h_0 \right) + \\
\frac{1 - e^{-(\mu + \nu)t}}{\mu + \nu} + \left(r_4 c_0 h_0^2 + r_6 d_0 h_0^2 \right) \frac{1 - e^{-2\nu t}}{2\nu}
\end{align*}
\]

\[
\begin{align*}
d &= d_0 + \varepsilon \left(n_0 c_0^2 d_0 \right) \frac{1 - e^{-2\mu t}}{2\mu} + p_2 c_0 d_0 h_0 \frac{1 - e^{-(\mu + \nu)t}}{\mu + \nu} + p_3 d_0 h_0^2 \frac{1 - e^{-2\nu t}}{2\nu}
\end{align*}
\]

\[
h = h_0 + \varepsilon m h_0 \frac{1 - e^{-2\nu t}}{2\nu}
\]

Hence, we obtain the first approximate solution of the equation (13) as

\[
x(t, \varepsilon) = (a + bt) e^{-\lambda t} + (c + dt) e^{-\mu t} + he^{-\nu t} + \varepsilon u_1 (33)
\]

where \(a, b, c, d, h \) are given by the equations (32) and \(u_1 \) is given by (30).

IV. RESULTS AND DISCUSSION

It is usual to compare the perturbation solution to the numerical solution to test the accuracy of the approximate solution obtained by a certain perturbation method. We have computed \(x(t, \varepsilon) \) using (33), in which \(a, b, c, d, h \) are obtained from (32) and \(u_1 \) is calculated from equation (30). The result obtained from (33) for various values of \(t \), and the corresponding numerical solution obtained by a fourth order Runge-Kutta method is presented in the following Fig. 1, Fig. 2, Fig. 3, and Fig. 4 respectively.

Corresponding Author: Md. Mahafujur Rahaman
Figure 1: Comparison between perturbation and numerical results for $\lambda = 3.1$, $\mu = 1.5$, $\nu = 0.25$ and $\epsilon = 0.1$ with the initial conditions $a_0 = 0.45$, $b_0 = 0.25$, $c_0 = 0.10$, $d_0 = 0.25$, $h_0 = 0.20$.

Figure 2: Comparison between perturbation and numerical results for $\lambda = 3$, $\mu = 1.4$, $\nu = 0.20$ and $\epsilon = 0.1$ with the initial conditions $a_0 = 0.40$, $b_0 = 0.30$, $c_0 = 0.20$, $d_0 = 0.20$, $h_0 = 0.25$.

Figure 3: Comparison between perturbation and numerical results for $\lambda = 2.8$, $\mu = 1.3$, $\nu = 0.27$ and $\epsilon = 0.1$ with the initial conditions $a_0 = 0.45$, $b_0 = 0.30$, $c_0 = 0.20$, $d_0 = 0.25$, $h_0 = 0.30$.
Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues...

The corresponding perturbation and numerical results for various values of t are demonstrated in the following Table 1, Table 2, Table 3 and Table 4 respectively.

Table 1: Comparison between perturbation and numerical results

<table>
<thead>
<tr>
<th>Time(s)</th>
<th>Perturbation Result(x)</th>
<th>Numerical Result(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.843764</td>
<td>1.843764</td>
</tr>
<tr>
<td>0.5</td>
<td>0.793825</td>
<td>0.793871</td>
</tr>
<tr>
<td>1</td>
<td>0.417044</td>
<td>0.4164837</td>
</tr>
<tr>
<td>1.5</td>
<td>0.247136</td>
<td>0.246934</td>
</tr>
<tr>
<td>2</td>
<td>0.151797</td>
<td>0.150252</td>
</tr>
<tr>
<td>2.5</td>
<td>0.101659</td>
<td>0.100124</td>
</tr>
<tr>
<td>3</td>
<td>0.074406</td>
<td>0.070024</td>
</tr>
<tr>
<td>3.5</td>
<td>0.051458</td>
<td>0.051009</td>
</tr>
<tr>
<td>4</td>
<td>0.033197</td>
<td>0.033025</td>
</tr>
<tr>
<td>4.5</td>
<td>0.025163</td>
<td>0.024913</td>
</tr>
<tr>
<td>5</td>
<td>0.014364</td>
<td>0.013267</td>
</tr>
</tbody>
</table>

Table 2: Comparison between perturbation and numerical results

<table>
<thead>
<tr>
<th>Time(s)</th>
<th>Perturbation Result(x)</th>
<th>Numerical Result(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.754502</td>
</tr>
<tr>
<td>0.5</td>
<td>0.710645</td>
<td>0.710617</td>
</tr>
<tr>
<td>1</td>
<td>0.378653</td>
<td>0.378532</td>
</tr>
<tr>
<td>1.5</td>
<td>0.244124</td>
<td>0.243042</td>
</tr>
<tr>
<td>2</td>
<td>0.161075</td>
<td>0.160257</td>
</tr>
<tr>
<td>2.5</td>
<td>0.106945</td>
<td>0.105749</td>
</tr>
<tr>
<td>3</td>
<td>0.068722</td>
<td>0.066325</td>
</tr>
<tr>
<td>3.5</td>
<td>0.041457</td>
<td>0.040952</td>
</tr>
<tr>
<td>4</td>
<td>0.030795</td>
<td>0.030562</td>
</tr>
<tr>
<td>4.5</td>
<td>0.020115</td>
<td>0.020012</td>
</tr>
<tr>
<td>5</td>
<td>0.015124</td>
<td>0.015023</td>
</tr>
</tbody>
</table>

Table 3: Comparison between perturbation and numerical results

<table>
<thead>
<tr>
<th>Time(s)</th>
<th>Perturbation Result(x)</th>
<th>Numerical Result(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.617436</td>
<td>1.617436</td>
</tr>
<tr>
<td>0.5</td>
<td>0.646166</td>
<td>0.645918</td>
</tr>
<tr>
<td>1</td>
<td>0.318416</td>
<td>0.318302</td>
</tr>
<tr>
<td>1.5</td>
<td>0.201731</td>
<td>0.200939</td>
</tr>
<tr>
<td>2</td>
<td>0.117807</td>
<td>0.116352</td>
</tr>
<tr>
<td>2.5</td>
<td>0.083765</td>
<td>0.082674</td>
</tr>
<tr>
<td>3</td>
<td>0.054353</td>
<td>0.054202</td>
</tr>
<tr>
<td>3.5</td>
<td>0.041241</td>
<td>0.040122</td>
</tr>
<tr>
<td>4</td>
<td>0.031488</td>
<td>0.030828</td>
</tr>
<tr>
<td>4.5</td>
<td>0.025275</td>
<td>0.025013</td>
</tr>
<tr>
<td>5</td>
<td>0.017206</td>
<td>0.017079</td>
</tr>
</tbody>
</table>

Table 4: Comparison between perturbation and numerical results

<table>
<thead>
<tr>
<th>Time(s)</th>
<th>Perturbation Result(x)</th>
<th>Numerical Result(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.564734</td>
<td>1.564734</td>
</tr>
<tr>
<td>0.5</td>
<td>0.625884</td>
<td>0.625683</td>
</tr>
<tr>
<td>1</td>
<td>0.327245</td>
<td>0.327038</td>
</tr>
<tr>
<td>1.5</td>
<td>0.212653</td>
<td>0.211957</td>
</tr>
<tr>
<td>2</td>
<td>0.135976</td>
<td>0.135858</td>
</tr>
<tr>
<td>2.5</td>
<td>0.095462</td>
<td>0.095409</td>
</tr>
<tr>
<td>3</td>
<td>0.067589</td>
<td>0.067328</td>
</tr>
<tr>
<td>3.5</td>
<td>0.055124</td>
<td>0.055045</td>
</tr>
<tr>
<td>4</td>
<td>0.043754</td>
<td>0.042975</td>
</tr>
<tr>
<td>4.5</td>
<td>0.034087</td>
<td>0.034011</td>
</tr>
<tr>
<td>5</td>
<td>0.026572</td>
<td>0.026295</td>
</tr>
</tbody>
</table>

Corresponding Author: Md. Mahafujur Rahaman
V. CONCLUSION

In this article, we have modified the KBM method and applied it to fifth order critically damped nonlinear systems. On the basis of the modification, transient responses of nonlinear differential systems have been examined. For fifth order critically damped nonlinear systems, the solutions are searched for such circumstances where $\lambda \gg \mu >> \nu$. Thus, the results obtained for different sets of initial conditions as well as different eigenvalues have shown excellent agreement with the numerical results obtained by the Runge-Kutta method.

ACKNOWLEDGEMENTS

Both the authors are grateful to Md. MizanurRahman, Associate Professor, Department of Mathematics, Islamic University, Bangladesh, for his invaluable comments and advice.

REFERENCES

Asymptotic Solutions of Fifth Order Critically Damped Non-linear Systems with Pair Wise Equal Eigenvalues...

Corresponding Author: Md. Mahafujur Rahaman